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Abstract

Large-scale Vision-Language Models (LVLMs)
output text from images and instructions,
demonstrating advanced capabilities in text gen-
eration and comprehension. However, it has
not been clarified to what extent LVLMs under-
stand the knowledge necessary for explaining
images, the complex relationships between var-
ious pieces of knowledge, and how they inte-
grate these understandings into their explana-
tions. To address this issue, we propose a new
task: the artwork explanation generation task,
along with its evaluation dataset and metric
for quantitatively assessing the understanding
and utilization of knowledge about artworks.
This task is apt for image description based on
the premise that LVLMs are expected to have
pre-existing knowledge of artworks, which are
often subjects of wide recognition and docu-
mented information. It consists of two parts:
generating explanations from both images and
titles of artworks, and generating explanations
using only images, thus evaluating the LVLMs’
language-based and vision-based knowledge.
Alongside, we release a training dataset for
LVLMs to learn explanations that incorporate
knowledge about artworks. Our findings in-
dicate that LVLMs not only struggle with in-
tegrating language and visual information but
also exhibit a more pronounced limitation in
acquiring knowledge from images alone 1.

1 Introduction

In the field of Vision & Language (V&L), Large
Language Models (LLMs) (Touvron et al., 2023;
Chiang et al., 2023; Bai et al., 2023a; Jiang et al.,
2023) have been combined with visual encoders
to create Large Scale Vision Language Models
(LVLMs) (Li et al., 2023b; Liu et al., 2024; Bai
et al., 2023b; Ye et al., 2023b). These models have
achieved success in various V&L benchmarks (Li

1The datasets (ExpArt=Explain Artworks) are available at
https://huggingface.co/datasets/naist-nlp/ExpArt
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Employ sfumato, as da Vinci did, 
using a soft brush to blend colors 

for a gradient that captures 
Renaissance depth and realism.

Impressionism

I want to paint a renaissance style 
painting, how do I get a gradient?

Figure 1: An example of creative assistance using an
LVLM, harnessing comprehensive artistic knowledge
for guidance.

et al., 2023a; Fu et al., 2023; Liu et al., 2023c; Bai
et al., 2023c). Despite these advancements, tasks
like Visual Question Answering (VQA) (Zhang
et al., 2022b; Yue et al., 2023), Image Caption-
ing(Agrawal et al., 2019; Lin et al., 2014), and
querying models about artwork-related informa-
tion (Garcia et al., 2020; Cetinic, 2021; Bai et al.,
2021) have primarily focused on assessing models’
abilities to handle isolated pieces of knowledge.

These tasks, while valuable, do not fully cap-
ture the complexity of synthesizing and explain-
ing interconnected knowledge in real-world scenar-
ios (Kawaharazuka et al., 2024), nor the difficulty
of generating coherent text to explain this knowl-
edge. Current evaluations often result in superficial
image descriptions, lacking extensive background
knowledge and interrelationships between subjects.

A pertinent example of this limitation can be ob-
served in the context of creative support for paint-
ings and photographs. As shown in Figure 1, these
models must produce explanations that integrate
knowledge of the artwork’s theme, historical con-
text, associated works, and artistic movement, high-
lighting a gap in current capabilities. Since this task
goes beyond simply recognizing disparate knowl-
edge, it is crucial for LVLMs to deeply understand
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Type Template Instruction Output

Section Explain the {Section} of this
artwork, {Title}.

Explain the History of this
artwork, Mona Lisa.

Of Leonardo da Vinci’s works, the
Mona Lisa is the only portrait whose
authenticity...

Subsection Explain the {Subsection}
regarding the {Section} of
this artwork, {Title}.

Explain the Creation and date
regarding the History of this
artwork, Mona Lisa.

The record of an October 1517 visit by
Louis d’Aragon states that the Mona
Lisa...

Sub subsection Explain the {Sub subsection}
details within the {Subsection}
aspect of the {Section} in this
artwork, {Title}.

Explain the Creation details
within the Creation and date
aspect of the History in this
artwork, Mona Lisa.

After the French Revolution, the paint-
ing was moved to the Louvre, but
spent a brief period in the bedroom of
Napoleon (d. 1821) in the....

Table 1: Examples of instructions for the proposed task. The blue part indicates the artwork’s title and the red part
indicates the names of sections in the original Wikipedia articles that correspond to their explanations.

the interrelationships of artwork knowledge to inte-
grate them into explanations comprehensively.

To address this gap, we propose a new task and
evaluation metrics designed to measure LVLMs’
capability in generating comprehensive explana-
tions about artworks. Our task requires LVLMs to
generate explanations in response to given instruc-
tions, based on input images and titles of artworks.

We have constructed a dataset from about 10,000
English Wikipedia articles of artworks for this
task and also release a training dataset to facili-
tate LVLMs in learning to generate explanations in-
volving artistic knowledge. Furthermore, we have
evaluated LVLMs currently achieving the highest
performance in various V&L benchmarks. The re-
sults show that while the LVLMs retain the artistic
knowledge inherited from their base LLMs, they
do not adequately correlate this knowledge with
the provided visual information.

2 LVLMs

LVLMs (Li et al., 2023b; Liu et al., 2024; Bai et al.,
2023b; Ye et al., 2023b) integrate a Vision Encoder
(Li et al., 2023b) trained through contrastive learn-
ing to process visual information with Large Lan-
guage Models (LLMs) (Li et al., 2023b; Liu et al.,
2024; Bai et al., 2023b; Ye et al., 2023b). This
integration requires further training to effectively
combine vision and language capabilities. As a
result, these LVLMs outperform conventional pre-
trained models, even those with over ten times more
parameters (et al, 2022; Driess et al., 2023).

However, it is unclear whether the knowledge
from the LLM and the Vision Encoder are appro-
priately aligned by the additional network layers in
LVLMs (Chen et al., 2024a). Generating explana-
tions that involve knowledge about art especially
requires careful and systematic alignment and uti-
lization of the information from both the Vision

Encoder and the LLM. This challenge motivates us
to design a new task for LVLMs.

3 Task and Evaluation Metrics

3.1 Task
Our task demands LVLMs to generate explanations
following instructions with images and titles. Ex-
amples of the instructions are shown in Table 1. As
demonstrated by these examples, each instruction
is categorized into three levels, Section, Subsection,
and Subsubsection, determined by the correspond-
ing positions in Wikipedia articles (See §3). The
proposed task addresses the following two settings
with or without titles:

With Title In the context of creative assistance,
the title often contains the author’s intent for the
artwork, and it is desirable to generate explanations
considering this intent. In this setting, both the im-
age and its title are inputs, testing whether LVLMs
can generate appropriate explanations based on
both language and visual information.

Without Title As shown in Figure 1, there are
cases where a title does not exist potentially be-
cause the artwork is in the process of creation. This
setting tests whether LVLMs can generate appro-
priate explanations using only visual information
from images. Additionally, analyzing the perfor-
mance changes with and without titles allows us to
verify the LVLMs’ pure vision-based knowledge.

Furthermore, to thoroughly assess the general-
ization capabilities of LVLMs, we compare two
cases: 1) a seen case in which images are observed
during finetuning, and 2) an unseen case in which
images are not observed during finetuning.

3.2 Evaluation Metrics
Since our task is a kind of natural language gen-
eration (NLG), we utilize popular metrics in NLG
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1. Title : 
2. Description: 
3. Entities:

1. Title : 
2. Description: 
3. Entities:

1. Title : 
2. Description: 
3. Entities:

1. Title : 
2. Description: 
3. Entities:

1. Title : 
2. Description: 
3. Entities:

1. Title : 
2. abstraction: 
3. Entities:≈

1. Title : 
2. abstraction: 
3. Entities:≈

1. Title : 
2. abstraction: 
3. Entities:

1. Title : 
2. abstraction: 
3. Entities:

I. Title	:	
II. Section:	
III. Entities:

summary

Ⅳ.

TitleRank
Mona Lisa1

Girl with a Pearl Earring2

The Scream3

Guernica4

Venus de Milo5

Sunflowers6

David7

The Last Supper8

Café Terrace at Night9

The Starry Night10

Girl with a Pearl Earring, Dutch, oil painting, Dutch Golden Age, 
Painter Johannes Vermeer, Mauritshuis, The Hague, tronie, turban, 
pearl, earring, Sibyl
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Figure 2: Workflow diagram illustrating the methodology for dataset creation from Wikipedia articles on artworks,
involving selection, filtering, data balancing, and instructional templating for LVLM training and evaluation.

Train Dev Test (Seen) Test (Unseen)

Images 7,704 963 2,407 963
Instruction 18,613 2,677 2,485 2,597

Table 2: Number of Images and Data in the Created
Dataset.

for evaluation, i.e., BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and BERTScore (Zhang*
et al., 2020). To further focus on the ability to
generate explanations for artworks, we propose the
following three evaluation metrics2:

Entity Coverage We evaluate how accurately the
generated text includes entities (See §4) related to
the artwork mentioned in the reference description,
using two settings: exact match and partial match
(Li et al., 2022a).

Entity F1 We evaluate the frequency of occur-
rence of entities related to the artwork found in
the generated and reference explanations by F1.
Inspired by ROUGE, we consider the highest fre-
quency of occurrence of any entities within either
the generated explanation or the reference as the
upper limit of occurrence frequency to calculate
precision and recall.

Entity Cooccurrence This metric assesses not
only the coverage of independent entities but also
how their interrelations are contextually combined

2For the formulas of each metric, see Appendix C.

to form the overall explanation. Specifically, it
considers pairs of entities that co-occur within a
sentence and its preceding and following n sen-
tences, evaluating the coverage rate of these pairs
to reveal how well the model understands and in-
tegrates the relevance of knowledge. By setting
the value of n to exceed the number of sentences
in the generated explanation, it becomes possible
to account for the co-occurrence of entity pairs
throughout the entire text. Furthermore, we apply
the brevity penalty used in BLEU (Papineni et al.,
2002) to verify the accuracy of knowledge at an
appropriate length, defined by the reference text for
each data instance. This ensures models produce
concise, non-redundant explanations.

4 Dataset Creation

The process of dataset creation, illustrated in Figure
2, involved the following steps:

STEP 1: We collected all the artwork articles
from the English Wikipedia that have an infobox
(about 10,000), divided them into sections, and cre-
ated descriptive texts. Additionally, hyperlinked
texts within the articles were extracted as entities
related to the artwork. Each descriptive text is ac-
companied by four pieces of information: the title,
the hierarchy of sections (i.e., Section, Subsection,
Subsubsection), the image, and the aforementioned
entities.
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LVLM Setting Size BLUE ROUGE BertScore Entity Cov. Entity F1 Entity Cooccurrence Avg. Length
1 2 L exact partial n=0 n=1 n=2 n=∞

With Title (Language information + Visual information)

mPLUG-Owl2 Unseen 7B 1.16 26.8 5.9 17.1 83.3 13.3 21.1 15.6 1.61 1.38 1.35 1.29 100
LLaVA-NeXT (Vicuna-7B) Unseen 7B 0.81 16.5 3.7 11.0 80.8 9.0 14.1 10.6 0.83 0.74 0.73 0.69 119
LLaVA-NeXT (Vicuna-13B) Unseen 13B 1.18 17.0 4.1 10.8 80.5 11.5 16.4 13.1 1.12 1.04 1.02 0.99 133
LLaVA-NeXT (Yi-34B) Unseen 34B 0.72 13.9 3.3 9.5 80.2 18.5 27.8 16.1 0.26 0.22 0.21 0.19 869
Qwen-VL-Chat Unseen 7B 1.64 28.2 6.8 17.4 83.5 17.8 26.3 20.8 1.90 1.66 1.63 1.57 155
Qwen-VL-Chat (FT) Unseen 7B 3.96 27.2 10.8 21.4 84.2 19.7 27.2 22.0 4.86 4.35 4.23 4.13 153
GPT-4-Vision Unseen - 2.40 28.6 7.6 16.3 83.3 28.4 37.1 31.6 3.02 3.00 2.98 3.05 264

Without Title (Visual information)

mPLUG-Owl2 Unseen 7B 0.21 23.3 3.58 15.0 82.3 4.0 10.5 4.3 0.26 0.29 0.26 0.24 91
LLaVA-NeXT (Vicuna-7B) Unseen 7B 0.13 16.0 2.21 10.6 80.1 1.8 6.3 1.8 0.07 0.10 0.10 0.11 125
LLaVA-NeXT (Vicuna-13B) Unseen 13B 0.17 16.6 2.35 11.0 80.8 2.1 7.1 2.2 0.07 0.08 0.08 0.07 164
LLaVA-NeXT (Yi-34B) Unseen 34B 0.15 11.5 1.88 8.1 78.7 3.5 10.5 2.8 0.03 0.03 0.02 0.02 903
Qwen-VL-Chat Unseen 7B 0.47 24.8 4.50 15.4 82.5 7.5 14.6 8.4 0.56 0.60 0.58 0.55 128
Qwen-VL-Chat (FT) Unseen 7B 2.07 24.5 7.79 18.6 83.4 12.9 19.6 14.7 2.25 2.03 2.00 1.96 153
GPT-4-Vision Unseen - 0.10 23.1 4.43 13.2 81.9 11.6 19.0 12.3 1.18 1.35 1.37 1.34 223

Table 3: Results of LVLMs. Bold fonts indicate the best scores. Avg. Length averages generated token lengths.

STEP 2: We filtered out sections that did not
contribute directly to the understanding of artwork,
articles without images, and texts not specific to
individual art pieces to ensure the relevance and
quality of the content.

STEP 3: To prevent biases that may arise due
to the notoriety of the artworks included in the
LVLM’s training data, we shuffled the data. First,
we ranked the data using six metrics: page views,
number of links, number of edits, number of ref-
erences, number of language versions, and article
length. We then evenly split the data into test, de-
velopment, and training sets at a ratio of 1:1:8 to
maintain the average ranking across these sets (Ta-
ble 2). As described in §3, for the Seen set, we
used training images with no overlap in reference
text to prevent leakage. For the Unseen set, neither
images nor reference texts are from the training set.

STEP 4: The sorted data for each set were then
formatted into instructions using the templates de-
scribed in Section 3.1. To diversify the training
data, we prepared seven different templates in-
spired by Longpre et al. (2023) (see Appendix E.3).

5 Evaluation

5.1 Setup

We evaluated four models: mPLUG-Owl2 (Ye
et al., 2023b), LLaVA-NeXT (Liu et al., 2024),
Qwen-VL-Chat (Bai et al., 2023b), and GPT-4 Vi-
sion (OpenAI, 2023), along with an instruction-
tuned version of Qwen-VL-Chat (FT), fine-tuned
by our dataset with LoRA (Dettmers et al., 2022a).3

As shown in Table 2, the data is divided based on

3Further details for the evaluation setup and results for
other models are described in Appendix D and Appendix A.

images. In the Few-shot setting, by utilizing this
data division, to prevent answer leakage in Few-
shot samples, for test (Seen) evaluations, samples
were randomly selected from the test (Unseen) set,
and vice versa for test (Unseen) evaluations.

5.2 Results

With and Without Title Table 3 shows the re-
sults In the "With Title" setting, GPT-4-Vision
achieved the highest performance in Entity Cov-
erage and Entity F1, with Qwen-VL-Chat (FT),
Qwen-VL-Chat, and LLaVA-NeXT (Yi-34B-Chat)
also showing strong performance. Notably, Qwen-
VL-Chat (FT) reached the highest precision in En-
tity Cooccurrence, showcasing its exceptional abil-
ity to accurately contextualize knowledge within
generated text. This proves the superiority of our
instruction-tuning dataset. Additionally, consider-
ing the average reference token length is 174 in the
unseen setting, the significantly low performance
of LLaVA-Next (Yi-34B-Chat) indicates excessive
token lengths may result in redundant text, which
is unsuitable for generating concise explanations.

In the "Without Title" setting, Qwen-VL-Chat
(FT) outperformed GPT-4-Vision across all met-
rics, indicating that our dataset enables accurate
knowledge association and generation from visual
information. Comparative analysis of the models’
performance in scenarios with and without titles
indicated a consistent drop in performance across
the board. This observation clearly shows the chal-
lenges of generating text based solely on visual
inputs. All models, including advanced ones like
GPT-4-Vision, heavily depend on text-based cues.

3Since LLMs do not handle visual information, we con-
ducted the analysis in a setting with titles.
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LVLM Setting Size BLUE ROUGE BertScore Entity Cov. Entity F1 Entity Cooccurrence Avg. Length
1 2 L exact partial n=0 n=1 n=2 n=∞

With Title (Language information + Visual information)

Qwen-VL-Chat Unseen 7B 1.64 28.2 6.8 17.4 83.5 17.8 26.3 20.8 1.90 1.66 1.63 1.57 155
Qwen-VL-Chat One-shot Unseen 7B 1.96 27.6 7.6 18.0 84.0 18.0 26.0 20.9 2.71 2.34 2.30 2.21 98
Qwen-VL-Chat Three-shot Unseen 7B 2.47 27.2 8.5 18.7 84.4 19.3 27.3 22.8 3.65 3.14 3.05 2.97 77
Qwen-VL-Chat (FT) Unseen 7B 3.96 27.2 10.8 21.4 84.2 19.7 27.2 22.0 4.86 4.35 4.23 4.13 153
Qwen-VL-Chat (FT) One-shot Unseen 7B 3.96 26.9 10.6 21.1 84.0 19.7 27.0 22.0 4.75 4.20 4.02 3.97 154
Qwen-VL-Chat (FT) Three-shot Unseen 7B 3.85 26.9 10.6 21.0 84.2 19.5 26.8 22.2 4.71 4.01 3.94 3.86 128

Qwen-VL-Chat Seen 7B 1.69 27.9 6.7 17.3 83.4 16.2 24.5 19.8 1.87 1.57 1.54 1.47 153
Qwen-VL-Chat One-shot Seen 7B 2.02 27.3 7.5 17.8 84.0 17.4 25.3 20.8 2.95 2.49 2.45 2.36 95
Qwen-VL-Chat Three-shot Seen 7B 2.34 26.5 8.22 18.3 84.3 17.9 25.8 21.3 3.43 2.72 2.69 2.61 74
Qwen-VL-Chat (FT) Seen 7B 4.13 27.6 11.4 21.8 84.5 19.8 27.4 23.5 5.47 4.43 4.30 4.19 133
Qwen-VL-Chat (FT) One-shot Seen 7B 4.06 27.4 11.1 21.6 84.4 19.8 27.3 22.7 5.43 4.45 4.40 4.30 134
Qwen-VL-Chat (FT) Three-shot Seen 7B 4.05 27.2 11.1 21.5 84.6 19.5 27.0 22.4 5.22 4.21 4.19 4.10 113

Without Title (Visual information)

Qwen-VL-Chat Unseen 7B 0.47 24.8 4.50 15.4 82.5 7.5 14.6 8.4 0.56 0.60 0.58 0.55 128
Qwen-VL-Chat One-shot Unseen 7B 0.65 23.4 4.81 15.3 83.0 8.6 15.4 9.7 1.15 1.10 1.04 1.12 87
Qwen-VL-Chat Three-shot Unseen 7B 0.69 22.2 4.95 15.0 83.3 9.3 15.6 10.4 1.21 1.22 1.17 1.11 70
Qwen-VL-Chat (FT) Unseen 7B 2.07 24.5 7.79 18.6 83.4 12.9 19.6 14.7 2.25 2.03 2.00 1.96 153
Qwen-VL-Chat (FT) One-shot Unseen 7B 1.95 24.1 7.50 18.3 83.3 12.6 19.2 14.3 2.00 1.92 1.86 1.84 152
Qwen-VL-Chat (FT) Three-shot Unseen 7B 2.03 24.3 7.67 18.4 83.6 12.9 19.6 14.6 2.40 2.00 1.94 1.91 131

Qwen-VL-Chat Seen 7B 0.40 24.4 4.32 15.2 82.5 5.6 12.7 6.9 0.40 0.41 0.37 0.35 124
Qwen-VL-Chat One-shot Seen 7B 0.53 22.5 4.45 14.8 83.0 7.2 13.9 8.6 0.72 0.72 0.70 0.66 82
Qwen-VL-Chat Three-shot Seen 7B 0.69 22.2 4.95 15.0 83.3 9.3 15.6 10.4 1.21 1.22 1.17 1.11 68
Qwen-VL-Chat (FT) Seen 7B 2.09 24.9 8.00 18.9 83.8 12.4 19.4 15.0 2.19 1.85 1.82 1.78 127
Qwen-VL-Chat (FT) One-shot Seen 7B 1.99 24.4 7.72 18.5 83.6 11.5 18.7 14.0 1.89 1.55 1.51 1.48 130
Qwen-VL-Chat (FT) Three-shot Seen 7B 2.03 24.3 7.74 18.4 83.8 11.6 18.5 13.9 1.89 1.49 1.45 1.42 117

Table 4: Results of Fine-tuning and Few-shot settings for LVLMs. Bold fonts indicate the best scores. Avg. Length
averages generated token lengths (see Figure 4).

LLM Entity Cov. Entity F1 Entity Cooccurrence Avg. Length
exact partial n=0 n=1 n=2 n=∞

With Title (Language information)

Llama2 18.5 27.3 20.8 1.04 0.88 0.82 0.81 366
Vicuna 7B 12.3 18.6 14.1 1.43 1.33 1.32 1.23 129
Vicuna 13B 19.4 28.1 23.0 2.16 1.99 1.89 1.77 209
Yi-34B-Chat 17.9 25.4 13.0 0.93 0.86 0.83 0.81 745
Qwen-Chat 7.6 11.8 8.5 0.52 0.43 0.41 0.40 106
GPT-4 31.7 40.2 32.3 2.54 2.50 2.53 2.59 374

Table 5: Results of LLMs (Unseen4). Notations are the
same as Table 3.

LLMs vs. LVLMs Table 5 shows the results
of explanation generation in the With Title setting
without images for text-only LLMs. Notably, Ta-
ble 5 illustrates that GPT-4 (OpenAI et al., 2023)
achieves the highest accuracy across all metrics,
demonstrating strong knowledge about artworks,
closely followed by Llama2 (Touvron et al., 2023),
Vicuna (Chiang et al., 2023) and Yi-34-Chat (01.AI,
2023). Conversely, Qwen-Chat (Bai et al., 2023a)
is shown to perform comparatively lower. Addi-
tionally, the comparison of Tables 3 and 5 reveals
the extent of text-only LLM’s knowledge retention
through integrated vision and language learning. It
is apparent that the knowledge about artworks is
compromised in other LVLMs due to the integrated
learning of vision and language. On the other hand,
Qwen-VL-Chat achieves a 10% performance boost
in titled settings, signaling successful synthesis of
vision and language knowledge.

Few-shot vs. Fine-tuning The results in Ta-
ble 4 show that Fine-tuning outperforms both the

pure model and Few-shot settings. While Few-shot
settings show some improvement with an increas-
ing number of shots, they do not match the per-
formance of Fine-tuning. Considering the average
token length of 174 in the reference sentences, the
reduced token length in Few-shot settings suggests
a focus on generating necessary terms but may re-
sult in less comprehensive explanations. In contrast,
Fine-tuning allows the model to learn both specific
vocabulary and the format for generating coherent
explanations, leading to better performance. How-
ever, the lack of significant differences between
Seen and Unseen settings in Fine-tuning indicates
that effective alignment of visual and textual infor-
mation (the knowledge originally held by the LLM)
requires simultaneous learning of images and their
descriptions.

6 Conclusion

We introduced a new task, artwork explanation gen-
eration, and its dataset and metrics to quantitatively
evaluate the artistic knowledge comprehension and
application. Using LVLMs, we assessed their re-
tention and utilization of artworks knowledge from
base LLMs, with or without artwork titles. Our
findings indicate that while LVLMs maintain much
of the artistic knowledge from their LLM counter-
parts, they do slightly lose some in practice. Fur-
thermore, the challenges in generating text solely
based on visual inputs clearly show a significant
dependency on text-based cues.
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Limitations

Our research elucidates the intricacies of integrat-
ing visual and language abilities within LVLMs,
yet it encounters specific limitations that define the
scope of our findings.

Data Source A principal limitation is our re-
liance on the diverse authorship and open editing
model of Wikipedia as our data source. Variations
in detail, writing style, and information density
across entries may lead to inconsistencies in the
dataset, potentially skewing model performance
and affecting the universality of our conclusions.
Additionally, we did not filter out generic entities
such as "artwork" to avoid bias. However, more
specific entity filtering may improve dataset rele-
vance to artworks. Moreover, relying on Wikipedia
limits our dataset to well-known artworks, omitting
lesser-known but culturally significant works not
featured on the platform, thereby missing a broader
spectrum of artistic significance.

Human Evaluation While our current study
does not include human evaluations, it is crucial to
assess whether the models can provide insights be-
yond Wikipedia and evaluate LVLM explanations
from an expert perspective for real-world applica-
tions. Another LVLM-based image explanation
task, image review generation (Saito et al., 2024)
actually conducts human evaluation by hiring non-
expert annotators. Unlike their work, our task re-
quires expert knowledge to judge the quality of
generated explanations. Thus, due to the cost per-
spective, evaluating generated explanations across
various genres by experts is a left problem.

Integration of Vision and Language Representa-
tions Simultaneously, our study identifies a cru-
cial limitation in the process of integrating Vision
Encoders with LLMs, particularly highlighting the
models’ reliance on textual cues to generate text
from visual inputs. Kamigaito et al. (2023) report
the same issue when predicting infoboxes, which
are kinds of summaries for Wikipedia articles. This
observation underscores the difficulty of retaining
language knowledge during the integration, a prob-
lem we acknowledge without offering concrete so-
lutions. This gap clearly shows the pressing need
for future research to not only further investigate
these issues but also to develop innovative method-
ologies that ensure the preservation of language
knowledge amidst the integration of visual and lan-
guage abilities.

Insuffcient Artwork Knowledge in LVLMs
The limited improvement in entity coverage by
LoRA indicates the difficulty of injecting artwork
knoweldge into LVLMs. As a solution, we can
consider injecting external knowledge into LVLMs.
Chen et al. (2024b) introduce using knowledge
graphs (KGs) as a solution. However, KGs are
commonly sparse and we may need to complete
them by KG completion (KGC), a task to complete
missing links in KGs. Traditional KGC methods
(Nickel et al., 2011; Bordes et al., 2013) are em-
perically (Ruffinelli et al., 2020; Ali et al., 2021)
and theoretically (Kamigaito and Hayashi, 2021,
2022a,b; Feng et al., 2024) investigated in detail,
and thus, these are solid whereas the pre-trained-
based KGC models can outperform them (Wang
et al., 2022). On the other hand, Sakai et al. (2023)
point out the leakage problem of the pre-trained-
based KGC models and the actual performance of
them is uncertain. Retrieval-Augmented Gener-
ation (RAG) (Lewis et al., 2020) can be another
solution if LVLMs can accept lengthy input (Zong
et al., 2024).

Ethical Considerations

In our study, we meticulously curated our dataset
derived from English Wikipedia. During the data
creation phase, we individually inspected each ex-
tracted image, carefully removing those clearly
unsuitable for public disclosure, ensuring no in-
appropriate images were included. Additionally,
while English Wikipedia’s editors actively elimi-
nate unnecessarily offensive content to compile an
encyclopedia, as outlined on their official pages
regarding offensive material5, bias in sources, and
the use of biased or opinionated sources6 7, it is
acknowledged that English Wikipedia allows the
inclusion of biased information sources. Conse-
quently, our dataset might also reflect the inherent
biases present in the original English Wikipedia
content. Note that in this work, we used an AI
assistant tool, ChatGPT, for coding support.
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A Supplemental Results

A.1 Detailed Evaluation of LVLMs in ’Seen’
Data Settings

Table 8 presents the results of Language-Vision
Learning Models (LVLMs) including ’seen’ set-
tings, with bold type highlighting the highest score
for each metric within each group. In this study,
we assessed the generalizability of data and the pre-
cision of models fine-tuned on ’seen’ and ’unseen’
data during their training phase to ascertain if the
fine-tuning process enhanced the models’ accuracy
for images encountered during training. Despite
the images being part of the training dataset, with
sections meticulously segregated to prevent data
leakage, our validation revealed no significant dif-
ferences in accuracy between ’seen’ and ’unseen’
settings. This finding confirms the general applica-
bility of the data and suggests that simply viewing
images, without integrating them with relevant con-
textual knowledge, does not inherently contribute
to accuracy improvement. This highlights the im-
portance of a holistic learning approach where im-
ages are paired with pertinent information to truly
boost the performance of the models.

Furthermore it is generally impractical to create
datasets that combine images corresponding to the
vast amounts of text data seen during the training of
LLMs and to acquire these through additional inte-
grated learning. Additionally, during the integrated
learning process from LLM to LVLM, the focus
is on learning pairs of individual images and their
descriptions. To develop the ability to individu-
ally recognize knowledge objects and explain them
based on that recognition, as well as to understand
the relationships between objects and generate com-
prehensive explanations, it is considered necessary
to use enhancement methods such as RAG and new
integrated learning techniques for LVLMs.

A.2 Extended Analysis of Additional LVLMs

In our research, we expanded our experimental
investigation beyond the models outlined in the pri-
mary section to include Blip2 (Li et al., 2023b),
mPLUG_Owl (Ye et al., 2023a), LLaVA-NeXT
(Mistral) (Liu et al., 2024), LLaVA-1.5 (Liu et al.,
2023a,b), InstructBlip (Dai et al., 2023), and Yi-6B
(01.AI, 2023), integrating image and language in
a manner similar to the initially described models.
Utilizing the same experimental framework as the
initial tests, we conducted an thorough assessment.
The results, as outlined in Table 9, revealed that

these additional models did not exceed the accu-
racy levels of those featured in the main analysis
(refer to Section 5). Additionally, a comparative ex-
amination of configurations with and without titles
showed a uniform decline in efficacy, emphasizing
the difficulty of deriving knowledge and translating
it into explanatory text generation based purely on
image data.

A.3 Detailed Performance Metrics for Base
LLMs with Title Context

Table 10 presents the results of an evaluation involv-
ing the base LLM models of the Language-Vision
Learning Models (LVLMs) discussed in Tables 3
and 9. This evaluation additionally included tests
on base models such as FLAN-T5-XL(Chung et al.,
2022), FLAN-T5-XXL, OPT(Zhang et al., 2022a),
LLaMA(Touvron et al., 2023) Mistral(Jiang et al.,
2023), and Yi-6B, which were not featured in the
main analysis. Since Language Models (LMs) are
incapable of processing image information, the
evaluation was confined to the ’With Title’ set-
ting that incorporates textual information. Within
this context, GPT-4 showcased superior perfor-
mance across all tested configurations, with Mis-
tral, Vicuna-13B, and LlaMA2 also demonstrating
strong results.

Consistent with the data presented in Table 3,
the base model for LLaVA-NeXT (Yi-34B) yielded
output sequences with excessively token lengths
compared to its counterparts, mirroring the behav-
ior of its LVLM version. This tendency for produc-
ing longer output is illustrated when compared with
other models (as depicted in Figure 3 ). Further-
more, when examining the accuracy of the LVLMs
tested in Table 9 alongside the base models in re-
lation to our task proposal, there is a discernible
decline in precision across nearly all models. Qwen
is the exception, which highlights the nuanced chal-
lenges in effectively merging image and textual
data. This complexity stands as a pivotal challenge
for the evolution of sophisticated LVLMs.

B Title generation

In our task, the titles of artworks are a crucial el-
ement of knowledge related to the artworks. To
maintain the integrity of the analysis between the
settings with and without titles setting, we in-
tentionally omitted titles from entity recognition.
However, we recognized the need to understand
the performance of models in generating titles of
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artworks based solely on visual information. There-
fore, We conducted an additional experiment in
which we presented the models with the prompt
"Please answer the title of this artwork" along
with 963 images from the "Unseen" test set and
evaluated the accuracy of title generation under two
settings: Exact and Partial. Tables 11, 12 and 13
display the accuracy results of the main models and
those from additional experiments, respectively.

The results showed that GPT-4-Vision achieved
the highest performance with an exact match
setting at 8.97%, followed by Qwen-VL-Chat
(FT) and Qwen-VL-Chat with good performances.
Other models scored 2% or less, highlighting the
difficulty of generating titles. Additionally, none
of the LLaVA-NeXT models were able to correctly
generate a single title.

Furthermore, Table 14 shows the actual artwork
titles generated by the top five models with the best
accuracy in the exact match setting. The "Rank" in
the table is used to distribute the dataset evenly at
the time of its creation (refer to Section 3), between
famous and less famous paintings, to prevent bias.
From the table, we can infer that a higher propor-
tion of famous artworks with higher ranks were
generated, indicating that the models have a better
grasp of more famous artworks.

C Evaluation Metrics Formulation

This section elaborates on the evaluation met-
rics proposed in Section 3.2 using mathemati-
cal expressions. An explanation consisting of
n sentences generated by the model is denoted
as G = {g1, · · · , gn}, and a reference expla-
nation consisting of m sentences is denoted as
R = {r1, · · · , rm}. The function Entity(·) is de-
fined to extract entities contained in the input text.
The notation |G| represents the total number of
tokens in the generated explanation, and |R| rep-
resents the total number of tokens in the reference
explanation.

Entity Coverage (EC) is calculated as follows:

EC(G,R) = Cov(G,R) (1)

Here, Cov(G,R) is a function returning the pro-
portion of entities in R that are covered by G. For
partial matches, the Lowest Common Subsequence
(LCS) is employed to calculate the longest match-
ing length ratio in the generated explanation rela-
tive to the length of the reference entity.

Entity F1 (EF1) is computed as follows:

EF1 =
2× P ×R

P +R
(2)

P =

∑
ei∈Entity(G) Countclip(ei, G,R)
∑

ej∈Entity(G)#(ej , G)
(3)

R =

∑
ei∈Entity(R) Countclip(ei, G,R)
∑

ej∈Entity(R)#(ej , R)
, (4)

where #(ej , G), #(ej , R) are functions that count
the occurrences of entity ej in G and R respectively,
and Countclip(ei, G,R) returns the lesser frequency
of occurrence of ei in either G or R.

Entity Cooccurrence (ECooc) is calculated us-
ing BP from equation (6) as follows:

ECooc(G,R)

=BP (G,R)× Cov(Co(G), Co(R)), (5)

where BP (G,R) is given by:

BP (G,R) = exp(max(0.0,
|G|
|R| − 1)) (6)

and function Co(·) returns pairs of co-occurring
entities within a context window comprising a sen-
tence and its adjacent n sentences. Sentence seg-
mentation was performed using the nltk sentence
splitter for this purpose.8

D Details of experimental setting

D.1 LVLM details

Model Base Model HuggingFace Name/OpenAI API

BLIP2 (OPT) OPT Salesforce/blip2-opt-6.7b
BLIP2 (FLAN-T5-XL) FLAN-T5-XL Salesforce/blip2-flan-t5-xl
BLIP2 (FLAN-T5-XXL) FLAN-T5-XXL Salesforce/blip2-flan-t5-xxl
InstructBLIP (FLAN-T5-XL) FLAN-T5-XL Salesforce/instructblip-flan-t5-xl
InstructBLIP (FLAN-T5-XXL) FLAN-T5-XXL Salesforce/instructblip-flan-t5-xxl
InstructBLIP (Vicuna-7B) Vicuna-7B Salesforce/instructblip-vicuna-7b
InstructBLIP (Vicuna-13B) Vicuna-13B Salesforce/instructblip-vicuna-13b
Yi-VL-6B Yi-6B-Chat 01-ai/Yi-VL-6B
mPLUG-Owl LLaMA MAGAer13/mplug-owl-llama-7b
mPLUG-Owl2 LLaMA2-7B MAGAer13/mplug-owl2-llama2-7b
LLaVA-1.5 Vicuna-13B liuhaotian/llava-v1.5-13b
LLaVA-NeXT (Vicuna-7B) Vicuna-7B liuhaotian/llava-v1.6-vicuna-7b
LLaVA-NeXT (Vicuna-13B) Vicuna-13B liuhaotian/llava-v1.6-vicuna-13b
LLaVA-Next (Mistral) Mistral liuhaotian/llava-v1.6-mistral-7b
LLaVA-NeXT (Yi-34B) Yi-34B liuhaotian/llava-v1.6-34b
Qwen-VL-Chat Qwen Qwen/Qwen-VL-Chat
GPT-4-Vision - gpt-4-1106-vision-preview

8Sentence segmentation was performed using the NLTK
sentence splitter.
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D.2 LLM details

Model HuggingFace Name

FLAN-T5-XL google/flan-t5-xl
FLAN-T5-XXL google/flan-t5-xxl
OPT facebook/opt-6.7b
LLaMA openlm-research/open_llama_7b
LLaMA2 meta-llama/Llama-2-7b
Mistral mistralai/Mistral-7B-Instruct-v0.2
Vicuna-7B lmsys/vicuna-7b-v1.5
Vicuna-13B lmsys/vicuna-13b-v1.5
Qwen-Chat Qwen/Qwen-7B-Chat
Yi-6B 01-ai/Yi-6B
Yi-34B 01-ai/Yi-34B
GPT-4 gpt-4-1106-preview

D.3 Fine tunning and Inference setting

Hyper Parameter Value

torch_dtype bfloat16
seed 42
max length 2048
warmup ratio 0.01
learning rate 1e-5
batch size 4
epoch 1
lora r 64
lora alpha 16
lora dropout 0.05
lora target modules c_attn, attn.c_proj, w1, w2

Table 6: The hyper-parameters used in the experiment,
and others, were set to default settings. The imple-
mentation used Transformers (Wolf et al., 2020) and
bitsandbytes (Dettmers et al., 2022b).

In this study, to ensure a fair comparison of
performance across multiple models, all experi-
ments were conducted on a single NVIDIA RTX
6000 Ada GPU, with 8-bit quantization utilized
for model generation. However, due to resource
constraints, LLaVA-NeXT (Yi-34B-Chat) model
was loaded and inferred in 4-bit mode. To stan-
dardize the length of tokens generated across all
models, the maximum token length was set to 1024.
The same settings were applied to each model for
performance comparison purposes.

D.4 Training Datasets

Table 16 lists the datasets employed to train the
models addressed in this study.

E Details of our created dataset

E.1 Dataset section distribution
Table 7 provides a comprehensive breakdown of
various types of sections within the dataset, along
with their frequency counts. In designing the test
set for the "seen" setting, we meticulously consid-
ered the distribution of these sections. Through an
analysis of the frequency of each section type, we
managed to evenly split the data. This strategic
approach ensured that the test set was constructed
with a balanced representation of each section type,
aiming for a more equitable and thorough evalua-
tion process. Due to this methodology, the division
of the test set into "seen" and "unseen" portions was
based on the distribution of section types, rather
than the number of images. Consequently, the num-
ber of images in the "seen" and "unseen" parts of
the test set may not be equal (refer to Table 2). This
was a deliberate choice to prioritize a balanced rep-
resentation of section types over an equal count of
images, enhancing the relevance and fairness of the
evaluation process.

E.2 Omitted sections
The following sections have been omitted from this
document:

• References

• See also

• External links

• Sources

• Further reading

• Bibliography

• Gallery

• Footnotes

• Notes

• References Sources

• Bibliography (In Spanish)

• Bibliography (In Italian)

• Bibliography (In German)

• Bibliography (In French)

• Images

• Links

• List

• Notes and references

• List by location
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These sections were deemed unsuitable for the
task of generating descriptions of artwork in this
study and were therefore removed.

E.3 Train Templates
As shown in Table 15, to ensure diversity in train-
ing, we utilized seven templates to construct the
instruction-based training set. We initially created
49 templates by combining seven base sentences
with seven verbs such as explore, explain, and dis-
cuss. During experimental evaluations, the models
were tested with these 49 templates. We adopted
the top seven templates that resulted in the highest
accuracy and best adherence to instructions by the
models.

E.4 Train Dataset Example
As shown in Figure 5 and 6, we adopted the format
for fine-tuning Qwen (Bai et al., 2023a) and modi-
fied the template presented in E.3 into the form of
figures. This format was used for model training
and dataset publication.

E.5 Entity Distribution
Figures 7 and 8 present the entity distribution
within our datasets. The minimal difference in
data distribution between seen and unseen cases
suggests that the partitioning method described in
Step 3 of Section 4 is effective.

F License

In our study we created a dataset from Wikipedia
articles of artworks. The each image is available
under the Creative Commons License (CC) or other
licenses. Specific license information for each im-
age can be found on the Wikipedia page or the
image description page for that image. The images
in this study are used under the terms of these li-
censes, and links to the images are provided in the
datasets we publish so that users can download the
images directly. The images themselves are not
directly published. Therefore, our data does not
infringe upon the licenses.

Type Frequency

Abstract 9632
Description 2747
History 1869
Background 666
Provenance 517
Reception 346
Description History 341
Analysis 337
Painting 218
Artist 189
Historical Information 187
Composition 168
Subject 138
Legacy 127
Exhibitions 115
Interpretation 110
Condition 97
In Popular Culture 94
Information 84
Design 83
Style 78
Influence 68
Creation 65
Description Style 63
Related Works 63
Acquisition 60
Context 59
Versions 51
Other Versions 51
Literature 50
Symbolism 50
The Painting 50
Attribution 50
Details 46
Notes References 45
Exhibition History 41
Location 40
Interpretations 40
Critical Reception 39
Historical Context 39
Iconography 38
Subject Matter 37
Influences 37
Exhibition 37
Commission 36
Overview 34
Analysis Description 34
Citations 33
Painting Materials 32
Controversy 32
Restoration 32

Table 7: Frequency count of data types in the dataset.
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LVLM Setting Size BLUE ROUGE BertScore Entity Cov. Entity F1 Entity Cooccurrence Avg. Length
1 2 L exact partial n=0 n=1 n=2 n=∞

With Title (Language information + Visual information)

mPLUG-Owl2 Unseen 7B 1.16 26.8 5.9 17.1 83.3 13.3 21.1 15.6 1.61 1.38 1.35 1.29 100
LLaVA-NeXT (Vicuna-7B) Unseen 7B 0.81 16.5 3.7 11.0 80.8 9.0 14.1 10.6 0.83 0.74 0.73 0.69 119
LLaVA-NeXT (Vicuna-13B) Unseen 13B 1.18 17.0 4.1 10.8 80.5 11.5 16.4 13.1 1.12 1.04 1.02 0.99 133
LLaVA-NeXT (Yi-34B) Unseen 34B 0.72 13.9 3.3 9.5 80.2 18.5 27.8 16.1 0.26 0.22 0.21 0.19 869
Qwen-VL-Chat Unseen 7B 1.64 28.2 6.8 17.4 83.5 17.8 26.3 20.8 1.90 1.66 1.63 1.57 155
Qwen-VL-Chat (FT) Unseen 7B 3.96 27.2 10.8 21.4 84.2 19.7 27.2 22.0 4.86 4.35 4.23 4.13 153
GPT-4-Vision Unseen - 2.40 28.6 7.6 16.3 83.3 28.4 37.1 31.6 3.02 3.00 2.98 3.05 264

mPLUG-Owl2 Seen 7B 1.14 26.6 5.9 17.0 83.3 12.5 20.3 15.1 1.54 1.29 1.24 1.17 94
LLaVA-NeXT (Vicuna-7B) Seen 7B 0.78 16.5 3.5 10.6 80.7 7.9 13.0 9.4 0.74 0.66 0.63 0.59 114
LLaVA-NeXT (Vicuna-13B) Seen 13B 1.14 17.0 4.0 10.8 80.5 10.3 15.5 12.4 1.32 1.08 1.01 0.96 127
LLaVA-NeXT (Yi-34B) Seen 34B 0.73 13.7 3.2 9.4 80.1 17.4 26.7 15.4 0.26 0.24 0.22 0.21 872
Qwen-VL-Chat Seen 7B 1.69 27.9 6.7 17.3 83.4 16.2 24.5 19.8 1.87 1.57 1.54 1.47 153
Qwen-VL-Chat (FT) Seen 7B 4.13 27.6 11.4 21.8 84.5 19.8 27.4 23.5 5.47 4.43 4.30 4.19 133
GPT-4-Vision Seen - 2.32 28.3 7.4 16.2 83.2 26.4 34.9 29.7 2.82 2.71 2.67 2.63 254

Without Title (Visual information)

mPLUG-Owl2 Unseen 7B 0.21 23.3 3.58 15.0 82.3 4.0 10.5 4.3 0.26 0.29 0.26 0.24 91
LLaVA-NeXT (Vicuna-7B) Unseen 7B 0.13 16.0 2.21 10.6 80.1 1.8 6.3 1.8 0.07 0.10 0.10 0.11 125
LLaVA-NeXT (Vicuna-13B) Unseen 13B 0.17 16.6 2.35 11.0 80.8 2.1 7.1 2.2 0.07 0.08 0.08 0.07 164
LLaVA-NeXT (Yi-34B) Unseen 34B 0.15 11.5 1.88 8.1 78.7 3.5 10.5 2.8 0.03 0.03 0.02 0.02 903
Qwen-VL-Chat Unseen 7B 0.47 24.8 4.50 15.4 82.5 7.5 14.6 8.4 0.56 0.60 0.58 0.55 128
Qwen-VL-Chat (FT) Unseen 7B 2.07 24.5 7.79 18.6 83.4 12.9 19.6 14.7 2.25 2.03 2.00 1.96 153
GPT-4-Vision Unseen - 0.10 23.1 4.43 13.2 81.9 11.6 19.0 12.3 1.18 1.35 1.37 1.34 223

mPLUG-Owl2 Seen 7B 0.14 22.6 3.37 14.6 82.2 2.9 9.2 3.2 0.19 0.14 0.13 0.12 86
LLaVA-NeXT (Vicuna-7B) Seen 7B 0.11 15.4 1.95 10.2 80.0 1.0 5.6 1.2 0.05 0.04 0.06 0.06 123
LLaVA-NeXT (Vicuna-13B) Seen 13B 0.11 16.0 2.10 10.7 80.7 1.2 6.0 1.4 0.03 0.03 0.03 0.03 154
LLaVA-NeXT (Yi-34B) Seen 34B 0.10 11.1 1.71 7.9 78.6 2.1 9.2 1.9 0.01 0.01 0.01 0.01 909
Qwen-VL-Chat Seen 7B 0.40 24.4 4.32 15.2 82.5 5.6 12.7 6.9 0.40 0.41 0.37 0.35 124
Qwen-VL-Chat (FT) Seen 7B 2.09 24.9 8.00 18.9 83.8 12.4 19.4 15.0 2.19 1.85 1.82 1.78 127
GPT-4-Vision Seen - 0.74 22.4 4.14 12.8 81.8 9.3 16.7 10.5 0.91 0.91 0.86 0.84 212

Table 8: Results of LVLMs including ’seen’ settings. Notations are the same as Table 3.
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LVLM Setting Size BLUE ROUGE BertScore Entity Cov. Entity F1 Entity Cooccurrence Avg. Length
1 2 L exact partial n=0 n=1 n=2 n=∞

With Title (Language information + Visual information)

BLIP2 (OPT) Unseen 6.7B 0.00 0.1 0.0 0.1 76.4 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.01
BLIP2 (FLAN-T5-XL) Unseen 3B 0.00 9.7 2.8 8.3 80.6 5.2 8.5 1.4 0.05 0.03 0.03 0.03 20
BLIP2 (FLAN-T5-XXL) Unseen 11B 0.01 2.8 0.5 2.6 76.5 0.7 2.4 0.5 0.01 0.00 0.00 0.00 21
mPLUG-Owl Unseen 7B 0.17 15.0 2.4 10.1 81.8 4.3 8.6 4.7 0.35 0.38 0.40 0.37 12
LLaVA-1.5 Unseen 13B 1.61 20.8 5.2 13.2 81.5 13.4 19.4 15.8 1.56 1.34 1.33 1.26 139
LLaVA-NeXT (Mistral) Unseen 7B 1.32 24.1 5.7 15.9 82.4 12.3 19.6 14.9 1.44 1.18 1.15 1.06 140
InstructBLIP (FLAN-T5-XL) Unseen 3B 0.70 16.9 5.2 13.0 83.2 8.5 13.8 6.6 0.80 0.62 0.59 0.56 28
InstructBLIP (FLAN-T5-XXL) Unseen 11B 1.00 16.4 4.6 12.0 81.7 8.6 13.8 9.3 1.00 0.75 0.73 0.71 54
InstructBLIP (Vicuna-7B) Unseen 7B 1.44 23.5 6.2 15.7 83.3 12.6 19.2 14.2 1.79 1.50 1.44 1.38 58
InstructBLIP (Vicuna-13B) Unseen 13B 1.11 25.9 6.2 17.2 83.6 11.8 18.8 13.7 1.42 1.19 1.16 1.09 50
Yi-VL-6B Unseen 6B 1.07 26.2 5.7 16.6 82.9 12.9 20.8 15.1 1.37 1.24 1.27 1.21 147
Qwen-VL-Chat Unseen 7B 1.64 28.2 6.8 17.4 83.5 17.8 26.3 20.8 1.90 1.66 1.63 1.57 155
Qwen-VL-Chat (FT) Unseen 7B 3.96 27.2 10.8 21.4 84.2 19.7 27.2 22.0 4.86 4.35 4.23 4.13 153
GPT-4-Vision Unseen - 2.40 28.6 7.6 16.3 83.3 28.4 37.1 31.6 3.02 3.00 2.98 3.05 264

BLIP2 (OPT) Seen 6.7B 0.00 2.0 0.0 1.2 77.5 0.0 1.8 0.0 0.00 0.00 0.00 0.00 0.01
BLIP2 (FLAN-T5-XL) Seen 3B 0.01 9.9 3.0 8.5 80.7 5.2 8.3 1.7 0.07 0.03 0.03 0.03 17
BLIP2 (FLAN-T5-XXL) Seen 11B 0.01 2.9 0.5 2.7 76.5 0.9 2.6 0.6 0.04 0.03 0.03 0.03 21
mPLUG-Owl Seen 7B 0.14 15.4 2.4 10.3 81.9 4.5 9.3 4.8 0.37 0.29 0.28 0.26 13
LLaVA-1.5 Seen 13B 1.69 20.7 5.3 13.1 81.5 12.5 18.4 15.0 1.85 1.37 1.34 1.30 128
LLaVA-NeXT (Mistral) Seen 7B 1.41 24.1 5.6 16.0 82.3 11.6 19.1 14.4 1.49 1.16 1.06 1.01 145
InstructBLIP (FLAN-T5-XL) Seen 3B 0.78 16.9 5.2 13.0 83.2 8.5 14.0 7.1 0.92 0.69 0.66 0.63 29
InstructBLIP (FLAN-T5-XXL) Seen 11B 0.10 16.6 4.7 12.2 81.8 8.7 14.1 9.3 1.11 0.90 0.87 0.84 54
InstructBLIP (Vicuna-7B) Seen 7B 1.53 23.9 6.3 15.8 83.3 12.4 19.5 14.3 1.77 1.47 1.42 1.37 62
InstructBLIP (Vicuna-13B) Seen 13B 1.11 25.5 6.1 16.9 83.5 10.2 17.3 12.5 1.26 1.08 1.01 0.97 51
Yi-VL-6B Seen 6B 1.00 25.8 5.5 16.3 82.7 11.5 19.9 13.6 1.00 0.80 0.78 0.75 149
Qwen-VL-Chat Seen 7B 1.69 27.9 6.7 17.3 83.4 16.2 24.5 19.8 1.87 1.57 1.54 1.47 153
Qwen-VL-Chat (FT) Seen 7B 4.13 27.6 11.4 21.8 84.5 19.8 27.4 23.5 5.47 4.43 4.30 4.19 133
GPT-4-Vision Seen - 2.32 28.3 7.4 16.2 83.2 26.4 34.9 29.7 2.82 2.71 2.67 2.63 254

Without Title (Visual information)

BLIP2 (OPT) Unseen 6.7B 0.00 4.1 0.00 4.1 79.8 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.01
BLIP2 (FLAN-T5-XL) Unseen 3B 0.01 8.9 1.47 7.5 81.2 2.1 5.0 1.1 0.01 0.00 0.00 0.00 15
BLIP2 (FLAN-T5-XXL) Unseen 11B 0.00 2.5 0.16 2.4 75.8 0.6 1.7 0.2 0.00 0.00 0.00 0.00 18
mPLUG-Owl Unseen 7B 0.14 18.1 2.59 11.9 82.1 2.2 7.2 2.4 0.13 0.10 0.08 0.08 21
LLaVA-1.5 Unseen 13B 0.21 17.8 2.70 11.7 81.4 2.7 7.9 2.6 0.11 0.15 0.15 0.15 158
LLaVA-NeXT (Mistral) Unseen 7B 0.16 21.1 2.77 14.1 81.3 2.3 8.0 2.3 0.08 0.11 0.12 0.12 132
InstructBLIP (FLAN-T5-XL) Unseen 3B 0.08 13.0 2.17 10.0 82.4 2.7 6.6 2.3 0.13 0.07 0.08 0.07 28
InstructBLIP (FLAN-T5-XXL) Unseen 11B 0.16 12.5 2.11 9.3 81.1 3.0 6.9 2.7 0.16 0.13 0.11 0.11 41
InstructBLIP (Vicuna-7B) Unseen 7B 0.49 22.9 4.47 15.2 82.9 6.4 12.9 7.1 0.55 0.58 0.56 0.49 83
InstructBLIP (Vicuna-13B) Unseen 13B 0.39 23.5 4.31 15.8 82.8 4.8 11.5 5.2 0.37 0.33 0.31 0.28 85
Yi-VL-6B Unseen 6B 0.37 23.4 4.08 15.1 82.0 5.4 12.2 5.7 0.35 0.36 0.35 0.34 158
Qwen-VL-Chat Unseen 7B 0.47 24.8 4.50 15.4 82.5 7.5 14.6 8.4 0.56 0.60 0.58 0.55 128
Qwen-VL-Chat (FT) Unseen 7B 2.07 24.5 7.79 18.6 83.4 12.9 19.6 14.7 2.25 2.03 2.00 1.96 153
GPT-4-Vision Unseen - 0.10 23.1 4.43 13.2 81.9 11.6 19.0 12.3 1.18 1.35 1.37 1.34 223

BLIP2 (OPT) Seen 6.7B 0.00 2.3 0.00 2.3 78.4 0.0 2.1 0.0 0.00 0.00 0.00 0.00 0.03
BLIP2 (FLAN-T5-XL) Seen 3B 0.00 9.0 1.50 7.6 81.4 1.7 4.5 1.0 0.01 0.01 0.01 0.01 13
BLIP2 (FLAN-T5-XXL) Seen 11B 0.00 2.6 0.16 2.5 75.7 0.4 1.6 0.2 0.00 0.00 0.00 0.00 18
mPLUG-Owl Seen 7B 0.08 18.4 2.64 12.1 82.1 1.9 6.9 2.5 0.08 0.05 0.04 0.04 23
LLaVA-1.5 Seen 13B 0.13 17.7 2.55 11.6 81.3 1.3 6.4 1.4 0.07 0.05 0.05 0.04 154
LLaVA-NeXT (Mistral) Seen 7B 0.08 20.7 2.50 13.9 81.3 1.3 7.0 1.4 0.04 0.04 0.04 0.03 125
InstructBLIP (FLAN-T5-XL) Seen 3B 0.05 12.5 1.99 9.6 82.4 1.9 5.9 1.9 0.04 0.06 0.06 0.06 26
InstructBLIP (FLAN-T5-XXL) Seen 11B 0.10 12.3 1.95 9.1 81.1 2.3 6.3 2.2 0.08 0.08 0.07 0.07 37
InstructBLIP (Vicuna-7B) Seen 7B 0.43 22.7 4.31 15.1 83.0 4.9 11.4 5.8 0.36 0.30 0.29 0.27 82
InstructBLIP (Vicuna-13B) Seen 13B 0.37 23.3 4.27 15.7 82.7 3.3 10.0 4.0 0.17 0.16 0.16 0.15 85
Yi-VL-6B Seen 6B 0.33 23.0 3.86 14.8 81.9 4.1 11.2 4.7 0.19 0.16 0.15 0.14 162
Qwen-VL-Chat Seen 7B 0.40 24.4 4.32 15.2 82.5 5.6 12.7 6.9 0.40 0.41 0.37 0.35 124
Qwen-VL-Chat (FT) Seen 7B 2.09 24.9 8.00 18.9 83.8 12.4 19.4 15.0 2.19 1.85 1.82 1.78 127
GPT-4-Vision Seen - 0.74 22.4 4.14 12.8 81.8 9.3 16.7 10.5 0.91 0.91 0.86 0.84 212

Table 9: Comprehensive Results of Secondary (LVLMs). This includes models not highlighted in the main findings,
with the gray lines representing the three models that achieved the best performance in the main evaluation. Bold
type signifies the highest scores for each metric within their respective groups.
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Figure 3: Average token lengths for 18 evaluated LVLMs on an unseen set, where yellow represents the ’With Title’
setting, blue indicates the ’Without Title’ setting, and red signifies the average token length for the base language
model of the LVLM with titles. The length of the unseen reference sentence is 174 tokens.

Figure 4: Average token lengths for Qwen’s Few-shot and Fine-tuning settings on an unseen set, where yellow
represents the ’With Title’ setting, blue indicates the ’Without Title’ setting, and red signifies the average token
length for the base language model of the LVLM with titles. The length of the unseen reference sentence is 174
tokens.
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LVLM Setting Size BLUE ROUGE BertScore Entity Cov. Entity F1 Entity Cooccurrence Avg. Length
1 2 L exact partial n=0 n=1 n=2 n=∞
With Title (Language information + Visual information)

FLAN-T5-XL Unseen 3B 0.66 15.4 6.23 13.1 83.6 10.2 15.4 10.6 1.36 0.88 0.84 0.83 20
FLAN-T5-XXL Unseen 11B 0.00 2.0 0.09 1.8 76.2 3.3 2.2 0.3 0.00 0.00 0.00 0.00 63
OPT Unseen 6.7B 0.34 8.3 1.60 7.3 76.8 12.0 18.9 8.4 0.15 0.12 0.12 0.11 872
LlaMA Unseen 7B 0.48 9.4 1.99 8.1 77.7 16.4 23.7 11.3 0.15 0.14 0.13 0.11 876
LlaMA2 Unseen 7B 1.81 24.0 5.92 14.9 82.4 18.5 27.3 20.8 1.04 0.88 0.82 0.81 366
Mistral Unseen 7B 1.82 25.1 6.41 15.2 82.7 21.8 31.2 23.4 1.33 1.30 1.27 1.25 345
Vicuna-7B Unseen 7B 1.14 20.9 4.87 13.1 82.7 12.3 18.6 14.1 1.43 1.33 1.32 1.23 129
Vicuna-13B Unseen 13B 2.35 28.4 7.34 17.7 83.4 19.4 28.1 23.0 2.16 1.99 1.89 1.77 210
Qwen-Chat Unseen 7B 0.60 12.0 2.50 7.4 79.5 7.6 11.8 8.5 0.52 0.43 0.41 0.40 106
Yi-6B-Chat Unseen 6B 0.93 14.0 3.55 10.9 79.3 14.2 21.4 11.9 0.55 0.50 0.48 0.46 717
Yi-34B-Chat Unseen 34B 1.00 13.1 3.50 10.4 79.1 17.9 25.4 12.9 0.93 0.86 0.83 0.81 745
GPT-4 Unseen - 2.20 26.2 7.00 14.9 82.5 31.7 40.2 32.3 2.54 2.50 2.53 2.59 374

FLAN-T5-XL Seen 3B 0.67 15.1 6.30 12.9 83.4 9.0 14.5 9.5 1.34 0.95 0.85 0.81 22
FLAN-T5-XXL Seen 11B 0.01 8.9 1.48 7.5 81.2 2.1 5.0 1.1 0.01 0.00 0.00 0.00 66
OPT Seen 6.7B 0.35 8.3 1.63 7.2 76.8 11.4 18.4 9.0 0.08 0.06 0.05 0.05 877
LlaMA Seen 7B 0.51 9.3 2.01 8.0 77.8 15.7 23.1 11.0 0.17 0.13 0.12 0.10 877
LlaMA2 Seen 7B 1.87 24.3 6.03 15.1 82.5 19.0 28.1 21.4 1.10 0.92 0.85 0.84 357
Mistral Seen 7B 1.91 25.1 6.40 15.2 82.6 20.3 29.5 22.5 1.33 1.11 1.03 0.98 334
Vicuna-7B Seen 7B 0.98 19.6 4.42 12.3 82.6 10.0 15.9 11.8 1.03 0.92 0.86 0.83 111
Vicuna-13B Seen 13B 1.91 25.1 6.37 15.2 82.6 20.3 29.5 22.5 1.33 1.11 1.03 0.98 334
Qwen-Chat Seen 7B 0.62 11.9 2.47 7.3 79.4 7.4 11.7 8.3 0.64 0.52 0.51 0.48 104
Yi-6B-Chat Seen 6B 0.99 14.6 3.74 11.2 79.6 13.9 21.3 12.6 0.64 0.60 0.57 0.55 698
Yi-34B-Chat Seen 34B 1.00 12.9 3.41 10.3 79.0 17.6 24.8 12.7 0.92 0.85 0.81 0.79 750
GPT-4 Seen - 2.20 26.0 6.90 14.8 82.5 29.7 38.3 31.0 2.50 2.30 2.32 2.31 369

Table 10: Comprehensive Performance of Base Language Models with Title Integration. This table showcases the
performance of primary models, both featured and not featured in the main analysis, across ’seen’ and ’unseen’
settings, evaluated using additional metrics such as BLEU, BERTscore, and ROUGE.

mPlug_owl2 LlaVA-NeXT (Vicuna13B) LlaVA-NeXT (Vicuna7B) LLaVA-NeXT (Yi34B) Qwen-VL-Chat Qwen-VL-Chat (FT) GPT-4-Vision

Exact match 1.6% 0.0% 0.0% 0.0% 4.0% 5.7% 8.97%
Partial match 54.2% 39.9% 27.5% 66.3% 53.6% 66.7% 64.0%

Table 11: LVLM Primary Group Analysis of Title Generation Accuracy from Image Information.

Setting BLIP2 (OPT) BLIP2 (FLAN-T5-XL) BLIP2 (FLAN-T5-XXL) mPLUG_Owl LLaVA-1.5 InstructBLIP (FLAN-T5-XL)

Exact match 0.0% 1.04% 1.25% 1.97% 0.0% 0.93%
Partial match 0.10% 49.6% 49.1% 37.0% 40.3% 44.0%

Table 12: LVLM Complementary Group Analysis of Title Generation Accuracy Using Only Image Information
(Part 1).

Setting InstructBLIP (FLAN-T5-XXL) InstructBLIP (Vicuna-7B) Instruct Blip (Vicuna-13B) LLaVA-NeXT (mistral) Yi-VL-6B

Exact match 1.04% 1.14% 1.14% 0.10% 1.36%
Partial match 50.1% 50.5% 58.1% 47.7% 50.6%

Table 13: LVLM Complementary Group Analysis of Title Generation Accuracy Using Only Image Information
(Part 2).
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Title Rank mPLUG-Owl mPLUG-Owl2 Qwen-VL-Chat Qwen-VL-Chat(FT) GPT-4-Vision

Mona Lisa 1 " " " " "

The Great Wave off Kanagawa 2 " " " "

Vitruvian Man 3 " " " " "

Winged Victory of Samothrace 4 " " "

Girl with a Pearl Earring 5 " " " " "

The Wedding at Cana 6 " " " "

The Anatomy Lesson of Dr. Nicolaes Tulp 7 " " "

Apollo Belvedere 9 " " "

Homeless Jesus 11 " " "

Raphael Rooms 12 "

Almond Blossoms 13 " " "

The Death of General Wolfe 14 " " " "

The Persistence of Memory 15 " " " " "

Doni Tondo 19 "

The Turkish Bath 20 " "

Look Mickey 26 " " " " "

The Seven Deadly Sins and the Four Last Things 27 " " " "

The Conspiracy of Claudius Civilis 28 "

La Belle Ferronnière 31 "

The Gross Clinic 32 " "

The Wedding Dance 33 " " "

Sacred and Profane Love 35 "

The Sea of Ice 37 " "

The Geographer 41 " "

Equestrian Portrait of Charles V 45 "

The Monk by the Sea 49 "

My Bed 51 " " "

I Saw the Figure 5 in Gold 55 "

Peace Monument 57 "

Littlefield Fountain 58 " "

Music in the Tuileries 59 "

The Cornfield 60 " "

Lovejoy Columns 62 " " "

The Allegory of Good and Bad Government 64 "

Sibelius Monument 72 " " "

Headington Shark 73 "

The Great Masturbator 75 "

Self-Portrait with Thorn Necklace and Humming-
bird

81 "

Snow Storm: Steam-Boat off a Harbour’s Mouth 83 "

Bathers at Asnières 84 " "

The Bacchanal of the Andrians 91 " "

The Painter’s Studio 95 "

Carnation, Lily, Lily, Rose 97 " "

Lady Writing a Letter with her Maid 99 " "

Two Sisters (On the Terrace) 104 " " "

Lion of Belfort 112 "

Metamorphosis of Narcissus 114 "

Lady Seated at a Virginal 115 "

Puerta de Alcalá 116 " "

The Three Crosses 118 "

Statue of Paddington Bear 119 "

Our English Coasts 139 "

Hahn/Cock 140 "

The Wounded Deer 144 " "

The Disrobing of Christ 148 " "

Lion of Venice 149 " " "

Cross in the Mountains 153 "

Man Writing a Letter 164 " "

Dying Slave 165 "

Nymphs and Satyr 168 "

Tomb of Pope Alexander VII 172 "

Greece on the Ruins of Missolonghi 178 "

The Basket of Apples 186 " "

James Scott Memorial Fountain 189 "

The Death of General Mercer at the Battle of Prince-
ton, January 3, 1777

193 "

Madonna of the Rabbit 200 " "

Pyramid of Skulls 209 "

Ascending and Descending 220 "

The Madonna of Port Lligat 221 " "

Le Pont de l’Europe 231 "

Continued on next page
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Table 14 – continued from previous page

Title Rank mPLUG-Owl mPLUG-Owl2 Qwen-VL-Chat Qwen-VL-Chat(FT) GPT-4-Vision

Bratatat! 240 "

Marie Antoinette with a Rose 247 " " "

The Beguiling of Merlin 256 " "

Blob Tree 258 " " " " "

Morning in a Pine Forest 266 " "

Swann Memorial Fountain 271 "

Equestrian Portrait of Philip IV 272 "

Golden Guitar 274 " " " "

The Blind Girl 275 "

The Lament for Icarus 278 "

Love’s Messenger 289 "

Arrangement in Grey and Black, No. 2: Portrait of
Thomas Carlyle

304 "

The Return of the Herd 320 "

Statue of Henry W. Grady 327 "

Young Ladies of the Village 333 "

Why Born Enslaved! 355 "

Apollo Pavilion 358 "

Looking Into My Dreams, Awilda 371 "

Australian Farmer 378 " " " " "

Bust of Giuseppe Mazzini 379 "

Wind from the Sea 399 " "

Art is a Business 415 " "

Statue of George M. Cohan 417 " "

The Union of Earth and Water 434 "

Frederick the Great Playing the Flute at Sanssouci 440 "

Procession in St. Mark’s Square 441 "

Larry La Trobe 443 "

From this moment despair ends and tactics begin 460 " "

Winter Landscape with Skaters 479 "

Bust of William H. English 489 " "

Statue of Roscoe Conkling 507 "

Still Life and Street 531 "

Statue of William Blackstone 536 "

Statue of Chick Hearn 558 "

Happy Rock 587 " " " " "

The Revells of Christendome 608 "

Bust of Cardinal Richelieu 629 "

Stag Hunt 634 "

The Drover’s Wife 679 "

My Egypt 684 "

The Viaduct at L’Estaque 731 "

The Repast of the Lion 733 "

Puget Sound on the Pacific Coast 761 "

Diana and Cupid 768 " "

Portrait of Cardinal Richelieu 778 "

Statue of Toribio Losoya 873 "

Statue of Valentín Gómez Farías 877 "

Table 14: List of titles that were actually output by the
model with exact settings.
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Type Template

Template 1
Section Focus on {title} and explore the {section}.
Subsection In the context of {title}, explore the {subsection} of the {section}.
Sub subsection Focusing on the {section} of {title}, explore the {subsubsection} about the {subsection}.

Template 2
Section Focus on {title} and explain the {section}.
Subsection In the context of {title}, explain the {subsection} of the {section}.
Sub subsection Focusing on the {section} of {title}, explain the {subsubsection} about the {subsection}.

Template 3
Section Explore the {section} of this artwork, {title}.
Subsection Explore the {subsection} about the {section} of this artwork, {title}.
Sub subsection Explore the {subsubsection} about the {subsection} of the {section} in this artwork, {title}.

Template 4
Section Focus on {title} and discuss the {section}.
Subsection In the context of {title}, discuss the {subsection} of the {section}.
Sub subsection Focusing on the {section} of {title}, discuss the {subsubsection} about the {subsection}.

Template 5
Section How does {title} elucidate its {section}?
Subsection In {title}, how is the {subsection} of the {section} elucidated?
Sub subsection Regarding {title}, how does the {section}’s {subsection} incorporate the {subsubsection}?

Template 6
Section Focus on {title} and analyze the {section}.
Subsection In the context of {title}, analyze the {subsection} of the {section}.
Sub subsection Focusing on the {section} of {title}, analyze the {subsubsection} about the {subsection}.

Template 7
Section In {title}, how is the {section} discussed?
Subsection Describe the characteristics of the {subsection} in {title}’s {section}.
Sub subsection When looking at the {section} of {title}, how do you discuss its {subsection}’s {subsubsection}?

Table 15: Prompt Templates.

1 {
2 "id": "0001_T",
3 "title": "Mona Lisa",
4 "conversations": [
5 {
6 "from": "user",
7 "value": "<img >/ images/Mona Lisa.jpg </img >\ nFocus on Mona Lisa and explore the

history."
8 },
9 {

10 "from": "assistant",
11 "value": "Of Leonardo da V i n c i s works, the Mona Lisa is the only portrait

whose authenticity ...."
12 }
13 ]
14 }

Figure 5: Train set format with title.
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1 {
2 "id": "0001_NT",
3 "conversations": [
4 {
5 "from": "user",
6 "value": "<img >/ images/Mona Lisa.jpg </img >\ nFocus on this artwork and explore

the history."
7 },
8 {
9 "from": "assistant",

10 "value": "Of Leonardo da V i n c i s works, the Mona Lisa is the only portrait
whose authenticity ...."

11 }
12 ]
13 }

Figure 6: Train set format without title.

Avg. entities per record: 8.018913480885312

Max entities in a record: 98

Min entities in a record": 1

Most frequent entities": 4

Freq. of most frequent entities: 498

Median entities: 6.0 

Std. dev. of entities: 6.80

% of records with ≤10 entities: 76.14% 

Figure 7: Entity distribution within each dataset under the ’with title’ setting.
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Avg. entities per record: 7. 75

Max entities in a record: 57

Min entities in a record: 1

Most frequent entities: 4

Freq. of most frequent entities: 580

Median entities: 6

% of records with ≤10 entities: 76.10% 

Std. dev. of entities: 6.79

Figure 8: Entity distribution within each dataset under the ’without title’ setting.

Data Type Data Name mPlug-owl Qwen-VL-Chat LLava-v-1.5 InstructBLIP

Text ShareGPT (Chen et al., 2023) " "

SlimOrca (Mukherjee et al., 2023) "

In-house Data "

Dialogue LLaVA (Liu et al., 2023b) " "

Caption COCO (Lin et al., 2014) " " "

TextCaps (Sidorov et al., 2020) " " "

SBU (Yago et al., 2016) "

Coyo (Byeon et al., 2022) "

DataComp (Samir Yitzhak Gadre, 2023) "

CC12M & 3M (Changpinyo et al., 2021) "

LAION-en (Schuhmann et al., 2022) & zh "

VQA VQAv2 " " " "

GQA (Hudson and Manning, 2019) " " " "

OKVQA (Marino et al., 2019) " " "

OCRVQA (Mishra et al., 2019) " " " "

A-OKVQA (Schwenk et al., 2022) " " "

DVQA (Kafle et al., 2018) "

TextVQA (Singh et al., 2019) " " "

ChartQA (Masry et al., 2022) "

A12D "

Grounding² GRIT (Peng et al., 2023) "

Ref Grounding GRIT "

VisualGenome (Krishna et al., 2017) " "

RefCOCO (Yu et al., 2016) " "

RefCOCO+ (Yu et al., 2016) " "

RefCOCOg " "

OCR SynthDoG-en (Kim et al., 2022) & zh "

Common Crawl pdf & HTML "

Image Captioning Web CapFilt (Li et al., 2022b) "

NoCaps "

Flickr30K (Hambardzumyan et al., 2023) "

Visual Spatial Reasoning IconQA (Lu et al., 2021) "

Visual Dialog Visual Dialog "

Video Question Answering MSVD-QA (Xu et al.) "

MSRVTT-QA "

iVQA (Liu et al., 2018) "

Image Classification VizWiz (Gurari et al., 2018) "

Knowledge-Grounded Image QA ScienceQA (Lu et al., 2022) "
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Data Type Data Name mPLUG-Owl2 Qwen-VL-Chat LLava-v-1.5 InstructBLIP

Table 16: Details of training datasets.

729


