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Abstract

Recent advancements in multilingual mod-
els for automatic speech recognition (ASR)
have been able to achieve a high accuracy for
languages with extremely limited resources.
This study examines ASR modeling for the
Mvskoke language, an indigenous language of
America. The parameter efficiency of adapter
training is contrasted with training entire mod-
els, and it is demonstrated how performance
varies with different amounts of data. Ad-
ditionally, the models are evaluated with tri-
gram language model decoding, and the out-
puts are compared across different types of
speech recordings. Results show that training
an adapter is both parameter efficient and gives
higher accuracy for a relatively small amount
of data.

1 Introduction

Endangered languages are often overlooked in re-
search on speech technology and other NLP appli-
cations. Research obstacles include data scarcity
and the effort it takes to collect new data, as well
as funding and a perceived limited impact on small
speech communities. However, these technologies
can be hugely beneficial to assisting community-
led language revitalization efforts and are worthy
of the effort it takes, if it is done with consideration
and care for the speech community.

Automatic Speech Recognition (ASR) technol-
ogy can help speed up transcription and documenta-
tion work, as well as be a stepping stone to other ap-
plications such as spoken term detection, which can
help in identifying certain topics or key information
contained in recordings. Other useful applications
for the speech community are speech-to-text input
and automatic subtitling. These applications can
be helpful in encouraging use of the language and
promoting language education.

ASR is a relatively mature technology when ap-
plied to high-resource languages (Baevski et al.,

2020). But it is only more recent advance-
ments such as model size and multilinguality that
have enabled comparable accuracy for resource-
constrained situations (Pratap et al., 2023). This
work focuses on the evaluation and analysis of two
highly multilingual speech models when trained
for Mvskoke, a language indigenous to the south-
eastern United States (Martin and Mauldin, 2000).

1.1 The Mvskoke Language

The Mvskoke language is spoken by members of
the Muscogee (Creek) Nation and Seminole Nation
in Oklahoma, and members of the Seminole tribe
of Florida. It is estimated that less than 300 first-
language speakers remain, and nearly all are over
the age of 601. Recent years have seen an interest
among tribal members to revitalize the language,
which has led to several new initiatives such as
a Master-Apprentice Program at the College of
the Muskogee Nation, and new educational and
preservation resources being created and collected
by the Language Program at the Muscogee Creek
Nation tribal government. ASR can assist in some
of these efforts.

The language is synthetic and agglutinative, with
a traditional orthography of 20 latin letters (Martin,
2011; Frye, 2020). The orthography is relatively
transparent and allows for spelling variations. The
advantage of a transparent orthography is that tran-
scriptions can remain relatively close to the speech
signal. The disadvantage is that the error rates
can appear higher since spelling may vary between
model predictions and reference transcriptions.

1.2 ASR for Low-Resource Languages

HMM-based and E2E can achieve usable results
on very low resource languages, without large pre-
trained multilingual models. An ASR system for

1This estimate is from personal communication with a
member of Ekvn-Yefolecv, a community of Mvskoke people.
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Yoloxóchitl Mixtec compares HMM and end-to-
end (E2E) encoder/decoder and finds E2E per-
formed best, with a WER of 16.0%. This model has
been incorporated into documentation workflow
(Shi et al., 2021; Amith et al., 2021). Jimerson et al.
(2023) show that an HMM-neural hybrid trained
from scratch can outperform pre-trained neural net-
works for some languages, but is worse for others.
This shows that there is no clear choice for system
architecture, and that choice of architecture may in
fact be dependent on the features of the language.

1.3 Fine-tuning Pre-trained Models

Fine-tuning a pre-trained model is a common ap-
proach for low-resource settings. An ASR model
for Cherokee using a fine-tuned XLSR-53 has
a WER of 64% (Zhang et al., 2022). A fully-
convolutional neural network (CNN) for Seneca
sees improvement from transfer learning from
English (Thai et al., 2020). In their paper on
endangered languages of Nepal, Meelen et al.
(2024) demonstrates an effective ASR pipeline us-
ing XLSR-53 and shows the relationship between
dataset size and model performance. For the cur-
rent work, we choose to fine-tune multilingual
transformer models due to the ease of implementa-
tion (Pratap et al., 2023).

1.4 Adapters

Houlsby et al. (2019) introduced adapter mod-
ules, which allow fine-tuning pretrained models
by adding only a few trainable parameters per task
rather than training all of the existing parameters.
The recent Massive Multilingual Speech (MMS)
models include adapters that are trainable for cer-
tain tasks such as ASR, and have been shown to
be more memory efficient and yield better perfor-
mance for low-resource languages (Pratap et al.,
2023).

1.5 Language Model Decoding

Utilizing a language model (LM) can be helpful
because often text data can be more easily gathered
than audio data. This is true in the case of Mvskoke.
(Jimerson et al., 2023) demonstrate that using a lan-
guage model always increases accuracy, but the
gains are minimal in comparison with other fac-
tors such as model architecture. On the other hand,
Orken et al. (2020) show that ASR for two aggluti-
native languages, Turkish and Tatar, see a marked
improvement from use of a language model. In this

work, we investigate the performance of the multi-
lingual models with and without LM decoding.

2 Data

The texts and recordings used in these experiments
primarily come from language documentation work
conducted over the last few decades. Two docu-
mentation books, by Haas et al. (2015) and Gouge
et al. (2004) are collections of stories, historical
letters, and other cultural documents. A portion
of these texts were recorded in a studio setting by
two female speakers. In order to incorporate male
speakers and spontaneous speech, a small segment
of the New Testament was selected, as well as a
few short sections of recorded interviews.

Splits. Train and development sets are split 90/10
at run-time. Two evaluation sets are kept separate
from the training set. "Eval (clean)" is read speech
from the same documentation sources as the train-
ing set, and "eval (other)" is noisier speech, con-
sisting of one overlapping male speaker and one
held-out female speaker. In the transcripts for all
the audio data, there are a total of 6,840 utterances
and 19,154 words, for an average of 2.8 words per
utterance. The train and "eval (other)" sets include
both read and spontaneous speech, while the "eval
(clean)" set is only read speech. Other features of
the datasets are shown in Table 1.

Language Model. The text data for the language
model (LM) includes the two books above as well
as the transcriptions from a series of interviews con-
ducted by the Pumvhakv School in 2015. For these
experiments, the interview recordings are not used
for training due to noise including nature sounds,
speech errors, and singing, but the transcriptions
provide valuable vocabulary. The texts and tran-
scriptions of the evaluation set were excluded from
the text training data. The text corpus used for
LM training has 118,021 words and 27,795 unique
words.

At this time, the dataset will not be publicly re-
leased due to copyright constraints of the source
material. Currently, the Muscogee (Creek) Nation
is working to consolidate data and establish lan-
guage resource policies. However, much of the
source of the data can be viewed on the Muskogee
Documentation Project website 2.

2https://muskogee.pages.wm.edu/
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train+dev eval clean eval other
Total Length 4.1h 21m 27.6m
Avg. Length 2.6s 2.5s 2.5s
F Speakers 2 2 1
M Speakers 2 0 1

Table 1: Prepared audio datasets. Train and develop-
ment sets are split 90/10 at run-time, and the evaluation
sets are held out for testing. Evaluation sets are parti-
tioned into clean and noisy speech.

3 Methodology

The goal of this work is to evaluate the effective-
ness of fine-tuning an adapter for a large multi-
lingual model. This is one state-of-the-art path
for ASR that requires less manual work than other
methods such as an HMM, and generally requires
less data due to the existing pre-trained acoustic
knowledge of the multilingual models. Addition-
ally, other aspects that are evaluated are how much
data is required and whether or not a language
model can improve results.

3.1 Models

This study evaluates models introduced by Meta’s
Massively Multilingual Speech (MMS) project
(Pratap et al., 2023). MMS models are speech rep-
resentation models with a wav2vec2.0 architecture
that are pre-trained on unlabeled data from 1,406
languages (Baevski et al., 2020; Pratap et al., 2023).
The base models are available in 300 million and 1
billion parameter versions. Of particular interest in
this study is the MMS-1B-l1107, a model that was
fine-tuned for ASR from the MMS-1B base model
(Pratap et al., 2023). This model features an adapter
with 2 million parameters on top of the base 1 bil-
lion parameters, based off of a method introduced
by Houlsby et al. (2019). The adapter layers allow
the large multilingual acoustic knowledge to be
fine-tuned for a new language in a computationally
efficient way.

In order to evaluate MMS in comparison with
its predecessors, we also train XLSR-53, a popular
choice for low-resource ASR. XLSR-53 has the
same wav2vec2.0 architecture and is pre-trained
on 53 languages with 300 million parameters (Con-
neau et al., 2020). In order to compare a similarly-
sized MMS model, we also train MMS-300M
(Pratap et al., 2023). MMS-1B is not included
for this experiment due to memory constraints of
the hardware used.

Figure 1: Word error rate and character error rate for
each model given the length of training data in minutes.

MMS-1B-l1107 was chosen over MMS-1B-all
based off of a simple empirical test in which the
former performed better, the details of which can
be found in Appendix A.

3.2 Implementation

Implementation follows the steps detailed by
Patrick von Platen to fine-tune the MMS adapter us-
ing Huggingface Transformers3 (Wolf et al., 2019).
For MMS-1B-l1107, the base model is frozen and
only the adapter layer is trained. For the other two
models, the entire model weights are trained. The
data is split into sets of 10, 60, 120, and 243 min-
utes. Early stopping criteria ends training before
overfitting. More hyperparameters are detailed in
Appendix A. The best model is saved with the low-
est character error rate (CER), and then evaluated
on the clean and noisy evaluation sets.

The language model is a trigram model trained
with KenLM (Heafield, 2011). This LM is then
used in a CTC decoder after the models are trained.
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Figure 2: Word error rate on evaluation sets when de-
coding with a trigram language model, for each model
trained on 243 minutes of audio data. MMS-1B-L is the
MMS-1B-L1107 model.

4 Results

The MMS-1B-l1107 performed best overall, with
best results of 37% word error rate (WER) and 5%
character error rate (CER). Results are shown in
Figure 1.

Data size effects. Interestingly, the XLSR-53
performed better than the MMS-300M on smaller
amounts of data. However, more data (4 hours)
improves the MMS-300M to a point that surpasses
XLSR-53. The reason for this is unclear. One ex-
planation could be due to the fact that the former
trained longer. Early stopping criteria ended train-
ing around 10-13 epochs for all models except the
MMS-300M at 243 minutes, which took longer to
converge and trained for 23 epochs. Further ex-
perimentation is needed to determine if this trend
continues to hold for more data. Table 2 shows
resulting error rates for each model.

MMS vs XLSR. Other papers have shown that
XLSR-53 outperforms MMS in some situations,
such as Uralic languages and Arabic, both of
which have tens of thousands of hours of train-
ing data available (Mihajlik et al., 2023; Younis
and Mohammad, 2023). Mvskoke on the other
hand only has a few hours of data, possibly mak-
ing MMS the better candidate. This is consistent
with the findings of the original authors of MMS,
that higher-resource languages show some degrada-

3https://huggingface.co/blog/mms_adapters

tion in MMS compared with previous models that
cover fewer languages, but that most extremely low-
resource languages benefit from the large amount
of languages represented in MMS (Pratap et al.,
2023).

The advantage that MMS-1B-l1107 presents is
that it has been fine-tuned specifically for the task
of ASR. Adding a new language-specific adapter
for Mvskoke also means that only a small number
of parameters need to be trained. Ultimately, fine-
tuning the adapter only for the MMS-1B-l1107 is
both more memory efficient and gives better per-
formance.

Model WER CER
120 243 120 243

XLSR-53 62 51 11 9
XLSR-53 + LM 40 36 10 7
MMS-300M 71 48 14 8
MMS-300M + LM 43 33 10 6
MMS-1B-L 40 37 6 5
MMS-1B-L + LM 34 31 5 5

Table 2: Error rate percentages for different models
with different data amounts in minutes, compared with
language model (LM) decoding, on the eval (clean) set.
MMS-1B-L is the MMS-1B-L1107 model.

LM Decoding. Language model (LM) decoding
improves all of the models by several percentage
points. The performance improvement is less for
the better models, but even the best model (MMS-
1B-l1107) improves slightly in WER. Figure 2
shows the decrease in error rate for each model
with the LM. However, in the best model, the CER
is not improved. Sometimes the language model
breaks apart long out-of-vocabulary words into
more common words, which degrades the transcrip-
tion. For example, "vcvkvhoyvte hvmkat" ("one
of the ones who had followed") is transcribed as
"vcakkvhoyvte hvmkat" without an LM, which is
phonetically similar, but is changed to "vcakv oketv
hvmkat" by the LM, which is nonsensical. So al-
though the WER goes down overall for the whole
evaluation, some information may be lost. This
may be dis-preferred for some applications such
as spoken term detection (Le Ferrand et al., 2021).
More example outputs are shown in Appendix B.

5 Conclusion and Future Work

This study shows that fine-tuning multilingual
transformer models is an effective method for train-
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ing ASR systems in low-resource language con-
texts. Fine-tuning the adapter for a 1 billion pa-
rameter model, MMS-1B-l1107, yields better re-
sults when compared to training entire models such
as XSLR-53 and MMS-300M. However, the per-
formance of such systems depends highly on the
recording quality and type of speech. Although
language modeling improves overall accuracy mea-
sures such as WER and CER, it can also degrade
the output in some cases. Alternatives like sub-
word or character-level modeling could offer a
more effective approach, particularly for applica-
tions where fidelity to the original speech signal is
preferred.

A future direction would be to incorporate the
ASR model into a keyword-spotting or sparse tran-
scription system. The high error rates for noisy
recordings in this study mean that manual tran-
scription may still be faster than correcting ASR
output. Sparse transcription can be helpful in sit-
uations where high ASR error rates lead to low-
quality transcriptions (Bird, 2021). Transcribing
only high-confidence words can be useful for in-
dexing recordings and providing an overview of
recorded content that can then be used for knowl-
edge gathering.

6 Limitations

Due to the computational effort, each model was
only trained once for each data amount (10, 60,
120, and 243 minutes). The datasets were shuffled
randomly at runtime when selecting the splits, for
example one 10 minute set is slightly different than
another 10 minute set. This creates some variabil-
ity in the results, and is not as robust as training
the models multiple times and taken an average of
performance.

This study also does not include the MMS-1B,
the adapter-less version of the MMS-1B-l1107, be-
cause of the computational requirements of train-
ing such a large model. Because of this, conclu-
sions cannot be made about the performance of an
adapter model compared to a model with an equal
amount of parameters. This study does not seek to
fully evaluate adapter architecture, rather only to
say that it is an effective method for this setting.

Finally, the transformer architecture was not
evaluated alongside other architectures. In low-
resource settings, model architecture can affect per-
formance significantly, and no single architecture
is best for every language (Jimerson et al., 2023).

This study only evaluates the models stated here
and their performance on the Mvskoke language.
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A Training Details

Hyperparameters. The implementation for this
experiment follows the guide by Patrick von Platen
using HuggingFace transformers4. Hyperparame-
ters were defined as follows:

• Learning rate = 1e-3

• Maximum epochs = 30

• Best model metric = CER

• Early stopping = 3

• Early stopping threshold = 0.003

Most models stopped training around 10-13
epochs, with the exception of the MMS-300M
trained on the full dataset, which took longer to
converge and stopped at 23 epochs.

MMS-1B-l1107 vs MMS-1B-all. MMS-1B-
l1107 was chosen over MMS-1B-all for a few rea-
sons. Both models are fine-tuned for ASR from the

4https://huggingface.co/blog/wav2vec2-with-n
gram
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base MMS-1B model using labeled data. MMS-
1B-l1107 was fine-tuned on the MMS-lab set only,
which is a collection of New Testament recordings
in 1,107 languages (Pratap et al., 2023). MMS-1B-
all includes more data, however the additional data
is for a smaller subset of languages, many of which
are higher-resourced. This may be detrimental for
an extremely low-resource language. This hypothe-
sis was tested somewhat empirically by training the
adapters for both MMS-1B-l1107 and MMS-1B-all
with 60 minutes of Mvskoke training data, and the
MMS-1B-l1107 performed better (decrease of 8%
WER and 1% CER on test set). Therefore this work
continues with the MMS-1B-l1107 model.

B Example Output

Table 3 shows examples of outputs from the
best model, MMS-1B-l1107 trained on the full
data set. Example 1 shows output on a female
speaker not present in the training data, speaking
conversationally. The model misses a word
boundary and the LM does not make any changes.
However, the transcription is still true to the speech
signal. In example 2, the language model (LM)
substitutes a common alternative spelling for the
same word, resulting in a higher error rate but is
still a good transcription. Example 3 shows how
the LM can in fact degrade transcription quality,

when it attemps to break an out-of-vocabulary
word into more common words. In this case,
the output without LM decoding makes a closer
transcription. The final example, example 4, shows
that LMs can improve the transcription on familiar
words.

Table 3: Examples of ASR outputs from MMS-1B-l1107.

1. Held-out female speaker
Eval (other) “‘Wring its neck,’ he told me.”
Reference nokfiyvs kihcen cvkihcen CER WER
No LM nokfiyvskihcen cvkihcen 12 67
With LM nokfiyvskihcen cvkihcen 12 67
2. Minor spelling changes
Eval (clean) “We don’t want you. Go back,” he was told
Reference ceyacēkot os yefulkvs kihocen CER WER
No LM ceyacēkot os yefulkvs kihocen 0 0
With LM ceyacekot os yefulkvs kihocen 3 25
3. LM degrades transcription
Eval (other) “one of the ones who had followed”
Reference vcvkvhoyvte hvmkat CER WER
No LM vcakkvhoyvte hvmkat 8 5
With LM vcakv oketv hvmkat 32 100
4. LM improves transcription
Eval (other) “November”
Reference ohrolopē eholē CER WER
No LM orrolope v ehoflē 38 150
With LM ohrolopē eholē 0 0
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