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Abstract

Recent work has shown that, while large lan-
guage models (LLMs) demonstrate strong word
translation or bilingual lexicon induction (BLI)
capabilities in few-shot setups, they still can-
not match the performance of ‘traditional’
mapping-based approaches in the unsupervised
scenario where no seed translation pairs are
available, especially for lower-resource lan-
guages. To address this challenge with LLMs,
we propose self-augmented in-context learning
(SAIL) for unsupervised BLI: starting from a
zero-shot prompt, SAIL iteratively induces a
set of high-confidence word translation pairs
for in-context learning (ICL) from an LLM,
which it then reapplies to the same LLM in the
ICL fashion. Our method shows substantial
gains over zero-shot prompting of LLMs on
two established BLI benchmarks spanning a
wide range of language pairs, also outperform-
ing mapping-based baselines across the board.
In addition to achieving state-of-the-art unsu-
pervised BLI performance, we also conduct
comprehensive analyses on SAIL and discuss
its limitations.

1 Introduction and Motivation

The task of word translation (WT), also known
as bilingual lexicon induction (BLI), aims to auto-
matically induce lexica of words with the same or
similar meaning in different languages, thus bridg-
ing the lexical gap between languages. Even in
the era of large language models (LLMs), BLI still
has wide applications in machine translation and
cross-lingual transfer learning (Sun et al., 2021;
Zhou et al., 2021; Wang et al., 2022; Ghazvinine-
jad et al., 2023; Jones et al., 2023). A particular
BLI setup, termed (fully) unsupervised BLI, is es-
pecially compelling because it is not only more
technically challenging but is also used as a pivotal
component towards unsupervised machine trans-
lation (Lample et al., 2018; Artetxe et al., 2018b;
Marchisio et al., 2020; Chronopoulou et al., 2021).

Until recently, BLI approaches have predomi-
nantly relied on learning cross-lingual word em-
bedding (CLWE) mappings: these are known
as MAPPING-BASED approaches and are developed
based on static or decontextualised word embed-
dings (WEs) (Patra et al., 2019; Grave et al., 2019;
Li et al., 2022a; Yu et al., 2023). Meanwhile, au-
toregressive LLMs have become the cornerstone
of modern NLP techniques (Brown et al., 2020;
Ouyang et al., 2022; Touvron et al., 2023a) with
success in many real-world tasks (Kasneci et al.,
2023; Wu et al., 2023; Thirunavukarasu et al., 2023;
Li et al., 2024). Given this trend, recent BLI re-
search has also started to shift towards exploring
LLMs. Li et al. (2023) first show that prompting
LLMs with gold-standard WT pairs as in-context
examples (few-shot in-context learning: ICL) out-
performs all existing BLI approaches in the super-
vised and semi-supervised BLI setups (where typi-
cally 1K∼5K gold-standard WT pairs are available
for training or ICL), while zero-shot prompting still
falls behind traditional MAPPING-BASED approaches
in the fully unsupervised BLI setup, especially for
lower-resource languages.

In this work, we thus aim at improving unsuper-
vised BLI with LLMs. To this end, we analyze the
limitations of zero-shot prompting and propose a
novel self-augmented in-context learning (SAIL)
method for unsupervised BLI with LLMs. The
key idea is to first retrieve a set of high-confidence
WT pairs by zero-shot prompting LLMs, then it-
eratively refine the high-confidence dictionary and
finally use the gradually refined bilingual lexicon
for BLI inference in an ICL fashion (§2). Our
extensive experiments show that SAIL establishes
new state-of-the-art unsupervised BLI performance
on two standard BLI benchmarks. We also con-
duct thorough analyses on our approach, provid-
ing further insights into its inner workings (§3-
§4). Our code is publicly available at https:
//github.com/cambridgeltl/sail-bli.
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2 Methodology

Unsupervised BLI: Task Preliminaries. We as-
sume a pair of two languages: a source language
Lx with its vocabulary X and a target language
Ly with vocabulary Y . In a typical, standard BLI
setup the vocabulary of each language contains
the most frequent 200, 000 word types in the lan-
guage (Glavaš et al., 2019; Li et al., 2022a). Given
a source word wx ∈ X , the unsupervised BLI task
then aims to infer its translation in Ly, without any
word-level parallel data (i.e., seed translation pairs
from a lexicon) available for training or ICL.1

Zero-Shot Prompting. Li et al. (2023) have pro-
posed to prompt autoregressive LLMs for the BLI
task, where the input word wx is embedded into
a predefined text template. We adopt the pool of
templates provided by Li et al. (2023) and conduct
template search for each LLM on a randomly cho-
sen language pair. As an example, the zero-shot
template for LLAMA-27B is as follows:2

‘The Lx word wx in Ly is:’,

where Lx, Ly, and wx are placeholders for the
source language, target language, and the query
word in the source language (e.g., Lx = Hungarian,
wx = macska, Ly = Catalan).

The deterministic beam search (with beam size
of n as a hyper-parameter) is adopted to generate
n output text pieces in the final beam, ranked by
their sequence scores.3 For each of the n outputs,
the first word in the generated output following the
input sequence is extracted as a candidate answer.
After filtering out those candidate answers not in
Y , the candidate Ly word with the highest associ-
ated sequence score is returned as the final word
translation prediction.

Limitations of Zero-Shot Prompting. The above
zero-shot approach for unsupervised BLI, proposed
by Li et al. (2023), comes with several limitations.
First, the template does not stipulate the output for-
mat and thus parsing the output text may not be as
straightforward as expected. Put simply, LLM’s
prediction may not be the first word in the gener-
ated sequence. Second, the LLM may not fully
‘understand’ the input template and sometimes may

1Following prior work, when wx has multiple ground truth
translations in Ly , a prediction is considered correct if it is
any of the ground truth answers.

2The full list of templates used for other LLMs are pre-
sented in Appendix C.

3We use n = 5 following Li et al. (2023).

tend not to generate words in the target language
especially for lower-resource languages. For the
supervised BLI setup, where a dictionary of gold
standard translation pairs is assumed and available,
few-shot in-context learning can substantially im-
prove final BLI performance (Li et al., 2023), since
it not only provides examples of the desired out-
put format but also helps LLMs ‘understand’ the
BLI task. However, the availability of such a seed
dictionary is not assumed in the unsupervised BLI
task variant, and the key idea of this work is to
derive and iteratively refine a seed dictionary by
prompting LLMs.

SAIL: Self-Augmented In-Context Learning for
Unsupervised BLI. We thus propose to facili-
tate and improve unsupervised BLI by S1) using
zero-shot prompting to retrieve Dh, a set of high-
confidence translation pairs, and then S2) leverag-
ing these pairs as ‘self-augmented’ in-context ex-
amples for few-shot prompting to further iteratively
refine Dh (across 0 to Nit−1 iterations, where Nit

is a hyper-parameter denoting total times of Dh

inference in S1 and S2), and finally S3) conducting
few-shot learning with the final, Nit-th self-created
seed lexicon Dh for BLI inference on the test set.

Deriving High-Confidence Pairs. For both steps
S1 and S2 outlined above, we start with the most
frequent Nf words in Lx since representations of
less frequent words are considered to be much nois-
ier in general (Artetxe et al., 2018a). For each wx,
we conduct Lx → Ly translation: we refer to this
predicted word as ŵy.4 We then propose to con-
duct word back-translation, translating ŵy from
Ly back into Lx. The word pair (wx, ŵy) is con-
sidered a high-confidence pair only if wx is also
the output word of the back-translation step.5 We
denote the set of all high-confidence pairs from the
Lx words as Dx

h. Likewise, we also start from the
most frequent Nf words in Ly and symmetrically
derive Dy

h. Finally, we update the high-confidence
dictionary with Dh = Dx

h ∪ Dy
h.6

Few-Shot Prompting with High-Confidence
Pairs. Step S1 of SAIL relies on zero-shot prompt-
ing, but all the subsequent iterations in S2 and

4We do not require ŵy to be one of the most frequent Nf

words in Ly .
5Earlier MAPPING-BASED approaches have retrieved high-

confidence pairs through ranking cross-lingual word simi-
larity scores (e.g., cosine similarity) to refine CLWE map-
pings (Artetxe et al., 2018a; Li et al., 2022a); in a sense, our
work renovates and revitalises the idea with LLMs.

6Therefore, |Dx
h| ≤ Nf , |Dy

h| ≤ Nf , and |Dh| ≤ 2×Nf .
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S3 apply few-shot prompting/ICL with the ‘self-
augmented’ high-confidence translation pairs Dh.
Following Li et al. (2023), we adopt 5-shot prompt-
ing, and again conduct template search on the
BLI task with a single, randomly selected lan-
guage pair.7 The in-context examples, (wx

i , w
y
i ) ∈

Dh, 1 ≤ i ≤ 5, are retrieved where the wx
i words

are the nearest neighbours of the input word wx in
Lx’s static word embedding space. The few-shot
template for LLAMA-27B is then as follows:

‘The Lx word wx
1 in Ly is wy

1. The
Lx word wx

2 in Ly is wy
2. ... The Lx

word wx in Ly is’.

3 Experimental Setup

BLI Data and LLMs. We adopt two standard BLI
benchmarks: 1) 5 languages from XLING (Glavaš
et al., 2019) including German (DE), English (EN),
French (FR), Italian (IT), and Russian (RU), their
combinations resulting in 20 BLI directions; 2)
3 lower-resource languages including Bulgarian
(BG), Catalan (CA), and Hungarian (HU) from
PanLex-BLI (Vulić et al., 2019), which result in
6 BLI directions.8 For both benchmarks, a test
set of 2K WT pairs is provided for each BLI di-
rection. We experiment with four open-source
LLMs: LLAMA 7B, LLAMA-27B, LLAMA 13B, and
LLAMA-213B (Touvron et al., 2023a,b). Li et al.
(2023) found that 4 other families of LLMs, includ-
ing mT5, mT0, mGPT and XGLM, underperform
LLAMA; we thus skip these LLMs in our work.

Implementation Details and BLI Evaluation. As
mentioned in §2, our hyper-parameter and tem-
plate search are conducted on a single, randomly
selected language pair, which is DE-FR, follow-
ing Li et al. (2023). Batch size is set to 1. We
adopt Nit = 1, Nf = 5, 000 in our main experi-
ments (§4.1) and then investigate their influence
on BLI performance and the effectiveness of our
proposed word back-translation in our further anal-
yses (§4.2). Half-precision floating-point format
(torch.float16) is adopted for all our SAIL and
zero-shot experiments. Since our method does not
imply any randomness, all results are from single
runs. For evaluation, we adopt the standard top-1
accuracy as prior work.

7The decoding and output parsing strategy is the same as
in zero-shot prompting.

8The two datasets are also used in many recent BLI
works (Sachidananda et al., 2021; Aboagye et al., 2022; Li
et al., 2022a,b; Vulić et al., 2020, 2023; Li et al., 2023).

Baselines. We adopt two established MAPPING-

BASED baselines. 1) VECMAP is a representative
unsupervised BLI approach and features a self-
learning mechanism that refines linear maps for
deriving CLWEs (Artetxe et al., 2018a). 2) CON-

TRASTIVEBLI learns CLWEs with a two-stage con-
trastive learning framework and is the strongest
MAPPING-BASED approach for supervised and semi-
supervised BLI tasks on our two benchmarks (Li
et al., 2022a); however, it does not support unsuper-
vised setup. We extend CONTRASTIVEBLI to unsu-
pervised BLI by initialising the initial map with the
unsupervised VECMAP method. The CONTRASTIVE-

BLI C1 variant based on static WEs and its stronger
C2 variant combining static and decontextualised
WEs are both used as our baselines. We adopt
Cross-domain Similarity Local Scaling (CSLS) re-
trieval (Lample et al., 2018) for all MAPPING-BASED

approaches as recommended in the baselines. In
addition, we report 3) ZERO-SHOT prompting with
each of our LLMs as baselines following the previ-
ous findings of Li et al. (2023).

4 Results and Discussion

4.1 Main Results
Results on the Two BLI Benchmarks are sum-
marised in Tables 1 and 2 respectively, with full
BLI scores per each individual language pair in Ta-
bles 8 and 9 in Appendix F. As the main findings, 1)
our SAIL shows consistent gains against ZERO-SHOT

prompting for each of the 4 LLMs, showing the
effectiveness of the proposed approach; 2) while
ZERO-SHOT prompting still lags behind MAPPING-

BASED approaches on PanLex-BLI’s lower-resource
languages, applying SAIL outperforms MAPPING-

BASED baselines across the board. The only excep-
tion is that CONTRASTIVEBLI (C2) still has a slight
edge over SAIL with the weakest LLM overall,
LLAMA 7B. 3) Among the 4 LLMs, LLAMA-213B
presents the strongest BLI capability.

Variance and Statistical Significance. The whole
SAIL method does not imply any variance due to
randomness: it does not rely on any actual LLM
fine-tuning; we adopt deterministic beam search;
the deterministic nearest neighbour retrieval is
used for deriving in-context examples. Here, we
report the statistical significance with χ2 tests.
When comparing SAIL and ZERO-SHOT prompting
(both with LLAMA-213B), the p-value is 1.1e-251
on 20 XLING BLI directions and 2.7e-109 on 6
PanLex-BLI BLI directions. We then compare
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[Unsupervised BLI] DE EN FR IT RU AVG.

MAPPING-BASED

VECMAP 44.14 51.7 51.51 51.03 34.36 46.55
CONTRASTIVEBLI (C1) 44.72 52.12 52.29 51.77 35.5 47.28
CONTRASTIVEBLI (C2) 46.02 53.32 53.26 52.99 37.26 48.57

ZERO-SHOT

LLAMA 7B 41.94 50.16 48.25 46.91 40.04 45.46
LLAMA-27B 43.91 52.7 50.68 48.23 42.8 47.66
LLAMA 13B 45.39 53.35 52.39 50.58 41.74 48.69

LLAMA-213B 47.12 55.02 51.31 52.02 43.09 49.71

SAIL (Ours)

LLAMA 7B 51.39 61.92 58.92 56.94 50.7 55.97
LLAMA-27B 53.81 64.12 61.09 59.96 53.77 58.55
LLAMA 13B 55.35 64.84 62.49 61.27 54.5 59.69

LLAMA-213B 57.69 67.0 64.11 63.18 57.04 61.8

Table 1: Main results on the 20 XLING BLI directions.
For each language, the average accuracy scores over 8
BLI directions (i.e., going from and going to other 4
languages) is reported. See also Appendix F.

[Unsupervised BLI] BG CA HU AVG.

MAPPING-BASED

VECMAP 37.22 36.27 36.89 36.8
CONTRASTIVEBLI (C1) 36.7 35.86 37.82 36.79
CONTRASTIVEBLI (C2) 38.87 38.48 40.54 39.3

ZERO-SHOT

LLAMA 7B 27.9 28.87 27.18 27.98
LLAMA-27B 28.2 27.21 26.92 27.45
LLAMA 13B 27.49 30.61 28.2 28.77

LLAMA-213B 29.08 32.38 30.53 30.66

SAIL (Ours)

LLAMA 7B 37.02 37.63 36.29 36.98
LLAMA-27B 40.06 40.51 40.22 40.27
LLAMA 13B 41.71 42.76 42.07 42.18

LLAMA-213B 45.4 46.26 44.88 45.51

Table 2: Main results on 6 PanLex-BLI BLI directions.
For each language, the average accuracy scores over 4
BLI directions (i.e., going from and going to other 2
languages) is reported. See also Appendix F.

SAIL (with LLAMA-213B) against CONTRASTIVEBLI

(C2) which is our strongest MAPPING-BASED base-
line: the p-values are 3.1e-300 and 7.8e-20 respec-
tively. These show that our findings are strongly
statistically significant.9

4.2 Further Analyses
Inspection of High-Confidence Dictionaries. To
provide additional insight into our SAIL approach,
we present statistics on the size of high-confidence
dictionaries derived in our main experiments

9Usually p < 0.05 or p < 0.001 is considered to indicate
statistical significance.

LLM (SAIL) |Dh|: XLING |Dh|: PanLex-BLI

MEAN MIN∼MAX MEAN MIN∼MAX
LLAMA 7B 2471 1731∼3180 1735 1363∼2095

LLAMA-27B 3019 2086∼3824 1873 1690∼2183
LLAMA 13B 2850 2064∼3579 2005 1548∼2351

LLAMA-213B 2612 1577∼3362 1737 1184∼2049

Table 3: Statistics on |Dh| for each LLM over 20
XLING BLI directions and 6 PanLex-BLI BLI direc-
tions respectively.

(Nit = 1, Nf = 5, 000, and with word back-
translation) over 20 XLING BLI directions and 6
PanLex-BLI BLI directions respectively for each of
our four LLMs in Table 3. The values indicate that
|Dh| of higher-resource languages (XLING) is typ-
ically greater than that of lower-resource languages
(PanLex-BLI). In addition to the dictionary size,
it is also worth investigating the quality of high-
confidence dictionaries. However, to directly eval-
uate the quality of the ‘silver standard’ generated
dictionaries is difficult since we do not have ground
truth dictionaries for comparison. As a preliminary
investigation, we randomly sample 50 translation
pairs from the EN-DE LLAMA-213B-augmented dic-
tionary and compare them with answers derived
from Google Translate10 (EN→DE). We found that
40 out of the 50 pairs in our augmented dictionary
are the same as the results from Google Translate.
Although these results from Google Translate are
also not ‘gold standard’ ground truth, it does point
in the direction of reliability of extracted WT pairs.

Impact of Nit. Figure 1 shows the influence of
the number of iterations Nit on the average BLI
scores on XLING. When Nit = 1, where only step
S1 is executed (see §2), SAIL already approaches
(almost) its optimal performance. Further refining
the Dh for more iterations (step S2) only leads to
small fluctuations in BLI performance, which we
deem not worth the increased computational cost.
Figure 3 (Appendix B) with results on PanLex-BLI
shows a similar trend.

Impact of Nf . We then study the impact of the
frequency threshold Nf on the average BLI perfor-
mance with a subset of XLING spanning DE-FR,
EN-RU and RU-FR, each in both directions. The re-
sults in Figure 2 reveal that even with Nf = 1, 000,
the BLI performance is boosted substantially when
compared against the ZERO-SHOT baseline (i.e.,
when Nf = 0). When we further increase Nf , the

10https://translate.google.com/
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Figure 1: Top-1 accuracy (×100%) averaged over 20
XLING BLI directions with respect to Nit. Nit = 0
yields the ZERO-SHOT baseline.
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Figure 2: Top-1 accuracy on a subset of XLING with
respect to Nf . Nf = 0 yields the ZERO-SHOT baseline.

LLM ZERO-SHOT SAIL (w/o back-translation) SAIL

LLAMA-27B 45.36 52.9 56.12
LLAMA-213B 46.26 55.1 59.31

Table 4: BLI results on XLING, demonstrating the use-
fulness of back-translation when constructing Dh. Top-1
accuracy (×100%) scores.

accuracy score still increases slowly, and the gain
seems negligible with Nf ≥ 5000: i.e., increasing
Nf again may not be worth the extra computation.

Impact of Word Back-Translation. The back-
translation step aims to improve the quality of Dh.
Here, we experiment with the ablated version of
SAIL without back-translation on the same XLING
subset (DE-FR, EN-RU and RU-FR) as before. The
results in Table 4 clearly demonstrate the effec-
tiveness of proposed word back-translation: the
p-values (χ2 tests) are 8.8e-7 and 1.0e-10 respec-
tively for LLAMA-27B and LLAMA-213B when com-
paring SAIL variants with and without the back-
translation mechanism.

CHATGPT for BLI? We additionally report GPT-
3.5 (OpenAI, 2022) and GPT-4 (Achiam et al.,
2023) results on DE-FR, EN-RU and RU-FR with
ZERO-SHOT prompting (see Appendix E for ex-

BLI Direction LLAMA-213B GPT-3.5 GPT-4 LLAMA-213B

ZERO-SHOT SAIL
DE→FR 46.64 59.52 62.6 61.5
FR→DE 50.8 58.41 60.63 56.29
EN→RU 47.6 55.85 55.9 63.75
RU→EN 51.44 59.93 60.35 59.93
RU→FR 41.17 59.77 61.39 60.29
FR→RU 39.94 46.82 49.35 54.11

Avg. 46.26 56.72 58.37 59.31

Table 5: Comparisons with GPT models.

perimental details). Note that the procedure of
instruction-tuning of LLMs usually covers large-
scale parallel data for machine translation. There-
fore, leveraging CHATGPT models, even with ZERO-

SHOT prompting, is not in line with the motivation
of unsupervised BLI and leads to unfair compar-
isons with the results of our main experiments and
baselines.11 Here, we report CHATGPT results as
an upper bound for ZERO-SHOT prompting. Our
results in Table 5 show that 1) as expected, the
instruction-tuned CHATGPT models outperform pre-
trained LLAMA-213B by a large margin in the ZERO-

SHOT setup, but 2) our SAIL method with the same
pretrained LLAMA-213B outperforms both GPT-3.5
and the state-of-the-art GPT-412 in terms of the
average performance, even for the selected higher-
resource languages, again demonstrating the effec-
tiveness of the proposed SAIL approach.

5 Conclusion

We proposed Self-Augmented In-Context Learning
(SAIL) to improve unsupervised BLI with LLMs.
The key idea is to iteratively retrieve a set of high-
confidence word translation pairs by prompting
LLMs and then leverage the retrieved pairs as in-
context examples for unsupervised BLI. Our exper-
iments on two standard BLI benchmarks showed
that the proposed SAIL method substantially outper-
forms established MAPPING-BASED and ZERO-SHOT

BLI baselines. We also conducted a series of in-
depth analyses on the high-confidence dictionary,
key hyper-parameters, and the back-translation
mechanism, and we additionally show that our
SAIL approach with LLAMA-213B can even outper-
form ZERO-SHOT prompting with the state-of-the-art
GPT-4 model.

11The four LLAMA models used in our main experi-
ments are pretrained LLMs without instruction-tuning (see
Appendix D); our MAPPING-BASED baselines adopt static
WEs derived from monolingual corpora of respective lan-
guages and our CONTRASTIVEBLI (C2) baseline additionally
leverages pretrained mBERT (Devlin et al., 2019).

12We adopt the strong ‘gpt-4-turbo-2024-04-09’ model
which ranked 1st on the LMSYS Chatbot Arena Leaderboard
at the time of experimentation (May 12, 2024).
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Limitations

The main limitation of this work, inherited from
prior work as well (Li et al., 2023) is that the
scope of our languages is constrained to the lan-
guages supported (or ‘seen’) by the underlying
LLMs. For example, LLAMA-2 is reported to sup-
port only around 27 natural languages (Touvron
et al., 2023b). This limitation could be mitigated if
more advanced LLMs that support more languages
are available in the future. It might also be fea-
sible to adapt existing LLMs to more languages
by fine-tuning on their monolingual corpora poten-
tially combined with modern cross-lingual transfer
learning techniques, whereas such adaptations of
LLMs to unseen languages extend way beyond this
work focused on the BLI task.

In addition, compared to the ZERO-SHOT base-
line, our SAIL framework organically requires more
computational time and budget, as reported in Ta-
ble 7 of Appendix D.

Moreover, the SAIL framework is proposed and
evaluated for the unsupervised BLI task. This work
does not discuss if and how adapted variants of
SAIL could also be applied to other NLP tasks
beyond BLI. Further, the SAIL method should be
equally applicable in weakly supervised BLI se-
tups (Vulić et al., 2019) where a tiny set of available
seed word translations (e.g., 50-500 word pairs)
can be assumed to seed the iterative procedure. We
leave this to future work.
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A Languages

Family Language Code

Germanic
English EN

German DE

Romance
Catalan CA

French FR

Italian IT

Slavic
Bulgarian BG

Russian RU

Uralic Hungarian HU

Table 6: Languages used in our experiments with their
ISO 639-1 codes.

B Impact of Nit with PanLex-BLI
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Figure 3: Top-1 accuracy (×100%) averaged over 6
PanLex-BLI BLI directions with respect to Nit. Nit =
0 yields the ZERO-SHOT baseline.

C Templates

Li et al. (2023) provide the suggested (carefully
searched) templates for LLAMA 7B and LLAMA 13B,
which we directly adopt in our work. For LLAMA-
27B and LLAMA-213B, we conduct template search
following Li et al. (2023) on a single language pair
DE-FR in both directions. For CHATGPT models
used in §4.2, details about their templates are pro-
vided in Appendix E.

Zero-Shot Template. LLAMA 7B, LLAMA-27B and
LLAMA-213B share the same zero-shot template as
introduced in §2. LLAMA 13B’s zero-shot template
is as follows:

‘Translate from Lx to Ly: wx=>’.

Few-Shot Template.. We have introduced the few-
shot template of LLAMA-27B in §2. The remaining
three LLMs happen to share the same few-shot
template, given as follows:

‘The Lx word 'wx
1' in Ly is wy

1. The
Lx word 'wx

2' in Ly is wy
2. ... The Lx

word 'wx' in Ly is’.

D Reproducibility Checklist

• Source Code: our code is publicly available at
https://github.com/cambridgeltl/sail-b
li.

• Hyper-Parameter Search: Nit is selected from
{1, 2, 3, 4} and Nf from {1000, 2000, 3000, 4000,
5000, 6000, 7000, 8000, 9000, 10000}.

• Software: Python 3.9.7, PyTorch 1.10.1, Trans-
formers 4.28.1, OpenAI 1.28.1.

• Computing Infrastructure: we run our codes
on Wilkes3, a GPU cluster hosted by the University
of Cambridge. Each run makes use of a single
Nvidia 80GB A100 GPU and 32× CPU cores.

• Half-Precision Floating-Point Format: as in-
troduced in §3, our BLI inference relies on
torch.float16 for both our SAIL and the ZERO-

SHOT baseline. We have verified that fp16 can
accelerate our computation with only negligible
impact on the absolute BLI performance. Note that
Li et al. (2023) did not specify torch.float16 in
their ZERO-SHOT experiments with LLAMA 7B and
LLAMA 13B, so the BLI scores reported are slightly
different from ours.

• Data, WEs, LLMs: all the BLI data, WEs,
LLMs (excluding CHATGPT models) and baseline
codes are open-source and publicly available. The
WEs for retrieving in-context examples are fastText
WEs (Bojanowski et al., 2017) trained on monolin-
gual corpora of respective languages: the version
pretrained on Wikipedia13 is used for XLING and
the version pretrained with Wikipedia plus Com-
mon Crawl14 is used for PanLex-BLI, as recom-
mended by XLING and PanLex-BLI, respectively.
The same WEs are used for our MAPPING-BASED

baselines. The LLMs used in our main exper-
iments (LLAMA models) are summarised in Ta-
ble 7. Note that we only adopt pretrained versions
of LLAMA (e.g., ‘meta-llama/Llama-2-7b-hf’)
rather than the instruction-tuned models (e.g.,
‘meta-llama/Llama-2-7b-chat-hf’). The de-
tails of CHATGPT models used in §4.2 are provided
in Appendix E.

13https://fasttext.cc/docs/en/pretrained-vecto
rs.html

14https://fasttext.cc/docs/en/crawl-vectors.h
tml
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• Baselines: for every baseline, we use its rec-
ommended setup for unsupervised BLI and make
sure the recommended setup achieves its own (near-
)optimal performance. As introduced in §3, we
extend CONTRASTIVEBLI to the unsupervised BLI
setup. Specifically, we adopt the set of its hyper-
parameters recommended for the weakly super-
vised BLI setup, which we found can also achieve
strong unsupervised BLI performance.

• Parameter Count and Runtime: we report the
number of parameters of each LLM and the GPU
runtime for BLI inference on a single BLI direction
DE→FR, which contains circa 2K word pairs, in
Table 7.

• Carbon Footprint: our work consumes about
750 A100 GPU hours in total. We estimate that
our experiments causes the emission of circa 90kg
CO2 equivalents according to a publicly available
‘machine learning emissions calculator’ (Luccioni
et al., 2019)15.

E Details of CHATGPT Experiments

We run our CHATGPT experiments introduced
in §4.2 with the OpenAI API.16 The model
ID for GPT-3.5 is ‘gpt-3.5-turbo-0125’.
For GPT-4, we adopt the state-of-the-art
‘gpt-4-turbo-2024-04-09’ model which ranked
1st on the LMSYS Chatbot Arena Leaderboard at
the time of experimentation (May 12, 2024).

Our input to CHATGPT consists of two types of
input messages: a system message followed by a
user message. For the user message, we adopt the
following template for both GPT-3.5 and GPT-4 as
recommended in Anonymous (2023):

‘Translate the Lx word wx into Ly:’,

which is also selected from the template pool of Li
et al. (2023). We additionally adopt the following
system message which is not used in Anonymous
(2023) or Li et al. (2023):

‘Please complete the following
sentence and only output the target
word.’.

In our preliminary investigation, we find that our
system message can considerably improve the BLI
performance of both CHATGPT models.

15https://mlco2.github.io/impact/#compute
16https://platform.openai.com/docs/overview

There are two hyper-parameters used in our API
calls: temperature = 0 and max_tokens = 5.
Like our main experiments, we also extract the
first word in the generated output sequence as the
prediction for the target word. But different from
our LLAMA experiments, we only derive a single
output sequence from the CHATGPT API for each
prompt. The code for our CHATGPT experiments is
also provided in our GitHub repository.

F Full BLI Results

Table 8 shows detailed BLI scores for each BLI di-
rection in the XLING dataset. Similarly, individual
per-direction results on PanLex-BLI are presented
in Table 9.
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LLM Model ID Parameter Count Runtime: ZERO-SHOT Runtime: SAIL

LLAMA 7B ‘huggyllama/llama-7b’ 6, 738, 415, 616 5 min 40 min
LLAMA-27B ‘meta-llama/Llama-2-7b-hf’ 6, 738, 415, 616 5 min 40 min
LLAMA 13B ‘huggyllama/llama-13b’ 13, 015, 864, 320 6 min 49 min

LLAMA-213B ‘meta-llama/Llama-2-13b-hf’ 13, 015, 864, 320 6 min 49 min

Table 7: LLMs adopted in our work with their huggingface.co model IDs, parameter count, and GPU runtime on
a single BLI direction for ZERO-SHOT prompting and SAIL respectively.

[Unsupervised BLI] VECMAP CONTRASTIVEBLI (C1) CONTRASTIVEBLI (C2) LLAMA 7B LLAMA-27B LLAMA 13B LLAMA-213B LLAMA 7B LLAMA-27B LLAMA 13B LLAMA-213B

MAPPING-BASED ZERO-SHOT SAIL (Ours)
DE→FR 48.98 50.39 51.8 42.46 44.44 47.37 46.64 54.67 54.77 58.37 61.5
FR→DE 43.97 43.61 44.9 43.2 45.47 48.11 50.8 50.08 54.16 54.47 56.29
DE→IT 48.41 49.77 50.23 42.78 42.78 46.06 48.51 53.36 54.25 57.38 59.05
IT→DE 44.03 43.93 45.43 38.6 41.55 44.39 45.27 46.15 51.63 52.2 52.92
DE→RU 25.67 28.22 31.09 30.41 35.32 32.76 36.62 45.12 46.9 48.98 51.59
RU→DE 39.13 40.02 41.33 43.53 44.68 43.11 42.12 46.83 50.55 50.65 53.9
EN→DE 48.4 47.45 47.4 52.0 52.1 54.35 59.85 59.55 61.75 62.8 65.05
DE→EN 54.51 54.36 55.97 42.57 44.91 46.95 47.16 55.35 56.44 57.96 61.24
EN→FR 60.15 61.05 61.25 57.6 62.65 62.65 61.75 72.6 73.8 75.85 76.35
FR→EN 61.25 62.34 63.58 54.58 55.56 57.27 53.03 63.68 65.13 65.29 66.63
EN→IT 57.4 57.6 58.75 58.95 60.85 60.4 65.8 71.7 73.0 74.25 77.6
IT→EN 60.83 62.02 63.46 47.39 50.08 54.94 53.54 60.1 64.08 64.13 65.43
EN→RU 24.55 25.45 26.1 42.05 44.6 40.1 47.6 57.4 60.25 61.05 63.75
RU→EN 46.52 46.67 50.03 46.15 50.81 50.13 51.44 54.95 58.51 57.41 59.93
IT→FR 64.75 65.12 65.89 51.42 54.47 57.36 55.3 61.91 65.58 65.94 68.17
FR→IT 63.37 63.94 64.61 57.32 55.98 60.01 61.87 64.72 66.22 69.22 69.53
RU→FR 45.31 46.78 47.93 43.58 48.04 47.77 41.17 54.79 57.62 57.52 60.29
FR→RU 24.26 25.09 26.07 35.8 38.8 38.59 39.94 48.94 51.42 53.29 54.11
RU→IT 43.95 44.89 46.15 47.3 47.15 45.99 49.45 53.54 56.26 56.31 59.25
IT→RU 25.48 26.87 29.35 31.52 33.02 35.45 36.38 44.03 48.63 50.75 53.49

Avg. 46.55 47.28 48.57 45.46 47.66 48.69 49.71 55.97 58.55 59.69 61.8

Table 8: Full BLI results on 20 XLING BLI directions.

[Unsupervised BLI] VECMAP CONTRASTIVEBLI (C1) CONTRASTIVEBLI (C2) LLAMA 7B LLAMA-27B LLAMA 13B LLAMA-213B LLAMA 7B LLAMA-27B LLAMA 13B LLAMA-213B

MAPPING-BASED ZERO-SHOT SAIL (Ours)
BG→CA 39.6 38.08 39.66 32.83 29.79 32.77 33.47 40.19 42.23 42.52 47.9
CA→HU 34.09 34.2 36.85 23.7 23.2 24.42 30.17 32.27 35.25 38.34 39.83
HU→BG 36.46 38.36 40.44 28.28 27.71 26.5 26.73 38.19 41.47 43.89 46.66
CA→BG 33.6 31.39 33.94 26.35 27.2 27.03 28.39 36.54 38.47 42.27 45.67
HU→CA 37.79 39.77 43.45 32.62 28.66 38.23 37.51 41.53 46.09 47.91 51.65
BG→HU 39.24 38.95 41.44 24.13 28.12 23.67 27.72 33.16 38.08 38.14 41.38

Avg. 36.8 36.79 39.3 27.98 27.45 28.77 30.66 36.98 40.27 42.18 45.51

Table 9: Full BLI results on 6 PanLex-BLI BLI directions.
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