
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 802–812
August 11-16, 2024 ©2024 Association for Computational Linguistics

Cleaner Pretraining Corpus Curation with Neural Web Scraping

Zhipeng Xu1, Zhenghao Liu1*, Yukun Yan2, Zhiyuan Liu2, Ge Yu1 and Chenyan Xiong3

1Department of Computer Science and Technology, Northeastern University, China
2Department of Computer Science and Technology, Institute for AI, Tsinghua University, China

Beijing National Research Center for Information Science and Technology, China
3Language Technologies Institute, Carnegie Mellon University, United States

Abstract

The web contains large-scale, diverse, and
abundant information to satisfy the information-
seeking needs of humans. Through meticulous
data collection, preprocessing, and curation,
webpages can be used as a fundamental data
resource for language model pretraining. How-
ever, when confronted with the progressively
revolutionized and intricate nature of webpages,
rule-based/feature-based web scrapers are be-
coming increasingly inadequate. This paper
presents a simple, fast, and effective Neural
web Scraper (NeuScraper) to help extract pri-
mary and clean text contents from webpages.
Experimental results show that NeuScraper
surpasses the baseline scrapers by achieving
more than a 20% improvement, demonstrat-
ing its potential in extracting higher-quality
data to facilitate the language model pretrain-
ing. All of the code is available at https:
//github.com/OpenMatch/NeuScraper.

1 Introduction

Large Language Models (LLMs) have shown im-
pressive performance in various NLP tasks as the
size of models scaling up (Chowdhery et al., 2023;
Touvron et al., 2023; Achiam et al., 2023; Zhao
et al., 2023). However, recent findings in scaling
laws indicate that both model size and training data
should be scaled proportionally (Hoffmann et al.,
2022), posing a significant challenge in acquiring
sufficiently large pretraining datasets or even rais-
ing concerns about data scarcity (Penedo et al.,
2024; Villalobos et al., 2022).

To curate more data for pretraining, researchers
pay more attention to collecting more valuable data
from the Web. The web-crawled datasets, such
as CommonCrawl, have been widely used for pre-
training, facilitating the development of language
models (Wenzek et al., 2020; Radford et al., 2019;

* indicates corresponding author.

Raffel et al., 2020; Penedo et al., 2024). Neverthe-
less, prior research has demonstrated that, even af-
ter aggressive cleaning, the quality of pre-extracted
text provided by CommonCrawl still fails to reach
the expected (Raffel et al., 2020; Gao et al., 2021;
Penedo et al., 2024). The reason lies in that ad-
vertisements, banners, hyperlinks, and other harm-
ful content are usually mixed within the primary
content of the page, thereby only extracting these
primary contents brings lots of noise to pretrain-
ing (Gibson et al., 2005; Vogels et al., 2018).

Web scrapers provide opportunities to extract
valuable content from the raw HTML pages (Bar-
baresi, 2021). However, rule-based and heuristic
scrapers have notable limitations. On the one hand,
web pages are becoming increasingly sophisticated,
requiring more intricate underlying code to deal
with the page layout (Butkiewicz et al., 2011). In
this case, maintaining the scraper rules is time-
consuming and requires much human effort. On
the other hand, HTML functions as a markup lan-
guage, enabling web designers to customize web
pages according to individual preferences. Conse-
quently, web pages frequently lack complete stan-
dardization, which may mislead the rule-based web
scrapers (Hantke and Stock, 2022).

In this paper, we present a simple, fast, and
effective Neural Web Scraper (NeuScraper) de-
signed to extract primary content from webpages.
NeuScraper employs a shallow neural architec-
ture and integrates layout information for effi-
cient scraping. Our experiments demonstrate that
NeuScraper surpasses baseline scrapers, achieving
a 20% improvement in performance and generat-
ing a higher-quality corpus for language model
pretraining. Notably, NeuScraper shows the po-
tential of high processing speeds when utilized
on GPU. The easy-to-use and open-source tool,
NeuScraper, can facilitate the creation of large-
scale corpora for pretraining.

802

https://github.com/OpenMatch/NeuScraper
https://github.com/OpenMatch/NeuScraper

<html>

<head>

<title> Macintosh-Wikipedia

<body>

<div>

<h1>

Macintosh-128K

 From Wikipedia …

<div>

27 Languages

 Article

1

2

3

4

5

Textual Sequence Modeling of Webpages

Macinto…
1

27 Lang…
2

Article
3

Macinto…
4

From…
5

…

…

n

Web Scraping with Neural Method

NeuScraper

…

1
1

0
2

0
3

1
4

1
5

…
n

…

Figure 1: The Pipeline of Primary Content Extraction
Using NeuScraper (Neural Web Scraper).

2 Related Work

Leveraging web scrapers for extraction provides
a promising way to extract high-quality content
from webpages. Such a web scraping task is usu-
ally defined as text extraction, boilerplate removal,
template removal, or generic web extraction in dif-
ferent webpage processing pipelines (Finn et al.,
2001; Rahman et al., 2001; Vieira et al., 2006),
which is distinguished from the web information
extraction task that extracts the entities from web-
pages (Li et al., 2022; Wang et al., 2022). The
web scrapers can be divided into rule-based and
feature-based methods.

Rule-based web scrapers start from web wrap-
pers, which often need manual designs or a wrap-
per induction system for producing (Muslea et al.,
1999; Crescenzi et al., 2001). The web wrap-
pers usually need to be tailored for each webpage,
which is not feasible to process large-scale web-
pages (Guo et al., 2010). A more conventional
approach is to create a Document Object Model
(DOM) tree, which assists in building a rule-based
scraper (Gupta et al., 2003; Guo et al., 2010) or help
the comparison of webpages (Yi et al., 2003). Addi-
tionally, the work also incorporates tag cumulative
distributions (Finn et al., 2001), text density (Sun
et al., 2011), and tag ratios (Weninger et al., 2010)
to benefit the content extraction from webpages.

Except for these rule-based methods, some scrap-
ers use feature-based approaches to better extract
the primary contents from webpages. Specifically,

they divide the webpage into several blocks us-
ing rules built based on the HTML tags or DOM
tree. Then they extract dozens to hundreds of hand-
crafted features from these blocks, such as markup,
text/document features (Spousta et al., 2008), lin-
guistic, structural & visual features (Bauer et al.,
2007) and DOM tree-based features (Vogels et al.,
2018). These features can be fed into SVM (Bauer
et al., 2007; Kohlschütter et al., 2010), conditional
random fields (Spousta et al., 2008), logistic regres-
sions (Peters and Lecocq, 2013) or convolutional
neural network (Vogels et al., 2018) to classify
whether the texts in the block are the primary con-
tent of the webpages.

3 Neural Web Scraper

This section introduces our Neural Web Scraper
(NeuScraper) to extract primary contents from
webpages. We first introduce the sequence mod-
eling method of webpages (Sec. 3.1) and then de-
scribe our neural-based web scraper (Sec. 3.2).

3.1 Textual Sequence Modeling of Webpages

As shown in Figure 1, the primary content extrac-
tion task aims to extract the content from the high-
lighted areas, which consists of clean text and rep-
resents the main information of the webpage. To
facilitate the web scraping with NeuScraper, we
convert the HTML code into textual sequences.

Previous work (Bauer et al., 2007) has demon-
strated the effectiveness of both structural and vi-
sual features in helping to identify primary con-
tents. Thus, to preserve webpage layout informa-
tion, we rely on the DOM tree structure to trans-
form webpages into textual sequences. Specifically,
we employ the BeautifulSoup41 toolkit to build the
DOM tree for each webpage, conduct the depth-
first traversal on the tree and regard the visited order
as additional location information to represent the
nodes. During this process, only the nodes that con-
tain plant texts, table nodes (tagged with <table>),
and list nodes (tagged with , or <dl>)
are reserved to produce the final textual sequences
X = {x1, x2, ..., xn}, where n denotes the number
of the reserved DOM nodes. After processing, the
web scraping task primarily involves determining
whether the node xi contains the primary content
of the webpage for evaluation.

1https://pypi.org/project/beautifulsoup4/

803

 https://pypi.org/project/beautifulsoup4/

3.2 Web Scraping with the Neural Method
In this subsection, we introduce our neural model-
ing method to build the web scraper. To process the
textual sequences X = {x1, x2, ..., xn}, we build a
hierarchical architecture for node-level prediction.

Specifically, to guarantee the efficiency of
NeuScraper, we use the first layer of the XLM-
Roberta (Conneau et al., 2020) model to encode
the text representation xi of the i-th DOM node as
the 768-dimensional node representation hi:

hi = XLMRoberta-Layer1(xi), (1)

where hi is the representation of the “[CLS]” to-
ken. Then we feed these node representations
H = {h1, h2, ..., hn} into a 3-layer transformer
model (Vaswani et al., 2017) with 8 attention heads
to get the encoded node representations:

ĥi = Transformer(Linear(hi)), (2)

where the linear layer projects hi to 256-
dimensional embeddings for efficient modeling.
Following previous work (Overwijk et al., 2022),
the DOM nodes can be categorized into six kinds
of labels yk, including primary content, heading,
title, paragraph, table, and list. Then we calculate
the label prediction probability P (yki = 1|xi) of
the k-th category label yki of the i-th node:

P (yk
i = 1|xi) = Sigmoid(MLP(ĥi)) (3)

Finally, NeuScraper is trained using the loss L:

L =
6∑

k=1

n∑

i=1

CrossEntropy(P (yk
i |xi),Yk

i), (4)

where Yk
i is the ground truth label. Yk

i is a binary
label and Yk

i = 1 indicates that the i-th DOM
node belongs to the k-th label category. During
inference, we only consider the primary content
label to extract the texts from webpages.

4 Experimental Methodology

In this section, we describe the datasets, baselines,
evaluation metrics and implementation details.

Dataset. We use ClueWeb22 (Overwijk et al.,
2022) dataset in experiments. The content extrac-
tion labels of ClueWeb22 were generated from the
production system of a commercial search engine.
The labels are not available for general web scrap-
ing tools, because they are annotated with more
expensive signals of page rendering and visualiza-
tion. More details are shown in Appendix A.2.

Method Evaluation Metrics Latency
Acc. Prec. Rec. F1 (ms)

htmlparser 40.73 40.65 98.95 57.63 19.01
bs4 41.29 40.96 99.94 58.10 12.65
html2text 40.44 39.35 85.40 53.88 15.85
boilerpipe 66.48 66.79 35.27 46.16 11.05
jusText 62.58 72.62 13.08 22.17 10.91
lxml 64.62 61.48 35.22 44.78 10.96
inscriptis 45.35 42.48 96.43 58.98 14.99
readability 68.47 72.84 36.04 48.22 12.36
trafilatura 70.70 66.57 56.42 61.08 11.95
NeuScraper 86.35 80.77 87.29 83.90 11.39

Table 1: Overall Performance. We use ClueWeb22 to
evaluate the content extraction effectiveness of different
web scrapers. More details are shown in Appendix A.2.

Baseline. The scraping baselines consist
of nine open-sourced web scrapers, including
basic HTML manipulators (html2text and
inscriptis (Weichselbraun, 2021)), generic
webpage parsers (beautifulsoup4, lxml and
htmlparser), rule-based scrapers (jusText
and readability) and machine learning-based
scraper (boilerpipe (Kohlschütter et al., 2010)).
trafilatura (Barbaresi, 2021) is our main
baseline, which combines different rules and
heuristic methods.

Evaluation Metrics. The accuracy, precision,
recall, and F1 score, are used to evaluate the effec-
tiveness in extracting primary contents. Further-
more, we use different scrapers to produce the web
corpus and pretrain language models. The quality
of scraping can be demonstrated by the results of
standard downstream tasks.

Implementation Details. NeuScraper is
trained for 30 epochs using the AdamW optimizer
with a batch size of 1024. Learning rate adjust-
ments followed the cosine decay schedule, with a
warm-up phase spanning the initial 5% of iterations
and the peak rate fixed at 6e-4. To accommodate
memory and computational speed limitations, the
maximum length of node sequences was chunked
to 384.

5 Evaluation Result

In this section, we first show the effectiveness of
different scrapers in extracting primary contents
from the raw webpages. Subsequently, we evaluate
the quality of the extracted data and utilize it to
pretrain language models of varying scales.

804

Size Method BLIMP ARC-e ARC-c SWAG WinoG SciQ Lambada LogiQA AVG
ClueWeb22

160M
htmlparser 70.87 41.16 17.23 32.24 49.88 66.10 16.96 22.58 39.63
trafilatura 73.46 42.46 18.25 34.08 48.61 69.20 18.10 22.11 40.78
NeuScraper 74.01 42.84 18.43 34.14 51.46 69.00 17.58 21.50 41.12

410M
htmlparser 74.24 42.63 18.77 34.45 49.80 70.80 22.35 22.42 41.93
trafilatura 77.84 45.28 20.56 37.29 52.32 72.90 23.77 21.96 43.99
NeuScraper 76.71 47.34 20.47 37.00 50.74 74.40 26.76 24.42 44.73

CommonCrawl

160M
htmlparser 58.38 29.71 18.77 28.85 50.27 38.60 5.16 19.66 31.17
trafilatura 69.72 34.72 18.51 32.04 49.56 56.90 11.70 23.96 37.13
NeuScraper 69.27 36.15 18.43 32.61 51.77 60.50 15.48 20.73 38.12

410M
htmlparser 61.30 28.28 17.23 29.36 50.35 41.00 6.50 20.73 31.84
trafilatura 72.66 36.74 20.13 33.91 51.30 55.40 16.08 21.35 38.44
NeuScraper 74.42 39.30 18.60 34.77 50.03 61.40 20.66 21.81 40.12

Table 2: Effectiveness of Pythia Pretraining Using the Extracted Data from Different Scrapers. We pretrained Pythia
models of different sizes on ClueWeb22 and CommonCrawl respectively. More details are shown in Appendix A.3.

5.1 Overall Performance

The effectiveness of baseline scrapers and our
NeuScraper in extracting primary contents from
the raw webpages is shown in Table 1. Among
all baseline scrapers, the trafilatura exhibits the
highest performance, showcasing its effectiveness
in content extraction through its cascade of rule-
based filters and content heuristic methods. Our
NeuScraper surpasses all traditional web scrapers
and achieves over a 20% improvement. It illustrates
the effectiveness of our NeuScraper in learning the
schemes of the primary contents, generalizing its
advances to handle various layouts of pages and
extracting high-quality texts from them. Notably,
with the GPU support and distributed computation,
NeuScraper achieves competitive scraping latency.

5.2 Effectiveness of the Cleaned Web Data in
Language Model Pretraining

This part evaluates the effectiveness of language
models pretrained on the web data.

As shown in Table 2, we utilize different scrapers
to handle the webpages sourced from ClueWeb22
and CommonCrawl, and leverage the extracted data
to pretrain Pythia models (Biderman et al., 2023).
The evaluation results demonstrate that employing
the NeuScraper for webpage processing enhances
the performance of language models in downstream
tasks. It is noteworthy that the NeuScraper repre-
sents a data-driven scraping approach, circumvent-
ing the need for building sophisticated rules and
conducting intricate feature engineering to deal
with the continuously evolving HTML layouts.

Wikitext Lambada
Dataset

0

50

100

150

200

250
Pe

rp
le

xi
ty

108.0
143.5

85.0 90.684.3 75.8

htmlparser
trafilatura
NeuScraper

(a) ClueWeb22.

Wikitext Lambada
Dataset

0

200

400

600

800

1000

1200

1400

Pe
rp

le
xi

ty

571.1

859.6

188.5
346.4

117.8 181.1

htmlparser
trafilatura
NeuScraper

(b) CommonCrawl.

Figure 2: The Effectiveness of Language Models
Trained on Web Data to Reproduce the Target Corpora.
Lower perplexity indicates more proficiency in language
models for reproducing.

5.3 Evaluation on the Quality of Extracted
Data Using NeuScraper

In this subsection, we aim to estimate the quality of
extracted data using NeuScraper. The evaluation
results are shown in Figure 2.

It is apparent that if two corpora are of com-
parable quality, their n-gram distributions should
exhibit similarity. Thus, we use the language mod-
els pretrained on web data (the same as Sec. 5.2) to
ask these language models to reproduce the target
corpora, such as Wikitext (Merity et al., 2017) and
Lambada (Radford et al., 2019). The perplexity is
used to evaluate the effectiveness of the language
models pretrained on web data in replicating the
target corpora. The lower perplexity indicates the
language model is more proficient to the target cor-
pora, showing the pretrained data and target data
have more overlaps and are more similar.

The evaluation results reveal that the utilization

805

Method Evaluation Metrics Latency
Acc. Prec. Rec. F1 (ms)

CPU 86.35 80.77 87.29 83.90 55.25
+ qint8 86.37 80.70 87.48 83.95 42.22
+ quint8 86.39 80.68 87.56 83.98 41.48
GPU 86.35 80.77 87.29 83.90 11.39

Table 3: Quantization Performance of NeuScraper on
ClueWeb22. We further quantized NeuScraper to ac-
celerate its inference on the CPU.

of extracted content from some simple scrapers,
such as htmlparser, significantly impacts the ef-
fectiveness of language models, which causes an
increase of more than 20 points in perplexity due
to the noise derived from webpages. Compared
with the trafilatura, NeuScraper decreases the
perplexity by over ten points, showing its capability
to yield higher-quality data for pretraining through
learning to extract primary content.

5.4 Model Quantization for NeuScraper

In this subsection, we quantize the model of
NeuScraper via onnxruntime2 to evaluate its effi-
ciency in resource-constrained scenarios.

As shown in Table 3, we utilize qint8 and
quint8 to quantize our NeuScraper. The qint8
quantizes model parameters or layer outputs to
signed 8-bit integers, while quint8 quantizes them
to unsigned 8-bit integers, reducing model size and
improving computational efficiency. Benefiting
from quantization, NeuScraper accelerates by 25%
with no loss of performance compared to the orig-
inal model. While processing is still 4-5x slower
compared to GPUs, it also provides a potential way
to scrap in low-resource scenarios via NeuScraper.

6 Conlusion

This paper proposes NeuScraper, which employs a
shallow neural architecture to clean the webpages.
The experimental results show the effectiveness
of NeuScraper. The open-sourced and easy-used
web scraper may facilitate the research on language
model pretraining.

Limitation

To guarantee efficiency, NeuScraper needs the
powerful parallelism of GPUs to achieve high-
speed web scraping. In addition, for large-scale
pretraining corpus processing, a high throughput

2https://onnxruntime.ai

storage medium is required to ensure inference effi-
ciency due to the frequent data swapping between
the storage medium and GPU.

Acknowledgments

This work is partly supported by the Natural
Science Foundation of China under Grant (No.
62206042, No. 62137001, and No. 62272093),
the Joint Funds of Natural Science Foundation of
Liaoning Province (No. 2023-MSBA-081), and
the Fundamental Research Funds for the Central
Universities under Grant (No. N2416012).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
ArXiv preprint, abs/2303.08774.

Adrien Barbaresi. 2021. Trafilatura: A web scraping
library and command-line tool for text discovery and
extraction. In Proceedings of ACL, pages 122–131,
Online.

Daniel Bauer, Judith Degen, Xiaoye Deng, Priska
Herger, Jan Gasthaus, Eugenie Giesbrecht, Lina
Jansen, Christin Kalina, Thorben Kräger, Robert
Märtin, et al. 2007. Fiasco: Filtering the internet
by automatic subtree classification, osnabruck. In
Proceedings of WAC3, pages 111–121.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of ICML,
pages 2397–2430.

Michael Butkiewicz, Harsha V Madhyastha, and Vyas
Sekar. 2011. Understanding website complexity:
measurements, metrics, and implications. In Pro-
ceedings of IMC, pages 313–328.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. JMLR, (240):1–113.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of ACL, pages 8440–8451, Online.

Valter Crescenzi, Giansalvatore Mecca, Paolo Merialdo,
et al. 2001. Roadrunner: Towards automatic data

806

https://onnxruntime.ai
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.acl-demo.15
https://doi.org/10.18653/v1/2021.acl-demo.15
https://doi.org/10.18653/v1/2021.acl-demo.15
https://iiegn.eu/assets/outputs/FIASCO2007.pdf
https://iiegn.eu/assets/outputs/FIASCO2007.pdf
https://proceedings.mlr.press/v202/biderman23a/biderman23a.pdf
https://proceedings.mlr.press/v202/biderman23a/biderman23a.pdf
https://doi.org/10.1145/2068816.2068846
https://doi.org/10.1145/2068816.2068846
https://jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://dl.acm.org/doi/10.5555/645927.672370

extraction from large web sites. In Proceedings of
VLDB, pages 109–118.

Aidan Finn, Nicholas Kushmerick, and Barry Smyth.
2001. Fact or fiction: Content classification for digi-
tal libraries. In Proceedings of DELOS.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2021.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. ArXiv preprint, abs/2101.00027.

David Gibson, Kunal Punera, and Andrew Tomkins.
2005. The volume and evolution of web page tem-
plates. In Proceedings of WWW, pages 830–839.

Yan Guo, Huifeng Tang, Linhai Song, Yu Wang, and
Guodong Ding. 2010. Econ: an approach to extract
content from web news page. In Proceedings of
APWEB, pages 314–320.

Suhit Gupta, Gail E. Kaiser, David Neistadt, and Pe-
ter Grimm. 2003. Dom-based content extraction of
HTML documents. In Proceedings of WWW, pages
207–214.

Florian Hantke and Ben Stock. 2022. Html violations
and where to find them: a longitudinal analysis of
specification violations in html. In Proceedings of
IMC, pages 358–373.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. ArXiv
preprint, abs/2203.15556.

Christian Kohlschütter, Peter Fankhauser, and Wolfgang
Nejdl. 2010. Boilerplate detection using shallow text
features. In Proceedings of WSDM, pages 441–450.

Junlong Li, Yiheng Xu, Lei Cui, and Furu Wei. 2022.
MarkupLM: Pre-training of text and markup lan-
guage for visually rich document understanding. In
Proceedings of ACL, pages 6078–6087, Dublin, Ire-
land.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In Proceedings of ICLR.

Ion Muslea, Steve Minton, and Craig Knoblock. 1999.
A hierarchical approach to wrapper induction. In
Proceedings of AGENTS, pages 190–197.

Arnold Overwijk, Chenyan Xiong, Xiao Liu, Cameron
VandenBerg, and Jamie Callan. 2022. Clueweb22:
10 billion web documents with visual and semantic
information. ArXiv preprint, abs/2211.15848.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Hamza Alobeidli, Alessandro
Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and
Julien Launay. 2024. The refinedweb dataset for
falcon llm: Outperforming curated corpora with web
data only. In Proceedings of NeurIPS.

Matthew E Peters and Dan Lecocq. 2013. Content
extraction using diverse feature sets. In Proceedings
of WWW, pages 89–90.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21:140:1–140:67.

AFR Rahman, H Alam, R Hartono, et al. 2001. Content
extraction from html documents. In Proceedings of
WDA, pages 1–4.

Miroslav Spousta, Michal Marek, and Pavel Pecina.
2008. Victor: the web-page cleaning tool. In Pro-
ceedings of LREC, pages 12–17.

Fei Sun, Dandan Song, and Lejian Liao. 2011. DOM
based content extraction via text density. In Proceed-
ings of SIGIR, pages 245–254.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. ArXiv preprint,
abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NeurIPS, pages 5998–
6008.

Karane Vieira, Altigran S Da Silva, Nick Pinto,
Edleno S De Moura, Joao MB Cavalcanti, and Ju-
liana Freire. 2006. A fast and robust method for web
page template detection and removal. In Proceedings
of CIKM, pages 258–267.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay
Besiroglu, Marius Hobbhahn, and Anson Ho. 2022.
Will we run out of data? an analysis of the limits of
scaling datasets in machine learning. ArXiv preprint,
abs/2211.04325.

Thijs Vogels, Octavian-Eugen Ganea, and Carsten Eick-
hoff. 2018. Web2text: Deep structured boilerplate
removal. In Proceedings of ECIR, pages 167–179.

Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiao-
jun Quan, and Dongfang Liu. 2022. Webformer: The
web-page transformer for structure information ex-
traction. In Proceedings of WWW, pages 3124–3133.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. TACL, 8:377–392.

807

https://dl.acm.org/doi/10.5555/645927.672370
https://www.ercim.eu/publication/ws-proceedings/DelNoe02/AidanFinn.pdf
https://www.ercim.eu/publication/ws-proceedings/DelNoe02/AidanFinn.pdf
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://dl.acm.org/doi/10.1145/1062745.1062763
https://dl.acm.org/doi/10.1145/1062745.1062763
https://ieeexplore.ieee.org/document/5474120
https://ieeexplore.ieee.org/document/5474120
https://doi.org/10.1145/775152.775182
https://doi.org/10.1145/775152.775182
https://dl.acm.org/doi/abs/10.1145/3517745.3561437
https://dl.acm.org/doi/abs/10.1145/3517745.3561437
https://dl.acm.org/doi/abs/10.1145/3517745.3561437
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://doi.org/10.1145/1718487.1718542
https://doi.org/10.1145/1718487.1718542
https://doi.org/10.18653/v1/2022.acl-long.420
https://doi.org/10.18653/v1/2022.acl-long.420
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://dl.acm.org/doi/pdf/10.1145/301136.301191
https://arxiv.org/abs/2211.15848
https://arxiv.org/abs/2211.15848
https://arxiv.org/abs/2211.15848
https://openreview.net/pdf?id=kM5eGcdCzq
https://openreview.net/pdf?id=kM5eGcdCzq
https://openreview.net/pdf?id=kM5eGcdCzq
https://doi.org/10.1145/2487788.2487828
https://doi.org/10.1145/2487788.2487828
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://wda2001.csc.liv.ac.uk/Papers/11_rahman_wda2001.pdf
https://wda2001.csc.liv.ac.uk/Papers/11_rahman_wda2001.pdf
http://www.lrec-conf.org/proceedings/lrec2008/workshops/W19_Proceedings.pdf#page=18
https://doi.org/10.1145/2009916.2009952
https://doi.org/10.1145/2009916.2009952
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/1183614.1183654
https://doi.org/10.1145/1183614.1183654
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://link.springer.com/chapter/10.1007/978-3-319-76941-7_13
https://link.springer.com/chapter/10.1007/978-3-319-76941-7_13
https://doi.org/10.1145/3485447.3512032
https://doi.org/10.1145/3485447.3512032
https://doi.org/10.1145/3485447.3512032
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321

Albert Weichselbraun. 2021. Inscriptis–a python-based
html to text conversion library optimized for knowl-
edge extraction from the web. ArXiv preprint,
abs/2108.01454.

Tim Weninger, William H. Hsu, and Jiawei Han. 2010.
CETR: content extraction via tag ratios. In Proceed-
ings of WWW, pages 971–980.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet: Ex-
tracting high quality monolingual datasets from web
crawl data. In Proceedings of LREC, pages 4003–
4012, Marseille, France.

Lan Yi, Bing Liu, and Xiaoli Li. 2003. Eliminating
noisy information in web pages for data mining. In
Proceedings of SIGKDD, pages 296–305.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. SWAG: A large-scale adversarial dataset
for grounded commonsense inference. In Proceed-
ings of EMNLP, pages 93–104, Brussels, Belgium.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. ArXiv preprint,
abs/2303.18223.

808

https://arxiv.org/abs/2108.01454
https://arxiv.org/abs/2108.01454
https://arxiv.org/abs/2108.01454
https://doi.org/10.1145/1772690.1772789
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://doi.org/10.1145/956750.956785
https://doi.org/10.1145/956750.956785
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

A Appendix

A.1 License

The terms of use for ClueWeb22 can be found on
the Lemur Project website3, while CommonCrawl
provides its terms of use on its official website4.
All of these licenses and agreements allow their
data for academic use.

A.2 More Experimental Details of Overall
Evaluation

In this subsection, we describe further details of
the implementation of overall evaluation.

Dataset. We randomly selected about 8.28 mil-
lion webpages from ClueWeb22-B English subset
as the training set. To evaluate content extraction
performance, we utilized a snapshot extracted from
ClueWeb22-B, identified as en0001-01. This par-
ticular snapshot comprises 19,013 English web-
pages along with respective annotations. Notably,
it’s imperative to highlight that en0001-01 was
excluded from both the training, and validation
datasets.

Metrics. In our experiments, we convert the web
scanning task into a binary classification problem,
so we can compute relevant metrics at the node
level. However, some previous web scrapers would
directly return the primary content without node
information. Therefore, we directly check whether
the reserved plain text contains the text spans of
DOM tree nodes, which are annotated as ground
truths in the benchmark.

Computing Platform. We conducted the train-
ing of NeuScraper on a server equipped with 8×
NVIDIA A100-40G GPUs, with the training pro-
cess spanning approximately 40 hours. For the
evaluation of baseline scrapers, we utilized a setup
comprising 2× Intel Xeon Gold-6348@2.60GHz
CPUs with multiprocessing. In contrast, the eval-
uation of NeuScraper was carried out using 8×
NVIDIA A100-40 GB GPUs, employing an infer-
ence batch size of 256 per GPU.

A.3 More Experimental Details on Using
Cleaned Web Data for Language Model
Pretraining

In this subsection, we describe additional details of
the evaluation of the effectiveness of the cleaned
web data in language model pretraining.

3https://lemurproject.org/clueweb22
4https://commoncrawl.org/terms-of-use

Pretraining Corpus. We utilize ClueWeb22-
B and CommonCrawl CC-MAIN-2023-50 as the
source corpus for our pretraining endeavors. For
ClueWeb22 , we employ various scrapers to acquire
the corpus while ensuring an equivalent number
of tokens, thereby pretraining the language model
to mirror the performance of each scraper. For
CommonCrawl, we used the pipeline from Pile-
CC (Gao et al., 2021), but removed the language
model filtering. For various sizes of Pythia models,
the corpus from ClueWeb22 consistently contains
13 billion tokens, while the corpus from Common
Crawl is fixed at 2.8 billion tokens.

Pretraining Details. Our pretraining framework
extends from the Lit-GPT5 and we evaluate the per-
formance of pretrained models using the standard
lm-evaluation-harness toolkit6. Specifically,
for all Pythia models, we employed the AdamW
optimizer with a peak learning rate in line with Bi-
derman et al. (2023). The total batch size was set to
480 (with the batch size of 12 per GPU and gradient
accumulation being set to 10). For ClueWeb22, the
model undergoes training for just one epoch. For
CommonCrawl, it is trained across three epochs
due to the size of the corpus. All of the models
were trained on 4× NVIDIA A100-40G GPUs.

Datasets for Evaluation. We choose 8 standard
datasets to evaluate the performance of pretrained
language models. Some of them are from the
Pythia standard benchmark (Biderman et al., 2023),
supplemented by SWAG (Zellers et al., 2018) and
BLIMP (Warstadt et al., 2020).

Baselines. In this experiments, we chose to use
htmlparser7 and trafilatura (Barbaresi, 2021)
as the main baselines for comparison. htmlparser
serves as the text pre-extraction tool for Common-
Crawl WET file, while trafilatura has become
the state-of-the-art web scraper.

A.4 Performance on Multilingual Webpages

Thanks to the careful planning of ClueWeb22,
which allows us to evaluate the performance of
scrapers in different languages. Specifically, we
tested on snapshots coded 0001-01 for each lan-
guage, the results are shown in Table 4. Among all
the baseline scrapers, NeuScraper demonstrated
excellent performance, even though it was trained
only on English data.

5https://github.com/Lightning-AI/lit-gpt
6https://github.com/EleutherAI/

lm-evaluation-harness
7https://htmlparser.sourceforge.net

809

https://lemurproject.org/clueweb22
https://commoncrawl.org/terms-of-use
https://github.com/Lightning-AI/lit-gpt
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://htmlparser.sourceforge.net

English German Spanish French Italian

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

bs4 41.29 58.10 40.49 57.23 39.34 56.18 40.05 56.84 38.92 55.72
html2text 40.44 53.88 38.91 52.51 37.19 50.28 38.65 51.72 37.57 50.20
boilerpipe 66.48 46.16 66.38 43.63 70.04 51.74 67.83 46.56 69.85 50.56
jusText 62.58 22.17 65.84 42.98 61.25 2.13 60.79 2.63 61.56 0.53
lxml 64.62 44.78 63.47 43.07 67.45 48.82 65.32 45.44 67.12 48.61
inscriptis 45.35 58.98 43.82 57.27 42.74 56.30 42.99 56.19 43.42 56.49
readability 68.47 48.22 70.16 50.17 72.08 54.38 71.10 52.21 72.69 54.85
trafilatura 70.70 61.08 73.84 62.43 73.93 62.14 73.60 62.20 74.49 62.87

NeuScraper 86.35 83.90 79.10 73.02 78.89 71.90 76.58 68.12 78.76 71.33

Chinese Japanese Dutch Portuguese Polish

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

bs4 49.10 65.33 49.95 65.75 36.86 53.51 40.39 57.24 36.95 53.60
html2text 48.29 63.94 50.00 64.74 35.44 48.96 38.57 52.09 36.16 49.26
boilerpipe 61.31 42.44 57.33 30.26 70.01 44.82 67.93 49.14 66.96 36.91
jusText 51.38 0.75 51.26 0.49 65.11 12.84 60.33 3.03 63.60 0.76
lxml 62.22 52.79 60.38 50.16 66.16 41.36 66.59 48.73 65.72 40.01
inscriptis 53.09 66.35 53.76 66.57 40.11 53.69 44.01 57.65 40.51 53.15
readability 67.45 56.61 64.64 50.14 71.54 47.03 70.60 53.26 66.81 42.38
trafilatura 68.57 63.29 71.82 67.08 74.06 59.88 72.64 61.67 71.58 53.02

NeuScraper 74.76 73.99 74.01 73.80 77.70 68.13 77.48 71.28 75.84 64.61

Table 4: Scarping Performance in Different Languages. We tested it on ClueWeb22 in different languages and
NeuScraper showed significant improvements over the baseline scrapers.

A.5 Case Study

In this subsection, we show additional case stud-
ies of NeuScraper and trafilatura, our neural
web scraper and a previously state-of-the-art web
scraper.

We first analyze the case in Figure 3, where we
use red boxes to indicate the content extracted by
the scrapers. This is a college course page that
contains some expertise in electrical engineering.
When scraping this page, trafilatura loses a lot
of textual content compared to our NeuScraper.
By checking the raw HTML code, we found that
there is an error caused by insufficient standardiza-
tion of web pages: the paragraph tag “<p>” is used
for headings on this page instead of the standard
“<h>” tag. This page is readable for humans, but
the HTML tag conveys an error that seriously af-
fects the extraction performance of trafilatura.
In contrast, our NeuScraper shows great adapt-
ability. It not only extracts most of the paragraph
content, but also removes useless information such
as phone numbers, e-mails, dates, and so on.

Another typical case is interleaved boilerplate
and body text, as shown in Figure 4. We use
blue boxes to indicate the content extracted by
the scraper. In this case, the boilerplate and body
text are written in the same way. The boilerplate

also uses “<h>” to identify headings and “<p>”
for paragraphs, instead of the list surrounded by
“” in most cases. Recognizing it is difficult for
trafilatura. NeuScraper leverages its ability to
recognize latent semantic information to remove
the boilerplate in such pages successfully.

810

(a) Trafilatura.

(b) NeuScraper.

Figure 3: Case#1 of the Primary Content Extraction Results Using Different Scrapers. The extracted parts are
highlighted with red boxes.

811

(a) Trafilatura.

(b) NeuScraper.

Figure 4: Case#2 of the Primary Content Extraction Results Using Different Scrapers. The extracted parts are
highlighted with blue boxes.

812

