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Abstract

Efficiently modeling historical information is a
critical component in addressing user queries
within a conversational question-answering
(QA) context, as historical context plays a vi-
tal role in clarifying the user’s questions. How-
ever, irrelevant history induces noise in the rea-
soning process, especially for those questions
with a considerable historical context. In our
novel model-agnostic approach, referred to
as CoTaH (Consistency-Trained augmented
History), we augment the historical informa-
tion with synthetic questions and subsequently
employ consistency training to train a model
that utilizes both real and augmented histori-
cal data to implicitly make the reasoning ro-
bust to irrelevant history. To the best of our
knowledge, this is the first instance of research
using synthetic question generation as a form
of data augmentation to model conversational
QA settings. By citing a common modeling
error prevalent in previous research, we intro-
duce a new baseline and compare our model’s
performance against it, demonstrating an im-
provement in results, particularly in later turns
of the conversation, when dealing with ques-
tions that include a large historical context.

1 Introduction

Humans often seek data through an information-
seeking process in which users engage in multiple
interactions with machines to acquire information
about a particular concept. A prominent example
of this phenomenon is the introduction of Chat-
GPT (OpenAI, 2023). Conversational Question-
Answering (CQA) systems address user questions
within the context of information-seeking interac-
tions. In CQA, unlike conventional question an-
swering, questions are interconnected, relying on
previous questions and their corresponding answers
(history) to be fully understood without ambigui-
ties. Qiu et al. (2021) showed that filtering irrele-
vant history can boost the model’s accuracy. How-

ever, it utilizes the gold answers of history instead
of the predicted ones, like many previous methods.
This setting deviates from the real-world scenario,
where models have to rely on their own predic-
tions for previous questions to answer the current
question. Our work aligns with the framework of
addressing irrelevant history. However, unlike Qiu
et al. (2021), our method abstains from utilizing the
gold answers of history. Moreover, unlike Qiu et al.
(2021), which requires an iterative process to select
relevant history, we utilize only one transformer
(Vaswani et al., 2017) during prediction, resulting
in reduced time and memory. We augment the his-
tory of questions in the training set with synthetic
questions. Our underlying idea is to maintain the
model’s consistency in its reasoning, whether utiliz-
ing the original historical data or the augmented ver-
sion. Baselines like BERT-HAE (Qu et al., 2019a),
HAM (Qu et al., 2019b), and GraphFlow (Chen
et al., 2020) leverage the gold answers of history
in their modeling. Siblini et al. (2021) conducted a
re-implementation of BERT-HAE and HAM, and
Li et al. (2022) conducted a re-implementation of
HAM and GraphFlow using predicted history an-
swers, which resulted in a significant performance
decrease. As a result, in this paper, we employ the
base transformer of our method as the baseline, as
its performance surpasses the re-implementation
of the mentioned methods. Our method results in
a 1.8% upgrade in overall F1 score compared to
this baseline, causing a significant improvement
in the scores of questions in the later turns (ques-
tions with large historical context). Furthermore,
our method introduces a substantial improvement
in detecting unanswerable questions compared to
the introduced baseline.

2 Related Works

The task of CQA has been introduced to extend
question answering to a conversational setting.
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CoQA (Reddy et al., 2019) and QuAC (Choi
et al., 2018) have been proposed as two extrac-
tive datasets in the CQA task. BERT-HAE (Qu
et al., 2019a) employs a manually defined embed-
ding layer to annotate tokens from previous an-
swers within the document, and Qu et al. (2019b)
extends this approach by introducing an ordering to
these annotations. GraphFlow (Chen et al., 2020)
utilizes a graph made out of document tokens to
tackle the problem. FlowQA (Huang et al., 2019)
utilizes multiple blocks of Flow and Context In-
tegration to facilitate the transfer of information
between the context, the question, and the history.
ExCorD (Kim et al., 2021) uses consistency regu-
larization (Laine and Aila, 2017; Xie et al., 2020)
to regularize the training by leveraging re-written
questions. Qiu et al. (2021) introduces the idea of
irrelevant history and its effect on degrading per-
formance, proposing a policy network to select the
relevant history before reasoning. However, the
mentioned models employ the gold answers from
history in their modeling. This approach deviates
from real-world scenarios, where systems should
rely on their previous predictions to answer current
questions (Siblini et al., 2021). Siblini et al. (2021)
re-implements BERT-HAE and HAM, and Li et al.
(2022) re-implements HAM, GraphFlow, and Ex-
CorD using the model’s predictions, reporting a
sharp decrease in performance. FlowQA experi-
ences a performance drop from 64.6% to 59.0% on
the development set when gold answers in history
are not used (Huang et al., 2019).

3 Problem Definition

To model a CQA setting, at dialog turn k, a model
receives a question (qk), a document containing
the answer (D), and the history of the question
(Hk), which is represented as a set of tuples, such
as Hk = {(q0, apred0 ), · · · , (qk−1, a

pred
k−1 )}, where

apredj is the model’s prediction for qj . It’s important
to note that the model may utilize only some of this
information. For instance, we only employ history
questions while excluding history answers. The
objective is to predict the answer apredk for qk.

apredk = argmax
ak

P (ak|qk, Hk, D) (1)

4 Methodology

We seek to make the reasoning robust to irrelevant
history implicitly by augmenting the dataset. To

this end, for question qk, we augment its history by
injecting some synthetic questions. Let H?

k be the
augmented history. The intuition is that irrespective
of whether the reasoning is performed with Hk or
H?
k , the result should be the same. In other words:

P (ak|qk, Hk, D) = P (ak|qk, H?
k , D) (2)

To achieve this goal, we establish a two-stage
pipeline. Our pipeline consists of a history aug-
mentation module, whose goal is to augment the
history and a question-answering module, whose
objective is to consistently train a QA network so
that the reasoning is consistent. The overall archi-
tecture of our model is depicted in Figure 1.

4.1 History Augmentation Module

This module includes a conversational question
generator, denoted as CQGθ, where θ represents
the parameter set of the generator, and a question
selector, denoted as QS, which is responsible for
choosing a set of S synthetic questions generated
to augment the history.

Training The first step involves training CQGθ.
While there has been research aimed at generat-
ing conversational questions (Gu et al., 2021; Pan
et al., 2019), for the sake of simplifying the imple-
mentation, we employ a straightforward generative
transformer for this task. To train this network,
we input D, Hk, and ak into the network, intend-
ing to generate qk. We train this network using
cross-entropy loss in an auto-regressive manner.

Question Generation After training CQGθ, we
aim to generate synthetic conversational questions
for the training set. Suppose that we want to gener-
ate synthetic conversational questions for qk. We
iteratively generate synthetic questions between qj
and qj+1 for 1 ≤ j ≤ k − 1. Suppose that aj is
located in the i-th sentence of the document. We ex-
tract noun phrases from sentences i−1, i, and i+1
as potential answers. We make this choice because
we want these answers to be similar to the flow
of conversation, and if these answers are extracted
from local regions, the likelihood increases. Let
one of these answers be called asyn. We feed D,
Hj+1 (all the questions and answers before asyn),
and asyn to CQGθ to obtain the synthetic question
of qsyn. We refer to all generated synthetic ques-
tions and real questions of history as the pool of
questions (Pk) for qk.

631



Figure 1: Architecture of the Model: For a given question qk, the conversational question generator CQGθ
constructs a pool of questions denoted as Pk. Questions in Hk are shown in blue. The synthetic questions are
depicted in red and green: those similar to Hk questions are in red, and the dissimilar ones are in green. The
question selector QS selects M questions with the highest scores, discards red questions, and chooses S = 3
synthetic questions from the green questions according to uniform distribution, along with Hk questions, to create
H?
k . The QA network QAθ′ computes its output using both Hk and H?

k as input. The QA network is trained by
minimizing the cross-entropy loss (LCE) and consistency loss (LCons). qk and Hk are from the QuAC dataset.

Question Filtering & Injection We could set
Pk as H?

k ; however, Pk contains a multitude of
synthetic questions which induces too much noise.
Additionally, in the consistency training setting, the
noise (perturbation) should be small. Thus, we only
select S of synthetic questions from Pk, where S
is a hyperparameter. Not all synthetic questions are
helpful, necessitating the need to filter out degener-
ate ones. We want our selected synthetic questions
to be similar and relevant to the trend of the conver-
sation. To this end, we compute a score for each
synthetic question and only keep the top M syn-
thetic questions with the highest score. To compute
the score, each question (real or synthetic) is en-
coded with LaBSE (Feng et al., 2022). For each
synthetic question qsyn which is located between
history turns qj and qj+1, the score is computed
as Sim(h(qj), h(q

syn))+Sim(h(qj+1), h(q
syn)),

where Sim is the cosine similarity function and
h(x) is the LaBSE’s encoding of the sentence x.
Additionally, sometimes, we generate questions
that are too similar to previous or future questions,
which are invaluable. Thus, we compare the simi-
larity of the generated question qsyn with questions
in {qk}

⋃
Hk and if the similarity is above γ, qsyn

is discarded. This situation is depicted in Figure
1, where Pk contains real history questions, de-
picted in blue, and synthetic questions, depicted

in red and green. Those synthetic questions that
have high similarity with {qk}

⋃
Hk are depicted

in red. As it can be seen, the two questions “Did
she have any children” and “How many children
did they have” have high similarity with the ques-
tion “Did they have children”, and thus, they’re
discarded. In addition, we need to set a distribu-
tion to guide the selection of S number of gen-
erated questions. We conduct experiments using
two distributions: uniform and linear. In the uni-
form setting, the generated questions are selected
with the same probability. For the linear, if qsyn

is located between qj and qj+1, its probability of
being selected (P (qsyn)) is P (qsyn) ∝ j. We opt
for the linear distribution, as we believe that closer
synthetic questions to the original question might
contribute to greater robustness, as questions that
are further away are likely less relevant.

4.2 Question Answering Module

For each question qk, as illustrated in Figure 1, we
feed qk, Hk, and D to the QA network (QAθ′) to
compute the answer distribution. In parallel, we
feed qk, H?

k , and D to the QA network to com-
pute another answer distribution. As mentioned
in Section 4, we need to impose the condition out-
lined in Equation (2). To achieve this, we employ
KL-Divergence between the answer distributions.
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Additionally, we use cross-entropy loss to train the
QA network for answer prediction. The losses are
calculated as per Equation (3), where LCE , LCons,
and LT represent the cross-entropy loss, consis-
tency loss, and total loss. λ is a hyperparameter
used to determine the ratio of the two losses.

LCE = CE(QAθ′(qk, Hk, D), agoldk )

LCons = DKL(QAθ′(qk, Hk, D), (3)

QAθ′(qk, H
?
k , D))

LT = LCE + λLCons

Furthermore, we acknowledge that augmenting the
history for all questions may not be optimal, as ini-
tial questions in a dialog, due to their little historical
context, may not require augmentation for robust
reasoning. In this case augmenting their history
might add unnecessary noise, potentially degrad-
ing performance. Thus, we introduce a threshold
named τ and only augment the history of qk if
k ≥ τ . According to Miyato et al. (2019), we only
pass the gradients through one network. As shown
in the Figure 1, the symbol × is used to denote
gradient cut. It should be noted that our method is
model-agnostic, and any architecture could be used
as the QA network.

5 Setup

We utilize the QuAC dataset (Choi et al., 2018),
to conduct our experiments on, and data splitting
is described in A. We utilize BERT (Devlin et al.,
2019) as our base model to conduct experiments
following the previous research. For question gen-
eration, we adopt Bart-Large (Lewis et al., 2020).
Following Choi et al. (2018), we use F1, HEQ-Q,
and HEQ-D as our evaluation metrics. F1 mea-
sures the overlap between agoldk and apredk . HEQ-Q
and HEQ-D are the ratio of questions and dialogs,
for which the model performs better than human
(Choi et al., 2018). We run multiple experiments to
choose the best set of hyperparameters, resulting
in setting S = 2, λ = 2.0, and τ = 6. In Appendix
C, the process of choosing all hyperparameters and
their analysis is described. For all of our models,
we concatenate the question with history questions,
feeding them to the network. More details on re-
producibility are presented in Appendix E.

6 Results

6.1 Question Generation Results
The results of question generation are evaluated in
Table 1. These scores are obtained from the dev

data. Bleu-1,4 (Papineni et al., 2002), Rouge-L
(Lin, 2004), and BERTScore (Zhang et al., 2020)
are used for criteria. We use the evaluate library1

to implement these metrics. Find more details in
Appendix B.

Table 1: Question generation results on the dev set.

Bleu-1 Bleu-4 Rouge-L BERTScore

33.6 9.5 29.0 90.5

6.2 Baselines Performance

Table 2 shows the results of our experiments in
comparison to other baselines. As stated be-
fore, BERT-HAE, HAM, and GraphFlow lever-
age the gold answers of history. BERT-HAE re-
implementation by Siblini et al. (2021), and those
of HAM and GraphFlow by Li et al. (2022) are
shown in the table as BERT-HAE-Real, HAM-Real,
and GraphFlow-Real, respectively, indicating a sig-
nificant drop in performance. 2 In this scenario,
where common baselines experience a substantial
decrease, we use a basic BERT model with history
concatenation as the baseline, as its performance is
superior. We include the results of the reinforced
history backtracking model (Qiu et al., 2021) in the
table. Since this model’s code is not publicly avail-
able, we have been unable to re-implement it with
the correct settings and perform a meaningful com-
parison. However, it’s worth noting that this model
utilizes unrealistic settings in two stages: once for
history selection and once for question answering,
potentially exacerbating the modeling issues even
further. We have used “Unrealistic Settings” as a
term to indicate that a method uses gold answers
from history in its modeling.

6.3 CoTaH Results Analysis

In Table 2, CoTaH-BERT outperforms BERT
(Baseline) by 1.8% in the F1 score3. According
to Figure 2 in Appendix D, this improvement is
mostly due to an improvement in the performance
of questions with a large amount of history. This

1https://github.com/huggingface/evaluate
2For a fair comparison, the ExCorD (Kim et al., 2021)

model result is not included in this table, as its best-performing
model by Kim et al. (2021) and the re-implementation by Li
et al. (2022) use RoBERTa (Liu et al., 2019).

3It should be noted that our test set for BERT (Baseline)
and CoTaH-BERT is different from previous methods, but it
has been drawn from the same distribution.
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Table 2: Comparison of our methods with other benchmarks on the test set. Hist.: History.

Model Name F1 HEQ-Q HEQ-D Unrealistic Settings

GraphFlow-Real (Li et al., 2022) 49.6 - -
BERT-HAE-Real (Siblini et al., 2021) 53.5 - -

HAM-Real (Li et al., 2022) 57.2 - -
BERT (Baseline) 58.9 52.9 5.3

CoTaH-BERT 60.7 55.3 5.9
BERT-HAE (Qu et al., 2019a) 62.4 57.8 5.1 X

HAM (Qu et al., 2019b) 64.4 60.2 6.1 X
GraphFlow (Chen et al., 2020) 64.9 60.3 5.1 X

Reinforced Hist. Backtracking (Qiu et al., 2021) 66.1 62.2 7.3 X

confirms that our intuition is valid that our method
enhances the base model’s ability to answer ques-
tions with a large historical context. Moreover,
while BERT-HAE outperforms CoTaH-BERT in
terms of F1 score, CoTaH-BERT exhibits supe-
rior performance in HEQ-D. This highlights the
better consistency of our model to maintain its per-
formance throughout the entire dialog, which is
achieved through superiority in answering the ques-
tions in the later turns.

Table 3: Unanswerable accuracy on the test set.

Unanswerable Accuracy

BERT (Baseline) 61.9
CoTaH-BERT 68.6

Avoiding answering unanswerable questions is
an indication of language understanding (Zhu et al.,
2019). Table 3 shows that CoTaH-BERT brings
a considerable improvement in terms of detecting
unanswerable questions.

6.4 Ablation Study

Table 4 demonstrates the effectiveness of using the
threshold (τ ) in enhancing the model capability,
with more details provided in Appendix C. More-
over, the table indicates that question filtering has a
tangible effect on improving performance by filter-
ing out degenerate questions with high similarity.
Lastly, we observe that using a uniform distribution
is more advantageous than a linear one for question
selection. We observe a relatively 1% drop in both
F1 and HEQ-Q scores with the linear distribution,
concluding that our hypothesis has not been true
regarding the greater robustness that the linear dis-
tribution might pose. We suspect that since the

linear distribution picks more synthetic questions
near the original question, it undermines the im-
portance of immediate history, which is potentially
more important than distant history, causing the
consistency loss to act as a misleader instead of a
regularizer in some cases.

Table 4: The effect of threshold, question filtering, and
question selection distribution type on the dev set. QS
Dist.: Question Selection Distribution.

CoTaH-BERT F1 HEQ-Q HEQ-D

w/o Threshold 59.4 54.8 5.1
w/ Threshold 59.9 55.2 5.5

w/o Question Filtering 59.9 55.2 5.5
w/ Question Filtering 60.9 56.3 5.3

w/ Linear QS Dist. 59.9 55.2 5.9
w/ Uniform QS Dist. 60.9 56.3 5.3

7 Conclusions

In this paper, we introduced a novel model-agnostic
method to make the reasoning of conversational
question-answering models robust to irrelevant his-
tory. We coped with this issue by augmenting the
history and training the model with consistency
training. In our experiments, we didn’t follow the
wrong modeling of past research in using the gold
answers of history. We examined our method with
BERT which exhibited a 1.8% performance boost
compared to the baseline model. It was demon-
strated that this improvement is primarily attributed
to the enhancement of the model’s performance
on questions with a substantial historical context,
suggesting that our method has been successful in
making the reasoning robust for these questions.
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8 Limitations

Our model requires a phase of question generation.
For synthetic question generation, the history aug-
mentation module could be slow and the speed is
directly correlated to the number of questions that
one opts to generate. However, question generation
is trained only once and all questions are generated
in a single run, and all other experiments are con-
ducted by only training the QA module. Moreover,
although our model doesn’t need any further com-
putation during evaluation than merely running the
QA network, we need two forward passes during
the training phase, which makes the training of
the QA network a bit more time-consuming than
training the baseline model. We have used only
the QuAC dataset to report our experiments. This
choice was made so that we are able to compare
our results with other research, such as Qu et al.
(2019a), Qu et al. (2019b), Siblini et al. (2021),
and Li et al. (2022), which only use QuAC for their
experiments. Thus, other datasets, such as CoQA
(Reddy et al., 2019), are not tested in our research.
Lastly, our research does not cover experiments
on high-performing large language models, like
ChatGPT. Brown et al. (2020) reports the results
on the QuAC, using GPT-3 (Brown et al., 2020) in
zero-shot, one-shot, and few-shot manners. How-
ever, these results are substantially inferior com-
pared to other fine-tuning-based models that are
mentioned in Table 2. Therefore, further experi-
ments on ChatGPT and other state-of-the-art large
language models are needed to better determine
the placement of CoTaH and previous baselines in
terms of performance.
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A Data Splitting

Since the test set of QuAC is not publicly available,
we divide the development (dev) set into dev/test
sets randomly, such that the number of questions in
dev and test sets is almost equal. The total number
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of dev and test questions is 3678 and 3676, respec-
tively, after splitting. In our splitting, each dialog,
with all of its questions, is either attributed to the
dev set or the test set, in order to prevent test data
leakage. Further, according to Choi et al. (2018),
the original dev set of QuAC contains unique docu-
ments, meaning that a single document will not be
shared among the final dev and test sets, potentially
preventing test data leakage.

B Question Generation Considerations

Gu et al. (2021) reports better results for the ques-
tion generation, yet we didn’t aim to optimize Bart-
Large meticulously as the generated questions have
a good quality for our task. The point is that in
this research, we only utilize questions alone with-
out considering answers. Thus, if the generated
questions have less correlation with answers, it’s
tolerable as they are still relevant questions consid-
ering the overall flow of the conversation. It should
be noted that if a future research wants to incorpo-
rate predicted answers into its modeling, it should
be more cautious about the quality of the ques-
tion generation to ensure that the right synthetic
questions are generated concerning their answers.
Moreover, it should be noted that while it is true
we use gold answers from history in the training
of CQGθ, this does not threaten the realism of our
model. The point is that only the training set of
QuAC is used to train CQGθ, and later, the history
of the training set is augmented for the use of the
QA network. On the other hand, we never augment
the history of the dev and test sets for the use of the
QA network.

C Hyperparameter Selection &
Sensitivity Analysis

Initially, we determine M and γ by assessing some
examples of the training data, setting M = 10 and
γ = 0.8 based on our appraisal. Next, we deter-
mine the values of S, λ, and τ by conducting exper-
iments on the dev set. In Table 5, we evaluate the
effects of the model’s two main hyperparameters, S
and λ, through a grid search with the following val-
ues: S ∈ {1, 2, 3} and λ ∈ {1.0, 1.5, 2.0}. Firstly,
it is evident that the model performs better when
S ∈ {1, 2} compared to when S = 3 overall. This
suggests that S = 3 introduces too much noise,
which could be detrimental to performance. Fur-
thermore, when λ ∈ {1.5, 2.0}, the performance
is better compared to λ = 1.0, indicating that the

introduction of λ is helpful, as simply adding LCE
and LKL (or equally setting λ = 1.0) produces in-
ferior performance. For the remaining experiments,
we set S = 2 and λ = 2.0 as these settings yield
the best F1 and HEQ-Q scores.

Table 5: The effect of S and λ on the dev set.

F1 HEQ-Q HEQ-D

λ = 1.0 58.6 53.5 4.8
S = 1 λ = 1.5 59.1 54.8 5.5

λ = 2.0 59.0 54.2 4.4

λ = 1.0 57.9 52.7 4.0
S = 2 λ = 1.5 58.2 53.5 4.2

λ = 2.0 59.4 54.8 5.1

λ = 1.0 58.3 53.5 5.1
S = 3 λ = 1.5 58.6 53.5 5.0

λ = 2.0 58.8 54.1 4.2

After setting the right amount for S and λ, we
opt to examine whether the introduction of the
threshold (τ ) is effective. Thus, we conduct ex-
periments on three different amounts of this hyper-
parameter. In Table 6, it’s evident that the right
amount of τ has a considerable effect on the perfor-
mance, confirming our intuition about the function-
ality of τ . For all tested values of τ within the set
{5, 6, 7}, performance has increased compared to
the base settings with τ = 0 (or equivalently, using
no threshold). Notably, the maximum performance
improvement is observed when τ = 6.

Table 6: The effect of τ on the dev set

F1 HEQ-Q HEQ-D

τ = 0 59.4 54.8 5.1
τ = 5 59.6 55.2 5.5
τ = 6 59.9 55.2 5.5
τ = 7 59.5 54.9 5.1

D Additional Results

In Figure 2, a comparison between the F1 scores of
questions for each turn in BERT and CoTaH-BERT
on the test set is presented. The score for the k-th
turn represents the average F1 score for all ques-
tions in the k-th turn across all dialogs in the test
set. Questions with a considerable amount of histor-
ical context are answered more effectively with our
method. For 0 ≤ k ≤ 1, the performances of both
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BERT and CoTaH-BERT are nearly equal, which is
sensible as these questions contain little historical
context and thus have little irrelevant history. How-
ever, for most of k > 1 dialog turns, CoTaH-BERT
outperforms BERT or it has on par performance
with BERT. The performance upgrade is especially
evident towards the end of dialogs, where ques-
tions contain significant historical context. This
finding indicates the superiority of CoTaH-BERT
over BERT in establishing greater robustness in
answering these questions, by identifying and ig-
noring the irrelevant history turns.

Figure 2: The F1 score of the test set dialog turns

A case study regarding the performance com-
parison of CoTaH-BERT and BERT for a question
from QuAC dataset (Choi et al., 2018) with a large
history is provided in Appendix F.

E Reproducibility

The seed for all experiments, except the training
of CQGθ, is 1000. All of the experiments to train
the QAθ′ are conducted on a single RTX 3070 Ti
with 8GB memory, on which each experiment takes
approximately 6 hours. CQGθ is trained on a sin-
gle Tesla T4 from Google Colab. For each model,
BERT or CoTaH-BERT, the hyperparameters are
optimized on the dev set, and a final model will be
trained on the train set with the optimized hyper-
parameters. Subsequently, a single result on the
test set will be reported as depicted in Table 2. The
source code can be found on our GitHub page.4

F Case Study

In Figure 3, a document sample with its correspond-
ing dialog in the dev set is depicted. In the figure,

4https://github.com/HamedHematian/SynCQG

the ninth turn question, q9, with its history, H9, are
shown. The answers of BERT and CoTaH-BERT
to q9 are compared, showing that CoTaH-BERT
has been successful in answering this question with
a full F1 score, while BERT has been unsuccessful.
q9 asks about the release date of the album stated
in q2. This is a suitable sample for our context,
as there are significant irrelevant history turns be-
tween q9 and q2. We observe that CoTaH-BERT
has been successful in identifying the relevant his-
tory by answering the question correctly. However,
the BERT model has mistakenly reported another
date, which is wrong. As BERT has returned a span
containing the word “mixing”, it’s possible that
BERT has incorrectly identified the previous turn
question, q8, as relevant and has returned a span
by text matching encompassing the word “mixing”,
and containing merely some random dates.
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Figure 3: A comparison between BERT and CoTaH-BERT extracted answers to a question, showing that CoTaH-
BERT has been able to successfully ignore the irrelevant history by extracting the correct answer. However, the
BERT model has been confused and returned a wrong answer. The dialog and the document are presented from
the QuAC dataset (Choi et al., 2018).
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