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Abstract

While subword tokenizers such as BPE and
WordPiece are typically used to build vocab-
ularies for NLP models, the method of de-
coding text into a sequence of tokens from
these vocabularies is often left unspecified, or
ill-suited to the method in which they were
constructed. We provide a controlled analysis
of seven tokenizer inference methods across
four different algorithms and three vocabulary
sizes, performed on a novel intrinsic evalua-
tion suite we curated for English, combining
measures rooted in morphology, cognition, and
information theory. We show that for the most
commonly used tokenizers, greedy inference
performs surprisingly well; and that SaGe, a
recently-introduced contextually-informed tok-
enizer, outperforms all others on morphological
alignment.

1 Introduction

Modern NLP systems, including large language
models (LLMs), typically involve an initial step
of mapping raw input text into sequences of sub-
word tokens. These tokens are selected from a
large vocabulary of candidates that were produced
from algorithms such as Byte-Pair Encoding (BPE;
Sennrich et al., 2016), WordPiece (Schuster and
Nakajima, 2012), or UnigramLM (Kudo, 2018).

This process, which we refer to as the inference
method of tokenization, is critical as it determines
how all text is represented and subsequently mod-
eled. Each inference method offers distinct map-
pings, and we assert that it is not well-understood
how these methods differ in performance. Fur-
thermore, popular implementation packages such
as Huggingface Tokenizers,1 SentencePiece,2 and
SubwordNMT3 often obfuscate or even restrict the
choice of inference methods, making it unclear if

1
https://huggingface.co/docs/tokenizers

2
https://pypi.org/project/sentencepiece

3
https://github.com/rsennrich/subword-nmt

Tokenizerinference mode Segmentation

BPEmerges Ul tr am od ern
BPElongest prefix Ultra modern

UnigramLMlikelihood U nprecedented
UnigramLMlongest prefix Un precedent ed

SaGelongest prefix Inc once iva ble
SaGelikelihood In conceiv able

Table 1: Examples of words being segmented differ-
ently by various tokenizers (vocab size 32,000) using
different inference modes on the same vocabulary. Each
tokenizer’s default mode is provided on top.

inference-time decoding is compatible with the al-
gorithm used to learn the tokenizer’s vocabulary.
Moreover, it is yet to be determined whether such
a match is ideal, or even necessary.

In Table 1 we present examples demonstrating
how the prescribed inference methods of BPE, Un-
igramLM, and SaGe (Yehezkel and Pinter, 2023)
do not necessarily provide the best segmentation
for complex English words, even when good seg-
ments are available in the vocabulary. BPE’s out-
of-the-box algorithm merges the cross-morphemic
am sequence at an early stage, preventing the con-
sideration of ultra and modern and condemn-
ing the downstream model to work with a repre-
sentation learned for the first-person present form
of ‘to be’. UnigramLM’s ablative algorithm en-
abled nprecedented (which crosses morpheme
boundaries) to remain in its final vocabulary of to-
kens, while SaGe’s greedy algorithm masks the
boundaries of both the prefix In and the suffix
able. In all cases, an alternative inference method
provides a more morphologically-aligned segmen-
tation over the same vocabulary.

Previous work regarding subword tokenization
mostly concerns developing vocabulary construc-
tion algorithms (Sennrich et al., 2016; Schuster and
Nakajima, 2012; Kudo, 2018; Mielke et al., 2021;
Yehezkel and Pinter, 2023), finding the optimal
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vocabulary size (Gowda and May, 2020; Gutierrez-
Vasques et al., 2021), building multilingual vocab-
ularies (Liang et al., 2023), and using space posi-
tioning in the vocabulary tokens (Gow-Smith et al.,
2022; Jacobs and Pinter, 2022). Others analyze the
effects of vocabularies, finding intricate relations
between algorithm or vocabulary and downstream
performance (Bostrom and Durrett, 2020; Cognetta
et al., 2024a), information theory (Zouhar et al.,
2023; Cognetta et al., 2024b), cognitive plausibil-
ity (Beinborn and Pinter, 2023), impact on soci-
ety (Ovalle et al., 2024), or morphological align-
ment (Klein and Tsarfaty, 2020; Hofmann et al.,
2021, 2022; Gow-Smith et al., 2024; Batsuren et al.,
2024).

Research concerning inference methods has
been more scarce, and includes examination of ran-
dom effects on BPE merges (Provilkov et al., 2020;
Saleva and Lignos, 2023) and application of sophis-
ticated search algorithms (He et al., 2020). As far
as we know, there exists no comprehensive study
comparing inference methods across a variety of
vocabularies and sizes using diverse metrics.

In this work, we conduct a controlled experiment
isolating the effects of inference methods over four
tokenizers, introducing an evaluation suite aggre-
gating intrinsic benchmarks from various theoret-
ical realms.4 We find that greedy inference meth-
ods work surprisingly well for all four vocabular-
ies across morphological and information-theoretic
metrics. Furthermore, we demonstrate that SaGe
yields state-of-the-art performance according to
morphological metrics, and that inference methods
that minimize token count perform strongest by
cognitive metrics.

2 Inference Methods

Let V denote a vocabulary of subword tokens and
w denote a word (or ‘pretoken’), the output of a
pretokenizer. We define s(V, w) := (t1, ..., tk) as a
segmentation of w into k subword tokens such that
∀i, ti ∈ V and that the concatenation of t1, ..., tk
results in w. We use the term segmentation to
denote the application of an inference method on a
text given a token vocabulary, as well as its result.

Current widely-employed tokenization sched-
ules couple together the tokenizer vocabulary with
the inference method. However, we advocate for
decoupling them, as they are independent pro-

4We release our code and data at https://github.com/
MeLeLBGU/tokenizers_intrinsic_benchmark.

cesses. Specifically, given a fixed token vocabulary
produced from pre-training data, one could subse-
quently use any applicable inference method for
the task at hand. Thus, in our experiments, we
use various intrinsic metrics to analyze the impact
and performance of the several classes of inference
methods:

Greedy inference methods only consider and
produce one token at each step. We test three
greedy approaches: Longest prefix, which Word-
Piece uses by default (Wu et al., 2016), selects
the longest token in V that is a prefix of w, and
then continues to iteratively segment the remain-
ing text. Longest suffix selects the longest token
that is a suffix of w and continues iteratively (Ja-
cobs and Pinter, 2022; Bauwens, 2023). Since
this strategy diverges from English Morphology,
we consider it an intriguing baseline for assessing
the impact of linguistic structure on the inference
method. Longest token selects the longest token
that is contained in w, adds it to the generated
segmentation, and then iteratively segments each
remaining character sequence. This was proposed
by Hofmann et al. (2022) to approximate words
by their k longest tokens. They showed that it pre-
serves morphological structure of words and leads
to performance gains on some downstream tasks.

Merge rules-based inference methods begin
with a word’s character sequence and iteratively
apply token-forming merge rules learnt by the tok-
enizer at the vocabulary creation phase, until none
can be applied. This is BPE’s default inference
mode.5 In our experiments we test two variants for
BPE: The deterministic merge strategy recursively
applies the first applicable BPE merge rule by its
order in the trained merge list. Dropout (Provilkov
et al., 2020) applies each valid merge rule with
probability p, leading to a regularization effect
where rare tokens surface more often and their em-
beddings can be better trained. It has been shown
to improve machine translation performance.

Likelihood-based inference methods use indi-
vidual likelihood values assigned to tokens in order
to find a segmentation for w where the total likeli-
hood is maximized (Kudo, 2018; He et al., 2020).
Default uses likelihood values learned during vo-
cabulary construction and considers the likelihood

5While ostensibly also compatible with WordPiece, we
found no implementation of the model that provides an ordered
list of its merges.
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Resource Type Size Reference License

LADEC Morphological 7,804 Gagné et al. (2019) CC BY-NC 4.0 DEED
MorphoLex Morphological 12,029 Sánchez-Gutiérrez et al. (2018) CC BY-NC-SA 4.0 DEED
MorphyNet Morphological 219,410 Batsuren et al. (2021) CC BY-SA 3.0 DEED
DagoBert Morphological 279,443 Hofmann et al. (2020) Not specified—citation based
UniMorph Morphological 143,454 Batsuren et al. (2022) CC BY 4.0 DEED
UnBlend Morphological 312 Pinter et al. (2020) GPL-3.0
CompoundPiece Morphological 22,896 Minixhofer et al. (2023) Not specified—citation based
Cognitive data Cognitive 55,867 Beinborn and Pinter (2023) MIT
tokenization-scorer Information Theory — Zouhar et al. (2023) Not specified—citation based

Table 2: Size, Reference and License details of the resources in our benchmark.

of a segmentation to be the product of individ-
ual likelihoods (from which UnigramLM gets its
name). Least tokens assigns a constant likelihood
value to all tokens, effectively selecting a segmen-
tation where the number of tokens is minimized.
While not suggested so far as a standalone infer-
ence method, this obecjtive is proposed for both
vocabulary training and inference in the PathPiece
algorithm (Schmidt et al., 2024).

3 Intrinsic Benchmark

Some analyses of tokenizers rely on training lan-
guage models or translation models and evaluating
their performance on downstream tasks. Using
this process to isolate effects of tokenization hy-
perparameters, such as inference method, is both
time- and resource-consuming, as well as unstable
due to the introduction of multiple sources of ran-
domness throughout the LM/TM pre-training and
fine-tuning phases. Few measures have been intro-
duced that are intrinsic to vocabularies and their
direct application to corpora, and fewer still avoid
conflating the measures with the objectives used
in the vocabulary construction process itself. As
a result, the body of work focused on improving
tokenization schemes is still relatively small.

We create and release a benchmark made to in-
trinsically evaluate subword tokenizers. We col-
lected word-level datasets and information mea-
sures which have been shown, or hypothesized, to
correlate with the performance of language mod-
els on various downstream tasks. Details on these
resources are provided in Table 2. At present, the
benchmark is focused on the English language, al-
though corresponding datasets exist for others as
well.

Morphological alignment It is commonly as-
sumed that, for a given tokenizer, alignment of
word segments to morphological gold-standard seg-
mentations is a predictor of the ability of a language

model that uses the given tokenizer to represent
words, especially ‘complex’ ones that are made up
of several roots or contain multiple morphological
affixes (Schick and Schütze, 2019; Nayak et al.,
2020; Hofmann et al., 2021; Gow-Smith et al.,
2022). We follow Gow-Smith et al. (2022) and eval-
uate our tokenizers’s alignment with morphological
annotations found in LADEC (Gagné et al., 2019),
MorphoLex (Sánchez-Gutiérrez et al., 2018), Mor-
phyNet (Batsuren et al., 2021), and DagoBert (Hof-
mann et al., 2020). We augment these datasets
with morpheme segmentation data (Batsuren et al.,
2022), novel blend structure detection data (Pinter
et al., 2020), and compound separation data (Minix-
hofer et al., 2023). The number of words in each
resource can be found in Table 2. We compare
the segmentations generated by the tokenizers with
each inference method to gold-standard morpho-
logical segmentations using the metric introduced
by Creutz and Linden (2004), and report the macro-
averaged F1 score over the different resources.

Cognitive Plausibility We use the benchmark
and data from Beinborn and Pinter (2023) to mea-
sure the correlation of a tokenizer’s output with
the response time and accuracy of human partici-
pants in a lexical decision task, predicated on the
hypothesis that a good tokenizer struggles with
character sequences that humans find difficult, and
vice versa. We report the average of the absolute
value correlation scores across the four linguistic
setups (word/nonword × accuracy/response time).

Tokens distribution statistics We report the
Rényi efficiency of different segmentations across
a corpus (Zouhar et al., 2023). This measure penal-
izes token distributions dominated by either very
high- and/or very low-frequency tokens, and was
shown to correlate strongly with BLEU scores
for machine translation systems trained on the re-
spective tokenizers. Recent work (Cognetta et al.,
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Vocab Inference Morphological Cognitive Rényi Tokens Decoding
method alignment plausibility efficiency per word diff

BPE

longest prefix .8584 .3266 .4482 1.4273 .0502
longest suffix .6467 .3170 .4482 1.4286 .0417
longest token .8738 .3302 .4474 1.4261 .0484
least tokens .7544 .3321 .4476 1.4237 .0382
det. merges .6309 .3355 .4482 1.4308 —
dropout merge .6081 .2925 .4537 1.5793 .1313

WordPiece

longest prefix .8488 .3307 .4507 1.4430 —
longest suffix .6288 .3198 .4502 1.4435 .0656
longest token .8466 .3332 .4500 1.4411 .0216
least tokens .7342 .3306 .4401 1.4319 .0682

UnigramLM

longest prefix .9222 .2858 .3400 1.7577 .1187
longest suffix .7520 .2690 .2897 1.7624 .0516
longest token .8845 .2948 .3040 1.7353 .0406
least tokens .8982 .2953 .2969 1.7219 .0328
likelihood .9149 .2937 .2919 1.7314 —

SaGe

longest prefix .9606 .2581 .3217 1.9445 —
longest suffix .7370 .2471 .2832 1.9615 .1704
longest token .9236 .2671 .3027 1.9236 .0887
least tokens .9125 .2674 .2944 1.8895 .1318
likelihood† .9515 .2664 .2937 1.9156 .1168

Table 3: Intrinsic Benchmark results on a vocab size of 40k. ‘Default’ decoding algorithms (used in vocabulary
construction) in italics. Not all methods are applicable to all tokenizers. Decoding diff presents the share of
pretokens in the MiniPile test set that are differently tokenized using the method, compared with the default. We
present correlation scores for performance over the various metric families in Appendix C.
†For SaGe, likelihood is only based on unigram scores obtained before further vocabulary ablation.

2024b) reveals a misalignment between Rényi ef-
ficiency and downstream performance in certain
cases, reinforcing the necessity of an evaluation
suite grounded in diverse domains and disciplines,
as advocated in this work. We also measure the
average number of tokens per word over a corpus,
as a proxy for compression quality (Gallé, 2019).
We omit the popular measure of character-length
distribution of the tokens in the vocabulary, as it
does not vary with segmentation strategy.

Lastly, we report the proportion of pretokens that
are segmented different from the default across our
reference corpus.

4 Experiments

We evaluate inference methods for the following
tokenizer vocabularies: BPE, UnigramLM, Word-
Piece and SaGe. We use the train split of the MiniP-
ile (Kaddour, 2023) dataset to construct the tok-
enizer vocabularies. We train vocabularies of sizes
32,768, 40,960, and 49,152, using the HuggingFace
Tokenizers library, with identical pre-tokenization,
representing the text at byte level. UnigramLM
and SaGe require an initial vocabulary for their
top-down algorithms; for the former, we used the
default implementation of one million top n-grams,

while SaGe was initialized with a 262K-size Uni-
gramLM vocabulary. This initial vocabulary also
provided us with token likelihood scores for infer-
ence, although a more exact implementation would
also incorporate the contextual SaGe objective.

Token distribution statistics measurements and
decoding diff rates were computed over the test
split of the MiniPile dataset. We measure the Rényi
efficiency using the tokenization-scorer package6

with α = 2.5. For each tokenizer, all experiments
ran within several minutes on a personal laptop
computer, highlighting the usefulness of our bench-
mark as an efficient tool for in-loop hyperparamter
tuning.

We present the results on our benchmark for
the 40K vocabularies in Table 3. Results for other
sizes are presented in Appendix A. A breakdown
of individual evaluation subsets is provided in Ap-
pendix B.

Inference methods Within each tokenizer, we
find that the default (‘intended’) strategy is often
outperformed by others on some measures. We
observe a significant difference in morphological
alignment when using merge rules-based inference
methods. Qualitative analysis showed the findings

6
https://github.com/zouharvi/tokenization-scorer
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illustrated in Table 1, where early merge rules such
as ‘i-n’, ‘a-m’, or ‘o-n’ cross morphological bound-
aries. We notice a similar trend for likelihood-
based inference, where frequently-used tokens pos-
sess very high likelihood values, sometimes exceed-
ing those of the gold-standard segments. We find
that the least tokens strategy fares well not only on
the token count metric, which is mostly by-design,
but also on cognitive measures, suggesting an effect
of human preference to minimal word segmenta-
tion. Finally, we observe that likelihood-based in-
ference performs poorly in terms of Rényi efficieny,
contrary to its stated purpose. Dropout, on the other
hand, performs well on this measure, in line with
its goal. longest suffix performs poorly across the
board, possibly due to the suffixing nature of the
English language, which has complementarily been
shown to affect character-level sequential model-
ing (Pinter et al., 2019). Notably, all our key obser-
vations are consistent across vocabulary sizes, as
shown in Appendix A.

Inter-tokenizer results Our results align with
Bostrom and Durrett (2020)’s finding that BPE
is inferior to UnigramLM on morphology align-
ment. However, we show that some of this gap
can be attributed not to the vocabulary but to the
inference method. In addition, we find that SaGe
is most aligned to morphology by a substantial
margin, indicating that its contextualized objective
succeeds in retaining meaningful tokens in the vo-
cabulary during ablation. It is important to note
that our evaluation is limited to English, a language
with relatively low morphological complexity. Pre-
vious studies have identified significant tokeniza-
tion challenges in non-English languages (Mager
et al., 2022). Therefore, any definitive conclusions
regarding the effectiveness of tokenization meth-
ods should ideally encompass a diverse array of
languages. BPE and WordPiece, optimized for
compression, unsurprisingly perform well above
the likelihood-based vocabularies on the informa-
tion measures. However, we note that this carries
over to the cognitive benchmark as well, supporting
Beinborn and Pinter (2023)’s findings.

Finally, we note that the two likelihood-based
vocabularies follow the exact same within-vocab
trends, and those for the two information-based
vocabularies are also very close. This highlights
the consistency and robustness of our benchmark,
although some results are relatively close to each
other, which can be expected considering that some

inference methods do not change much of the token
sequences (see rightmost column of Table 3).

5 Conclusion

In this work, we curated an aggregated benchmark
for intrinsic evaluation of subword tokenizers and
used it to show the importance of selecting an infer-
ence method suited for a vocabulary given a task.
Given its computational efficiency, we hope the
benchmark can be used in LM training efforts as a
fruitful first step to improve tokenization schemes,
or to select inference methods on-line. Concretely,
our findings suggest that greedy inference is a good
choice, especially for morphologically-motivated
tasks, even for tokenizers trained on other objec-
tives. Considering its ease of implementation and
faster inference, this is an encouraging finding.

In the future, we plan to examine the correlation
between our benchmark and various downstream
tasks, as well as expand our experimentation to
other languages and new algorithms.

Limitations

Our paper contains evaluation of models in the En-
glish language. This was done mostly in order to
focus this short paper’s contribution, and to be able
to control for as many possibly-confounding vari-
ables such as training data. Nevertheless, a more
complete followup would have to include attempts
to replicate our findings on other languages, aiming
for a set as diverse as possible mostly in terms of
typology and script.

Our evaluation is limited to intrinsic measures.
While this makes development of tokenizers easier,
we acknowledge that the body of work correlating
success on these measures with performance of
downstream models on end-tasks is incomplete.

Ethical Considerations

Details for human annotation for the cognitive
benchmark are documented in the source bench-
mark’s paper (Beinborn and Pinter, 2023), from
which we took the data as-is.
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A Results on Different Vocabulary Sizes

Table 4 presents benchmark results on 32K-sized
and 49K-sized vocabularies.

B Detailed Results

Table 5 breaks down the results (for 40K) on in-
dividual morphological datasets composing our
benchmark. Table 6 Provides the same for indi-
vidual cognitive measures.

C Inter-Metric Correlations

Table 7 presents the Pearson correlation coeffi-
cients between the various intrinsic metrics used in
the benchmark. These correlations are calculated
based on the aggregated results across all vocabu-
lary sizes.
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Vocab Inference Morphological Cognitive Rényi Tokens Decoding
method alignment plausibility efficiency per word diff

BPE-32K

longest prefix .8727 .3122 .4600 1.4511 .0581
longest suffix .6496 .3018 .4602 1.4530 .0469
longest token .8883 .3152 .4592 1.4498 .0558
least tokens .7607 .3174 .4595 1.4469 .0426
det. merges .6409 .3201 .4603 1.4551 —
dropout merge .6149 .2795 .4656 1.6041 .1316

WordPiece-32K

longest prefix .7819 .3185 .4630 1.4689 —
longest suffix .5084 .3089 .4626 1.4698 .0744
longest token .7764 .3212 .4622 1.4667 .0243
least tokens .7394 .3185 .4508 1.4565 .0769

UnigramLM-32K

longest prefix .9278 .2855 .3574 1.7803 .1171
longest suffix .7610 .2679 .2961 1.7838 .0516
longest token .8926 .2930 .3103 1.7534 .0395
least tokens .9077 .2937 .3028 1.7418 .0303
likelihood .9206 .2931 .2985 1.7501 —

SaGe-32K

longest prefix .9613 .2610 .3454 1.9502 —
longest suffix .7449 .2473 .2914 1.9736 .1653
longest token .9348 .2685 .3113 1.9319 .0822
least tokens .9212 .2691 .3035 1.9084 .1247
likelihood .9579 .2679 .3026 1.9246 .1098

BPE-49K

longest prefix .8440 .3371 .4391 1.4104 .0444
longest suffix .6438 .3279 .4390 1.4112 .0379
longest token .8637 .3404 .4384 1.4094 .0430
least tokens .7464 .3421 .4385 1.4072 .0351
det. merges .6208 .3461 .4390 1.4137 —
dropout merge .5967 .2996 .4446 1.5610 .1310

WordPiece-49K

longest prefix .7600 .3398 .4413 1.4245 —
longest suffix .5133 .3309 .4407 1.4247 .0589
longest token .7598 .3421 .4406 1.4228 .0194
least tokens .7261 .3401 .4319 1.4145 .0615

UnigramLM-49K

longest prefix .9157 .2818 .3467 1.7432 .1190
longest suffix .7449 .2669 .2849 1.7486 .0516
longest token .8750 .2915 .2994 1.7245 .0416
least tokens .8908 .2926 .2924 1.7098 .0345
likelihood .9095 .2911 .2871 1.7201 —

SaGe-49K

longest prefix .9606 .2566 .3361 1.9414 —
longest suffix .7355 .2466 .2783 1.9562 .1735
longest token .9200 .2662 .2975 1.9192 .0912
least tokens .9053 .2662 .2893 1.8947 .1353
likelihood .9455 .2651 .2887 1.9111 .1194

Table 4: Aggregated results on 32K and 49K vocabularies.
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Vocab Inference Ladec Morpho- Morphy- Dago- Uni- UnBlend Compound-
Lex Net Bert Morph Piece

BPE

longest prefix .9210 .8091 .8511 .8013 .9956 .7404 .8904
longest suffix .9497 .6222 .6524 .7116 .0316 .6095 .9502
longest token .9147 .8125 .8953 .8618 .9705 .7711 .8905
least tokens .9775 .7401 .8303 .8539 .2573 .6489 .9731
det. merges .8160 .6781 .6132 .6195 .3233 .6097 .7568
dropout merge .7666 .6557 .5871 .5953 .3128 .6213 .7178

WordPiece

longest prefix .9333 .7625 .9114 .8659 .9963 .5569 .9153
longest suffix .9447 .6005 .6289 .6844 .1059 .4838 .9535
longest token .9275 .7568 .9124 .8765 .9666 .5749 .9112
least tokens .9706 .7132 .8253 .8032 .2670 .5897 .9704

UnigramLM

longest prefix .9551 .8800 .9291 .9087 .9973 .8553 .9299
longest suffix .9248 .6387 .8206 .8407 .2777 .8076 .9536
longest token .8855 .7534 .9313 .9378 .9135 .8571 .9130
least tokens .9660 .8015 .9511 .9593 .7218 .9073 .9801
likelihood .9341 .7903 .9645 .9782 .8423 .9205 .9743

SaGe

longest prefix .9734 .9422 .9673 .9600 .9973 .9213 .9626
longest suffix .9519 .5996 .7819 .8091 .2403 .8216 .9549
longest token .9420 .8390 .9365 .9418 .9711 .8889 .9457
least tokens .9856 .8394 .9533 .9632 .7269 .9318 .9877
likelihood .9709 .8813 .9809 .9879 .9014 .9492 .9890

Table 5: Results on individual morphological resources.

Vocab Inference Words-RT Words-ACC nonwords-RT nonwords-ACC

BPE

longest prefix −.3136 .4035 .4111 −.1784
longest suffix −.3102 .3890 .3987 −.1699
longest token −.3164 .4086 .4130 −.1828
least tokens −.3146 .4083 .4226 −.1828
det. merges −.3285 .4138 .4163 −.1835
dropout merge −.2562 .3505 .3908 −.1726

WordPiece

longest prefix −.3198 .4029 .4119 −.1882
longest suffix −.3132 .3863 .4028 −.1770
longest token −.3226 .4067 .4134 −.1902
least tokens −.3146 .4036 .4201 −.1842

UnigramLM

longest prefix −.2292 .3391 .3920 −.1827
longest suffix −.2308 .3235 .3645 −.1572
longest token −.2493 .3590 .3904 −.1804
least tokens −.2394 .3582 .3978 −.1860
likelihood −.2424 .3577 .3926 −.1822

SaGe

longest prefix −.1924 .2896 .3752 −.1754
longest suffix −.1895 .2801 .3602 −.1585
longest token −.2079 .3047 .3790 −.1767
least tokens −.1978 .3034 .3864 −.1821
likelihood −.2035 .3043 .3797 −.1780

Table 6: A breakdown of cognitive correlation results across vocabularies and inference methods.

Morphological Cognitive Rényi Tokens
alignment plausibility efficiency per word

Morphological alignment 1 −.5009 −.4799 .5726
Cognitive plausibility — 1 .6470 −.9588

Rényi efficiency — — 1 −.6400
Tokens per word — — — 1

Table 7: Correlations between the different intrinsic metrics.
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