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Abstract001

Large Language Models (LLMs) have significant002
potential for facilitating intelligent end-user ap-003
plications in healthcare. However, hallucinations004
remain an inherent problem with LLMs, mak-005
ing it crucial to address this issue with extensive006
medical knowledge and data. In this work, we007
propose a Retrieve-and-Medically-Augmented-008
Generation with Knowledge Reduction (ReMAG-009
KR) pipeline, employing a carefully curated010
knowledge base using cross-encoder re-ranking011
strategies. The pipeline is tested on medical012
MCQ-based QA datasets as well as general QA013
datasets. It was observed that when the knowl-014
edge base is reduced, the model’s performance015
decreases by 2-8%, while the inference time im-016
proves by 47%.017

1 Introduction018

Large Language Models (LLMs) like GPT-4019

(Achiam et al., 2023), LLaMA-2 (Touvron et al.,020

2023a), and LLaMA-3 (Touvron et al., 2023b) have021

become highly efficient text generation tools with022

a significant variety of potential applications in a023

wide range of domains, like business, education, and024

healthcare. In healthcare, the potential to transform025

challenging tasks such as patient education (Jin et al.,026

2024), report generation (Shoham and Rappoport,027

2023), and drug discovery (Kormilitzin et al., 2021;028

Unnikrishnan et al., 2023) is exemplary. This is pri-029

marily due to their ability to analyze large amounts030

of textual data and generate high-quality meaning-031

ful text as per end-user task requirements. However,032

there are specific challenges with deploying them033

in the healthcare industry. The shortage of medical034

data available for training/consumption by LLMs is035

one of the primary reasons for concern. A critical036

hurdle is the propensity of LLMs to produce false037

medical information (often termed hallucinations), 038

misleading both patients and medical professionals. 039

Additionally, in case of instructions that are too ex- 040

plicit or devoid of important details, LLMs fail to 041

produce optimal results, which reduces their effi- 042

cacy. LLMs may also reinforce biases learned from 043

the training data, producing biased results towards 044

particular groups of people based on constructs like 045

gender, ethnicity, and socio-economic status. 046

For general tasks, the application of the concept of 047

Retrieval-Augmented Generation (RAG) has shown 048

promise. RAG systems incorporate external infor- 049

mation retrieval into the LLM architecture. Previ- 050

ous research, such as Almanac (Zakka et al., 2024) 051

and ChatENT (Long et al., 2023), has demonstrated 052

improved LLM accuracy and reliability with this 053

method. However, this kind of integration may also 054

include unrelated or incorrect information, which 055

could undermine the legitimacy and efficacy of the 056

LLM. Including external knowledge sources raises 057

issues with data consistency, privacy, security, and 058

legal consequences. Furthermore, these methods 059

frequently call for indexing and storing massive 060

datasets, sometimes surpassing 200GB. Although 061

RAG approaches perform excellently in general 062

question-answering tasks, there is still uncertainty 063

about their efficiency in healthcare. Regarding effi- 064

ciency, retrievers trained on generic data often fall 065

short of those optimized for particular domains (Li 066

et al., 2022). This emphasizes the need for domain- 067

specific training data, which can be costly and time- 068

consuming to create, particularly in specialized fields 069

like medicine. Moreover, conventional RAG tech- 070

niques train the LLM and retriever separately (Stein- 071

berg et al., 2021; Agrawal et al., 2022), while other 072

approaches include joint training of retrievers and 073

LLMs (Wang et al., 2024). The retrieved informa- 074
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tion and the LLM’s capacity to process it for accurate075

output may generally lack semantic depth due to the076

nature of the training (Sarthi et al., 2024).077

To address these challenges without additional078

computational costs, we propose a systematic ap-079

proach that integrates RAG models built on a care-080

fully curated knowledge base, with support for cross-081

encoder re-ranking strategies. First, keywords and082

entities from each query or question are extracted.083

Then, a web crawl is conducted to find each entity’s084

top-15 relevant documents, which are used to build085

the knowledge base. Next, the retrieval based on the086

query and re-ranking of the results using MedCPT087

(Jin et al., 2023) is performed. Finally, responses088

are generated using LLMs, specifically LLaMa2 and089

LLaMa3. The rest of the article is structured as fol-090

lows. Section 2 presents a detailed discussion on the091

proposed approach. Section 3 presents a discussion092

on the experiments performed and results observed,093

followed by conclusion and future work.094

2 Methodology095

Fig. 1 depicts the proposed approach consisting of096

five key phases – Keyword extraction, Document Re-097

trieval, Knowledge base construction, Cross-encoder098

re-ranking, and response generation using LLMs.099

Given a set of medical questions Q, a set of key-100

words KQ are extracted using KeyBERT (Grooten-101

dorst, 2020). For each keyword k ∈ KQ, a ranked102

set of 15 relevant documents di are retrieved from103

the PubMed database, resulting in a comprehensive104

collection of medical documents D∗ containing perti-105

nent medical knowledge. Formally, for each question106

qi ∈ Q, there exists a corresponding correct answer107

a∗i within a set of options Ai, such that a∗i ∈ Ai.108

The model M utilizes the query q and relevant doc-109

ument d to produce a predicted answer (as per Eq.110

(1), where, d ∈ D∗ and dR is the retrieved document111

based on the query, and Eq. (2) where θ represents112

the model’s parameters).113

Document Retrieval dR = p(d | q) (1)114
115

Answer Prediction a = p(a | q, dR, θ) (2)116

In the Keyword Extraction phase, at least three117

keywords are extracted from all queries. For each118

query Q, KeyBERT is used to extract at least three119

related medical keywords or key phrases KQ. This120

Figure 1: Proposed ReMAG-KR Framework

ensures that individual words and phrases relevant 121

to the medical context are captured accurately. Fol- 122

lowing this, in the Knowledge Base Indexing and 123

Storage phase, the PubMed API is employed to re- 124

trieve 15 relevant articles for each identified keyword 125

or keyphrase. This retrieval process results in a sub- 126

stantial corpus of about 600,000 articles, providing 127

a focused subset of the extensive PubMed database 128

(Canese and Weis, 2013), consisting of 24.9 million 129

articles. The collected articles are then transformed 130

into embedding vectors through the BAAI embed- 131
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ding model (Zhang et al., 2024). This model con-132

verts text data into a format that can be efficiently133

processed for similarity searches. Finally, the FAISS134

(Facebook AI Similarity Search) VectorStore index135

is used to store these embedding vectors. FAISS136

is optimized for high-speed similarity searches on137

large datasets, making it suitable for handling the138

extensive medical corpus generated.139

For facilitating retrieval, MedCPT was used in the140

process of document retrieval. For this, we compute141

the cosine similarity score between the query embed-142

ding q and each document embedding di. The top143

k documents were chosen based on query similar-144

ity. MedCPT was utilized to streamline the retrieval145

process and ensure that the most relevant documents146

were retrieved. For this, the cosine similarity score147

was computed between the query embedding q and148

the embedding of each document di. The cos-sim149

score measures how similar two vectors are in orien-150

tation and magnitude, with a higher score indicating151

greater similarity. By calculating this score for each152

document in the database, the system can effectively153

rank them based on their relevance to the query. Us-154

ing the computed scores, the top k documents were155

selected for retrieval, ensuring that the retrieved doc-156

uments are closely aligned with the user’s query.157

The cross-encoder re-ranker MedCPT is advanta-158

geous in re-ranking the top k extracted articles for159

generating the top n articles (where n = k), enhanc-160

ing the relevance of the information produced. Med-161

CPT was chosen as retriever and re-ranker due to its162

First-stage dense retriever (MedCPT retriever) and163

the Second-stage re-ranker (MedCPT re-ranker). The164

MedCPT retriever contains a query encoder (QEnc)165

and an article encoder (DEnc), both initialized by166

PubMedBERT. It is trained on 255M query-article167

pairs from PubMed search logs and in-batch nega-168

tives. The MedCPT re-ranker is a transformer cross-169

encoder (CrossEnc) initialized by PubMedBERT. It170

is trained on 18M semantic query-article pairs and171

localized negatives derived from the pre-trained Med-172

CPT retriever.173

Upon re-ranking retrieved articles, they are174

merged with the original query and provided as input175

to the LLM, which generates a response, represented176

as a, based on the amalgamation of the query and177

the re-ranked articles. The generated response is178

then evaluated by comparing it with the ground-truth179

answers, serving as a metric for assessing the perfor- 180

mance of the LLM in understanding and responding 181

to the given query. We have utilized two specific 182

LLMs for our experiments, namely LLaMA-2 and 183

LLaMA-3. These models have been selected based 184

on their capabilities and suitability for the task at 185

hand. We aim to evaluate these LLMs’ effectiveness 186

in generating accurate responses when presented 187

with queries and relevant document contexts. 188

3 Experiments and Results 189

Experiments were conducted on the benchmark MI- 190

RAGE dataset (Xiong et al., 2024) for the mul- 191

tiple choice questions-based QA tasks. This in- 192

cluded 7,663 questions from five commonly used QA 193

datasets in biomedicine (MMLU-Med, MedQA-US, 194

MedMCQA, PubMedQA (Jin et al., 2019), BioASQ 195

(Y/N)) (Tsatsaronis et al., 2015). For Subjective QA 196

task, the datasets LiveQA (Abacha et al., 2017) and 197

ExpertQA-Med (Malaviya et al., 2023) were cho- 198

sen, with 3,479 subjective questions and answers. 199

Standard metrics like accuracy, precision, recall, and 200

F1-score were used for the evaluation. The gener- 201

ated text quality and relevancy were assessed using 202

BLEURT, BERTScore, MoverScore, and ROUGE- 203

L. For MCQ-based QA tasks, the MED-RAG model 204

was used as the baseline, while KG-Rank (Yang et al., 205

2024) was considered for subjective tasks due to its 206

novelty and outstanding scores. 207

3.1 Results and Discussion 208

MCQ-based tasks: Table 1 shows the results for 209

this task, and it is evident that the proposed ReMAG- 210

KR underperformed on datasets including MMLU- 211

Med, MedQA-US, MedMCQA, PubMedQA, and 212

BioASQ-Y/N. Compared to MEDRAG’s 73.09 av- 213

erage accuracy, our approach produced 66.32. Like- 214

wise, our approach averaged 58.74 for the F1 score, 215

whereas MEDRAG scored 66.69. Despite the lag 216

in performance, the proposed ReMAG-KR showed 217

a notable efficiency advantage, as seen in Table 218

3. The inference time was nearly one-third that 219

of MEDRAG, primarily because our knowledge 220

base contains only 600,000 documents compared 221

to MEDRAG’s extensive 25 million corpus. 222

Subjective tasks: Using LLaMA-2 and LLaMA- 223

3 models, we analyzed the ExpertQA-Med and 224
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Table 1: k-sample average performance comparison between MED-RAG and ReMAG-KR (proposed) for MIRAGE
benchmark.

Dataset Method LLaMA-2 (k = 200) LLaMA-3 (k = 200)

Accuracy Precision Recall F1 Accuracy Precision Recall F1

MMLU-Med
MEDRAG 73.35 73.01 74.02 75.84 77.73 78.93 75.08 76.47
ReMAG-KR 66.32 67.43 70.32 68.34 71.72 72.23 74.15 70.38

MedQA-US
MEDRAG 66.72 65.72 66.15 64.53 70.26 68.38 69.15 64.53
ReMAG-KR 58.74 58.77 59.77 55.18 65.84 64.97 61.77 60.18

MedMCQA
MEDRAG 54.94 56.10 56.50 55.98 60.86 61.89 60.50 60.98
ReMAG-KR 50.38 52.12 53.11 52.47 56.40 55.50 57.11 56.47

PubMedQA
MEDRAG 66.52 63.56 64.96 65.30 69.30 71.81 69.47 68.38
ReMAG-KR 58.92 60.46 60.47 60.87 63.19 62.50 63.23 62.60

BioASQ-Y/N
MEDRAG 85.05 83.56 85.96 85.30 89.30 87.81 87.47 88.38
ReMAG-KR 79.72 80.46 80.47 80.87 84.19 84.50 83.23 83.60

Table 2: Performance comparison for LiveQA and ExpertQA-Med between KGRank and ReMAG-KR (proposed)

Dataset Method LLaMA-2 LLaMA-3

ROUGE-L BERTScore MoverScore BLEURT ROUGE-L BERTScore MoverScore BLEURT

ExpertQA-Med
KGRank 28.02 86.01 57.02 47.14 29.03 86.93 58.08 48.47
ReMAG-KR 28.32 82.43 53.32 48.34 28.72 84.23 57.15 47.38

LiveQA
KG-Rank 19.72 82.02 54.15 40.34 20.26 83.38 54.65 40.53
ReMAG-KR 17.84 79.77 55.77 39.18 18.84 81.97 54.77 41.18

Table 3: Inference time for MED-RAG and ReMAG-KR.

Dataset ReMAG-KR (in s) MedRAG (in s)

MMLU-Med 680 1380
MedQA-US 720 1500
MedMCQA 970 1432
PubMedQA 703 1290
BioASQ-Y/N 400 1000

AVG 694.6 1320.4

LiveQA datasets and compared the effectiveness of225

the RR and ReMAG-KR approaches (Refer Table226

2. With LLaMA-2 and LLaMA-3, respectively, KG-227

Rank obtained a ROUGE-L of 28.02 and 29.03 and a228

BERTScore of 86.01 and 86.93 for ExpertQA-Med.229

ReMAG-KR obtained BERTScore and ROUGE-L230

scores of 82.43, 84.23, 28.32, and 28.72, respec-231

tively. For LiveQA, KG-Rank obtained BERTScores232

of 82.02 and 83.38 in addition to ROUGE-L scores233

of 19.72 and 20.26. For BERTScore, ReMAG-KR234

scored 79.77 and 81.97, and for ROUGE-L, 17.84235

and 18.84. Both techniques showed comparable per-236

formance with equal inference times.237

4 Conclusion and Future Work 238

An approach for LLM-based retrieval and medically 239

assisted generation with a tactically reduced knowl- 240

edge base was presented in this article. Experiments 241

revealed that our approach reduces inference time 242

by 47% with a small compromise in performance 243

(of around 2-8%). Performance for subjective QA 244

tasks was also comparable with the state-of-the-art 245

approaches in this field. We plan to extend the pro- 246

posed approach by enriching the quality of retrieved 247

documents, while maintaining a reduced inference 248

time. Simple, vanilla RAG-based approaches fail to 249

capture semantically deep information hidden within 250

medical text, thus, the use of a single corpus for 251

generating a knowledge base encompassing multi- 252

ple sources of information could be attempted. We 253

also plan to introduce two other components into 254

the RAG pipeline – multi-hop question answering 255

and question decomposition. This involves breaking 256

down a complex query into sub-queries and enrich- 257

ing the quality of retrieved documents. Adopting 258

domain-specific models like PMC and MedLLaMA 259

may further boost the model’s ability to handle the 260

intricacies and nuances inherent in medical data. 261
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