
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 583–593
August 11-16, 2024 ©2024 Association for Computational Linguistics

Time Sensitive Knowledge Editing through Efficient Finetuning

Xiou Ge1, Ali Mousavi1, Edouard Grave2∗, Armand Joulin3∗,
Kun Qian4∗, Benjamin Han1, Mostafa Arefiyan1, Yunyao Li4∗

1Apple, 2Kyutai, 3Google Deepmind, 4Adobe

Abstract

Large Language Models (LLMs) have demon-
strated impressive capability in different tasks
and are bringing transformative changes to
many domains. However, keeping the knowl-
edge in LLMs up-to-date remains a challenge
once pretraining is complete. It is thus essential
to design effective methods to both update ob-
solete knowledge and induce new knowledge
into LLMs. Existing locate-and-edit knowl-
edge editing (KE) method suffers from two
limitations. First, the post-edit LLMs by such
methods generally have poor capability in an-
swering complex queries that require multi-hop
reasoning (Zhong et al., 2023). Second, the
long run-time of such locate-and-edit methods
to perform knowledge edits make it infeasible
for large scale KE in practice. In this paper,
we explore Parameter-Efficient Fine-Tuning
(PEFT) techniques as an alternative for KE.
We curate a more comprehensive temporal KE
dataset with both knowledge update and knowl-
edge injection examples for KE performance
benchmarking1. We further probe the effect
of fine-tuning on a range of layers in an LLM
for the multi-hop QA task. We find that PEFT
performs better than locate-and-edit techniques
for time-sensitive knowledge edits.

1 Introduction

The rapid development of Large Language Mod-
els (LLMs) has showcased their ability to gener-
ate human-quality responses and demonstrate rea-
soning capabilities (Brown et al., 2020; Chowd-
hery et al., 2022; OpenAI, 2023; Touvron et al.,
2023; McKinzie et al., 2024; Wei et al., 2023),
and it is bringing revolutionary changes across di-
verse industries. However, maintaining the fac-
tuality remains challenging for LLMs since their
pre-training data are collected within a time range.

∗Work done while at Apple.
1https://docs-assets.developer.apple.com/

ml-research/datasets/chrono-edit/chrono-edit.zip

Figure 1: Who’s the "current" head of the United King-
dom government?

Modification (s, r, o → o′) and injection (s, r, ∅ →
o′) are two main ways to update factual knowledge
in LLMs, where s, r, o denotes subject, relation,
and object in an old fact triple, o′ denotes the new
target object, and ∅ denotes an empty object to
be populated. Previously, very few works (Zhong
et al., 2023; Cohen et al., 2023) evaluate the effec-
tiveness of knowledge editing (KE) techniques on
time-sensitive fact changes. We believe that keep-
ing time-sensitive information current is crucial for
maintaining the practical relevance of an LLM’s
knowledge in the real-world applications. There-
fore, in this paper, we focus our investigation on
temporal KE.

One popular approach for KE is locate-and-edit
which involves identifying and directly updating
model parameters associated with specific knowl-
edge. ROME (Meng et al., 2022a) and MEMIT
(Meng et al., 2022b) are two representative works
in this area. There are several known limitations
of ROME/MEMIT. First, they require estimation
of a large covariance matrix, which might lead to
numerical stability issues during computation (Yao
et al., 2023). Second, for every small batch of
knowledge edits, they need to locate the layer for
weight optimization, which can be time consum-
ing and difficult to scale (Yao et al., 2023). Third,
Zhong et al. (2023) demonstrated that although the
LLM can successfully recall the edited fact after

583

https://docs-assets.developer.apple.com/ml-research/datasets/chrono-edit/chrono-edit.zip
https://docs-assets.developer.apple.com/ml-research/datasets/chrono-edit/chrono-edit.zip

ROME/MEMIT editing, the post-edit model per-
forms poorly for multi-hop questions. Hence, we
would like to verify if PEFT approaches can be
more efficient than the locate-and-edit approach
in the KE task and perform better in recalling the
knowledge edits as well as retaining the unchanged
knowledge. In addition, we believe it is worthwhile
to investigate the effect of fine-tuning the weights
of linear layers in transformers at different loca-
tions within the LLM (early, middle, and last) on
the multi-hop question answering task. The main
contributions of this paper can be summarized as
follows:

• We curate a large scale KE dataset CHRO-
NOEDIT from Apple Knowledge Graph (Ilyas
et al., 2022, 2023) that contains approximately
15k time-sensitive factual edit examples that
better reflects KE in the real world setting.

• We demonstrate the effectiveness of fine-
tuning methods in knowledge modification
and knowledge injection.

• Through fine-tuning weights at different lay-
ers, we discover that the middle layers are
more significant in improving the LLM’s ca-
pability to answer multi-hop questions.

2 Related work

Knowledge editing. Yao et al. (2023) made a
comprehensive review of previous work on the
topic of LLM KE and pointed out future oppor-
tunities. According to Yao et al. (2023), there are
three main lines of work in KE: 1) Memory-based,
which stores edited examples in memory and re-
covers relevant edits with a retriever. 2) Locate-
and-edit, which identifies and optimizes neural net-
work parameters corresponding to a specific fact. 3)
Additional Parameters, which introduce extra tun-
able parameters to the language model to update or
memorize new facts. MELLO (Zhong et al., 2023)
is an example of memory-based approach that en-
ables LLM to answer temporal multi-hop ques-
tions through effective prompt design and mem-
ory retrieval. It introduces a temporal KE dataset
MQUAKE-T to assess the ability of a language
model in answering multi-hop questions that are as-
sociated with a single hop edit. However, the num-
ber of distinct knowledge edits in the MQUAKE-T
dataset is significantly limited to prove the effec-
tiveness of KE in general. ROME (Meng et al.,
2022a) treats an MLP as an associative memory

for facts and proposes a causal tracing technique
to locate the weight parameters that need update.
The additional MLP layer inserted into the trans-
former unit can be computed using a closed form
solution. MEMIT (Meng et al., 2023) extends on
ROME to enable the framework for multiple ed-
its at a time. ROME and MEMIT belongs to the
locate-and-edit category and their limitations have
been discussed. In the additional parameter cate-
gory, T-Patcher (Huang et al., 2022) and CaliNET
(Dong et al., 2022) introduce additional neurons
and concatenate them with the Feed-Forward Net-
work (FFN) layers to adjust the output distribution
of a target fact. However, these approaches also
tend to suffer from slow edit speed and it is unclear
how well they can retain time-invariant knowledge.
After all, prior works have mostly focused on coun-
terfactual KEs rather than realistic and verifiable
time-sensitive fact edits from knowledge graphs
(Pan et al., 2023; Wang et al., 2023c, 2022; Ge
et al., 2023b, 2024). In this paper, we mainly focus
on experimental comparison with the locate-and-
edit approach.
Parameter-Efficient Fine-Tuning. LoRA (Hu
et al., 2021) is a simple yet effective adaptation
technique that adds low-rank tunable weight ma-
trices to the original weight matrices, which are
kept frozen. This technique significantly reduces
the trainable parameters during fine-tuning, while
keeping the inference run-time constant. Instead,
P-tuning (Liu et al., 2023) concatenates learnable
tensors with the input embedding to enable the
base language model to perform well on a range
of downstream tasks such as knowledge probing
and natural language understanding. In this paper,
we would like to verify if these PEFT methods
can effectively modify or inject new knowledge in
LLMs.

3 Method

We mainly fine-tune the base LLMs including
LLaMA-7B, Falcon-7B, and Mistral-7B with the
PEFT approach including LoRA and P-tuning and
minimize the following loss function:

LFT =
1

|DM |
∑

d∈DM

L(d; Φ0,∆Φ) (1)

where DM is the KE dataset and d is a fact edit
example, L is the cross entropy loss function ap-
plied to autoregressive models, Φ0 denotes the set
of original weights of the language model that are

584

kept frozen, and ∆Φ denotes the additional param-
eters used by the PEFT adapters.
LoRA. LoRA uses low-rank matrices B ∈ Rd×r

and A ∈ Rr×k and r ≪ min(d, k). The low rank
matrices A and B are trainable parameters:

h = W0x+BAx = (W0 +BA)x. (2)

LoRA adaptation can be applied to any linear layer.
In our experiments, we apply LoRA to linear layers
in both the MLP layers (Wgate, Wup , Wdown) and
self-attention layers (Wq, Wk, Wv, Wo). The bene-
fit of LoRA is that the inference runtime remains
the same, whereas in adaptors and other methods
such as ROME/MEMIT, the inference runtime in-
creases since they add additional layers.
P-tuning. P-tuning learns continuous prompt em-
beddings and concatenates them with the original
input embedding. In this work, we leverage these
tunable embeddings to adjust the output distribu-
tions of the predicted tokens during inference. For-
mally, let [Pi] be the ith continuous prompt em-
bedding, and let x = {x0, . . . , xn} denotes the
original input sequence to the LLM. Then, the new
input sequence would be I = {[P0:i],x}. P-tuning
also uses an additional encoder to map the con-
tinuous prompt embeddings to latent parameters
f : [Pi] → hi. In our implementation, we exper-
iment with both a 2-layer MLP and an LSTM as
the mapping function f . Let e be the pretrained
embedding layer, then the final vector input to the
LLM is {h0, . . . , hi, e(x)}.
Freeze tuning. Instead of fine-tuning all weight
parameters in an LLM, only several layers are fine-
tuned to save the number of parameters that need
to be placed on GPUs for gradient computation.
In our experiments, we focus on fine-tuning MLP
layers in the transformer modules.

4 Experiments

CHRONOEDIT dataset. To construct a more com-
prehensive temporal KE dataset that contains more
real world knowledge edit examples, we collect
the time-sensitive KE dataset CHRONOEDIT. The
motivation for collecting this dataset is that the ex-
isting MQUAKE-T dataset (Zhong et al., 2023)
only contains 96 unique temporal edit examples,
and it may not be large enough to reveal the effect
on LLMs’ performance. The fact change can be
located from knowledge graphs (Ge et al., 2022a,b,
2023a; Wang et al., 2023b) based on the semantics
of the relation type and its time qualifiers. Specifi-
cally, we focus on predicates that have a valid ‘start

Method REL GEN LOC #Params GPU time
ROME 62.25 38.76 - 45M 6540s
MEMIT 84.65 71.75 - 225M 8147s

LoRA
Attn 43.73 45.03 46.51 34M 1882s
MLP 98.78 96.97 55.69 46M 1389s

Attn + MLP 98.99 97.33 54.11 80M 2356s

P-tuning
MLP 87.03 72.11 39.28 50M 30443s

LSTM 94.16 73.7 38.70 772M 39657s
Freeze tuning 98.2 96.18 44.45 676M 1152s

Full fine-tuning 98.99 98.85 45.31 6.74B 5604s

Table 1: Reliability (REL), Generalization (GEN), and
Locality (LOC) performance, No. of trainable parame-
ters, GPU time for different approaches on LLaMA-7B.

time’ qualifier attached. We set the time threshold
to 2022-01-01 and collect new knowledge state-
ments that are valid after that time. The dataset
statistics are shown in Fig. 2.
Evaluation metrics. Existing knowledge edit
benchmarking datasets often evaluate the following
three metrics of the post-edit model:

• Reliability: measures the fraction of knowl-
edge edits that the post-edit model can answer
correctly.

• Generalization: measures the post-edit
model’s ability in completing the rephrased
prompts or answering rephrased questions.

• Locality: measures the post-edit model’s abil-
ity in answering time-invariant knowledge.

We generate question answering pairs as train-
ing examples that is used to induce new facts in
the LLM. To evaluate Reliability, we generate a
corresponding cloze to test whether the post-edit
model can successfully complete the sentence with
the new fact. To evaluate Generalization, we gen-
erate paraphrased question answer pairs from the
training examples with the help of OpenAI text-
davinci-003 API. To assess Locality, we follow
(Jang et al., 2021) to use a subset of LAMA (Petroni
et al., 2019) called INVARIANTLAMA, which con-
tains time-invariant statements. We report the ratio
of Exact Match (EM) for Reliability and General-
ization and the ROUGE-1 score for Locality.
Fine-tuning and locate-and-edit performance
comparison. To compare the performance of dif-
ferent fine-tuning approaches for KE, we select a
subset from the temporal knowledge dataset we
collected that contains 7 relations and 1,388 knowl-
edge modification examples. To compare with
locate-and-edit methods, we also include KE re-
sults using ROME and MEMIT. Results are shown

585

Figure 2: Dataset statistics of CHRONOEDIT.

LoRA Freeze tuning
Predicate Modification Injection Modification Injection

REL GEN REL GEN REL GEN REL GEN

Captain 87.5 100 81.81 100 100 100 100 100
CEO 100 93.33 100 90.32 100 94.66 100 92.47
Chair person 100 93.67 99.61 97.88 100 93.39 99.42 96.92
Citizen of 100 67.85 100 83.87 100 100 98.38 98.38
Director manager 100 97.98 100 98.29 99.32 97.31 95.72 95.72
General manager 100 87.5 100 90.90 100 87.5 100 90.90
Head coach 100 99.64 100 97.56 99.82 98.41 98.37 100
Head of government 98.44 93.14 99.43 92.09 96.88 95.63 98.87 96.61
Head of state 82.35 80.39 100 96 84.31 78.43 100 100
Headquarter location 100 72.22 97.77 88.89 83.33 83.33 82.22 82.22
Marriage 100 98.57 99.23 97.71 92.85 95.71 77.15 94.92
Secretary general 100 100 100 95.23 100 95.45 95.23 95.23
Team membership 94.14 99.34 92.15 99.49 77.54 96.38 40.38 88.46
Overall 94.99 98.58 94.86 98.22 81.51 96.19 58.44 90.99

Table 2: Performance on each predicate type in CHRONOEDIT for LLaMA-7B.

in Table 1. LoRA finetuning with MLP and atten-
tion layers has comparable Reliability and General-
ization scores to full fine-tuning, while only using
a fraction of trainable parameters compared to full
fine-tuning. However, LoRA fine-tuning better re-
tains the invariant knowledge and achieves higher
Locality scores. ROME and MEMIT are able to
successfully edit some temporal knowledge in the
collected dataset. However, the generalization abil-
ity degrades significantly, especially for ROME.
It is also relatively slow compared to LoRA fine-
tuning. We also include P-tuning as a baseline.
Similar to the locate-and-edit approach, the gener-
alization score is low, and the GPU time it takes to
make successful edits is significantly long. It is not
as efficient and effective as LoRA. To verify that
PEFT can be generally effective in KE for LLMs,
we further compare the performance of different
PEFT settings on Falcon-7B (Penedo et al., 2023)

and Mistral-7B (Jiang et al., 2023) in Table 3. In
Fig. 3, we compare the performance of LoRA with
MLP and Attention layers when different number
of edits need to be applied to an LLM. We can
see that the LoRA finetuning approach is robust to
large number of KEs.

LoRA and Freeze tuning fine-grained predicate
analysis. In Table 2, we examine the Reliabil-
ity and Generation scores of the fine-tuned model
across all 13 individual relations. For LoRA, we
apply it to both MLP and self-attention parameters.
For freeze tuning, we fine-tune the MLP weights
of the last five layers. The results show that LoRA
is more robust than freeze tuning as the number
of edits increases. Freeze tuning does not perform
well in knowledge injection, with its performance
degradation largely attributable to the ‘team mem-
bership’ class, which contains the most knowledge
injection examples. This suggests that freeze tun-

586

Model LLaMA-7B Falcon-7B Mistral-7B
Method REL GEN LOC REL GEN LOC REL GEN LOC

LoRA Attn 43.73 45.03 46.51 98.91 93.65 49.61 99.2 96.25 54.08
LoRA MLP 98.78 96.97 55.69 98.92 96.03 51.41 99.13 97.98 57.84

LoRA Attn + MLP 98.99 97.33 54.11 99.06 96.97 49.41 99.13 98.05 54.21
Freeze tuning 98.2 96.18 44.45 - - - 94.66 94.95 43.17

Full fine-tuning 98.99 98.85 45.31 99.21 98.19 38.27 - - -

Table 3: Performance of PEFT fine-tuning for KE across different LLMs

Figure 3: Reliability, Generalization, and Locality per-
formance versus the number of edits on LLaMA-7B.

ing might not be very effective in introducing new
facts about subjects that have rarely been observed
during the pretraining of LLMs.

Layer sweep study. For the freeze tuning and
LoRA fine-tuning approaches, we think it is also
worthwhile investigating the effect on LLMs’ multi-
hop question answering capability, by optimizing
the LLM weight parameters at different positions
(early, middle, late layers). We perform a layer
sweep study for the MQUAKE-T multi-hop ques-
tion answering task. For each data point of the ex-
periment, we only fine-tune l = 3 layers at a time.
We then move the sliding window from the early
layers to the last layers of an LLM to probe the ef-
fect of fine-tuning on the performance of multi-hop
question answering. We compared freeze-tuning
for MLP layers and LoRA on three combination
of weight matrices: 1) self-attention weight matri-
ces Wq, Wv, 2) MLP layers, 3) self-attention and
MLP layers. We have made similar observations
aligned with the Associative Memory theory (Geva
et al., 2021) verified by ROME, that MLP layers
in transformers are more relevant for memorizing
factual knowledge associations (s, r ⇒ o). We
observe that applying LoRA on MLP weight ma-
trices brings more significant improvement than

Figure 4: Performance of fine-tuning methods on the
MQUAKE-T multi-hop dataset for LLaMA-7B.

applying LoRA to self-attention weight matrices.
Applying LoRA on both self-attention and MLP
layers can potentially achieve similar performance
to freeze tuning on multi-hop QA tasks, while us-
ing fewer trainable parameters. In particular, apply-
ing LoRA on both MLP and self-attention requires
7.5M trainable parameters, whereas freeze-tuning
requires 405.8M trainable parameters. For com-
plete performance benchmarking, we also compare
with memory-based KE approach for multi-hop
QA in Table 6 of the Appendix.

5 Conclusion

In this paper, we have systematically examined
the feasibility of performing KE through PEFT.
We have compared the performance of fine-tuning
methods including LoRA, P-tuning and freeze tun-
ing with locate-and-edit approaches for KE. Our
results demonstrate that fine-tuning can success-
fully update time-sensitive factual knowledge in
LLMs both efficiently and effectively, and with-
out compromising the LLMs’ capability in answer-
ing invariant knowledge and multi-hop reasoning.
We have also contributed a large scale KE dataset
CHRONOEDIT that contains both modification edit
and injection edit examples.

587

Limitations

There are two limitations that we would like to
discuss. First, although we have collected a com-
prehensive and realistic temporal KE dataset, we
primarily gather time-sensitive fact changes from
Wikipedia, the most frequently used data source
for LLM pre-training. We are yet to include in-
formation from other data sources or knowledge
graphs that may contain ontological information
that enable us to access LLMs’ ability to perform
reasoning. Second, we have not covered another
important aspect of KE that is to remove misin-
formation or mitigate hate speech generation from
LLMs. We will expand the scope of exploration in
future work.

Acknowledgements

We would like to express our gratitude to Bin Wang
for the valuable discussions during the preliminary
research exploration phase. We also extend our
thanks to Azadeh Nikfarjam, Samira Khorshidi,
Alexis McClimans, Fei Wu, and Eric Choi for
their guidance in collecting the knowledge edit-
ing dataset. Additionally, we are grateful to Barry
Theobald, Yash Govind, Varun Embar, and Shi-
hab Chowdhury, Hong Yu for proofreading the
manuscript and providing insightful advice to im-
prove the paper.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023. Evaluating the ripple effects
of knowledge editing in language models. arXiv
preprint arXiv:2307.12976.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 5937–5947.

Xiou Ge, Yun Cheng Wang, Bin Wang, and C-C Jay
Kuo. 2023a. Compounding geometric operations
for knowledge graph completion. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6947–6965.

Xiou Ge, Yun-Cheng Wang, Bin Wang, and C-C Jay
Kuo. 2023b. Knowledge graph embedding with 3d
compound geometric transformations. arXiv preprint
arXiv:2304.00378.

Xiou Ge, Yun Cheng Wang, Bin Wang, C-C Jay Kuo,
et al. 2022a. Typeea: Type-associated embedding for
knowledge graph entity alignment. APSIPA Transac-
tions on Signal and Information Processing, 12(1).

Xiou Ge, Yun Cheng Wang, Bin Wang, C-C Jay Kuo,
et al. 2024. Knowledge graph embedding: An
overview. APSIPA Transactions on Signal and Infor-
mation Processing, 13(1).

Xiou Ge, Yun-Cheng Wang, Bin Wang, and CC Jay
Kuo. 2022b. Core: A knowledge graph entity type
prediction method via complex space regression and
embedding. Pattern Recognition Letters, 157:97–
103.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484–5495.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2022. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations.

Ihab F Ilyas, JP Lacerda, Yunyao Li, Umar Farooq Min-
has, Ali Mousavi, Jeffrey Pound, Theodoros Rekatsi-
nas, and Chiraag Sumanth. 2023. Growing and serv-
ing large open-domain knowledge graphs. In Com-
panion of the 2023 International Conference on Man-
agement of Data, pages 253–259.

Ihab F Ilyas, Theodoros Rekatsinas, Vishnu Konda, Jef-
frey Pound, Xiaoguang Qi, and Mohamed Soliman.
2022. Saga: A platform for continuous construction
and serving of knowledge at scale. In Proceedings of
the 2022 International Conference on Management
of Data, pages 2259–2272.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,
Janghoon Han, KIM Gyeonghun, Stanley Jungkyu
Choi, and Minjoon Seo. 2021. Towards continual
knowledge learning of language models. In Interna-
tional Conference on Learning Representations.

588

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt
understands, too. AI Open.

Brandon McKinzie, Zhe Gan, Jean-Philippe Faucon-
nier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers,
et al. 2024. Mm1: Methods, analysis & insights
from multimodal llm pre-training. arXiv preprint
arXiv:2403.09611.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 36.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass edit-
ing memory in a transformer. The Eleventh Inter-
national Conference on Learning Representations
(ICLR).

Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu, Xi-
aofei Sun, Tianwei Zhang, and Jiwei Li. 2022b. Fast
nearest neighbor machine translation. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 555–565, Dublin, Ireland. Association
for Computational Linguistics.

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages
2303–08774.

Jeff Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha
Singhania, Jiaoyan Chen, Stefan Dietze, Hajira
Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo
Lissandrini, et al. 2023. Large language models
and knowledge graphs: Opportunities and challenges.
Transactions on Graph Data and Knowledge.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The RefinedWeb dataset
for Falcon LLM: outperforming curated corpora
with web data, and web data only. arXiv preprint
arXiv:2306.01116.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao,
Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, et al. 2023a.
Easyedit: An easy-to-use knowledge editing frame-
work for large language models. arXiv preprint
arXiv:2308.07269.

Yun-Cheng Wang, Xiou Ge, Bin Wang, and C-C Jay
Kuo. 2022. Kgboost: A classification-based knowl-
edge base completion method with negative sampling.
Pattern Recognition Letters, 157:104–111.

Yun-Cheng Wang, Xiou Ge, Bin Wang, and C-C Jay
Kuo. 2023b. Asyncet: Asynchronous learning for
knowledge graph entity typing with auxiliary rela-
tions. arXiv preprint arXiv:2308.16055.

Yun Cheng Wang, Xiou Ge, Bin Wang, and C-C Jay
Kuo. 2023c. Greenkgc: A lightweight knowledge
graph completion method. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10596–
10613.

Chengwei Wei, Yun-Cheng Wang, Bin Wang, C-C Jay
Kuo, et al. 2023. An overview of language models:
Recent developments and outlook. APSIPA Transac-
tions on Signal and Information Processing, 13(2).

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, and Yongqiang Ma. 2024. Llamafac-
tory: Unified efficient fine-tuning of 100+ language
models. arXiv preprint arXiv:2403.13372.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqi Chen. 2023.
MQuAKE: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

A Dataset statistics

A.1 MQUAKE-T dataset experiments
We primarily use the MQUAKE-T dataset which
contains temporal-based real-world knowledge up-
dates to compare the performance of different fine-
tuning techniques with baseline methods on the
performance of KE. The goal is to validate whether
PEFT approaches such as LoRA and P-tuning can
be an effective approach for performing KE. We
also demonstrate that PEFT approaches can be
more effective than the locate-and-edit approaches
for multi-hop question answering.

589

https://doi.org/10.18653/v1/2022.findings-acl.47
https://doi.org/10.18653/v1/2022.findings-acl.47
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

In this dataset, each temporal fact edit example
is also associated with multi-hop questions, which
allows us to assess the complex query answering
ability of the post-edit model. The MQUAKE-T
dataset was constructed by taking the difference
between two data dumps of Wikidata: 2021-04 and
2023-04. MQUAKE-T selects 6 different relations
that most likely correspond to real fact changes.
The statistics of the dataset are shown in Table 4.

MQUAKE-T #Examples
Unique edits 96

2-hop questions 75
3-hop questions 348
4-hop questions 567

Table 4: Statistics of MQUAKE-T dataset.

Comparing with baselines. In Table 5, we com-
pare the editwise performance of fine-tuning tech-
niques with locate-and-edit baseline methods. We
use LLaMA-7B (Touvron et al., 2023) as the base
model for both the baseline locate-and-edit tech-
niques and fine-tuning techniques. Experimental
results show that fine-tuning techniques performs
better than the locate-and-edit baselines, while the
run-time to complete all the knowledge edit is sig-
nificantly shorter. In Table 6, we compare the per-
formance of different post-edit model and approach
for multi-hop QA.
LoRA ablation and parameter study. We per-
form ablation study of applying LoRA adaptation
to different weight matrices in the self-attention
module Wq,Wv,Wk,Wo. The results are shown
in Table 7. Results shows that applying LoRA
adaptation to the query matrix Wq and the key ma-
trix Wk gives the best result. We also evaluate the
knowledge edit success rate when the LoRA rank
is set to different values. In our experiment, we
tested r = {4, 8, 16, 32, 64} as shown in Fig. 5,
and discover that the optimal rank is r = 32.

A.2 CHRONOEDIT dataset

In the new dataset, we set the time threshold to
2022-01-01 and collect new knowledge statements

Method Edit Accuracy Runtime
ROME 92.51 2h32m2s
MEMIT 96.44 2h48m49s
LoRA 99.36 2m13s

P-tuning 97.75 1m51s
Freeze-tuning 100 3m16s

Full fine-tuning 99.83 8m18s

Table 5: Editwise performance on LLaMA-7B.

Figure 5: Performance of LoRA at different ranks for
the MQUAKE-T multi-hop dataset with LLaMA-7B.

Figure 6: Comparing Reliability performance of LSTM
and MLP encoders across epochs when using P-tuning
for LLaMA-7B.

Figure 7: Comparing Reliability performance for differ-
ent number of tokens when using P-tuning for LLaMA-
7B.

590

Figure 8: Reliability, Generalization, and Locality performance of different fine-tuning methods across epochs for
LLaMA-7B.

Base Model KE Type KE Method Multi-hop QA Acc

LLaMA-7B

Locate-and-edit
ROME 38.5
MEMIT 39.3

Additional parameter
P-tuning 14.7
LORA 62.6

Direct fine-tune
Freeze tuning 72.5

Full FT 71.0
Vicuna-7B

Memory-based Mello
30.7

GPT-J 51.3
GPT-3 85.5

Table 6: Performance on post-edit model on multi-hop
questions for LLaMA-7B.

that are valid after that time. We collect both
knowledge modification: (s, r, o) → (s, r, o′), and
knowledge injection: (s, r, ∅) → (s, r, o′). The
statistics of the dataset are shown in Fig. 2. An ex-
ample of fact pairs from the KG that could lead to
time-sensitive knowledge edits is shown in Table 8.
We convert such fact pairs to question answering
and instruction finetuning examples for training.
The corresponding sentence completion examples
for reliability evaluation, rephrased QA examples
for generalization evaluation, and invariant knowl-

Linear Layer Edit Accuracy
Wq 71.47
Wv 97.48

Wq,Wv 98.67
Wq,Wv,Wk,Wo 97.56

Table 7: Ablation studies of the layers in LLaMA-7B
that LoRA is applied to.

edge sentence completion examples for locality
evaluation are shown in Table 9.
LoRA and Freeze tuning ablation and parame-
ter study. In Fig. 8, we evaluate the performance
of different fine-tuning configurations across dif-
ferent epochs. In particular, we evaluate the Relia-
bility and Generalization using the accuracy which
is the ratio of Exact Matching (EM) and we report
the ROUGE-1 score for Locality. For LoRA, we
experiment with three settings: applying LoRA to
self-attention weights (LoRA Attention), applying
LoRA to MLP weights (LoRA MLP), and apply-
ing LoRA to both self-attention and MLP weights
(LoRA MLP Attention). In this set of experiments,

591

Organization CEO Start Time End Time
Volkswagen Group Herbert Diess +2018-04-00T00:00:00Z_MONTH +2022-08-31T00:00:00Z_DAY
Volkswagen Group Oliver Blume +2022-09-01T00:00:00Z_DAY

Table 8: Example of locating the knowledge edit data

Examples

Train

{
"instruction": "Who is the current chief executive officer of Volkswagen Group?",
"input": "",
"output": "Oliver Blume."

}
{

"instruction": "Update the following statement about the current chief executive officer of Volkswagen Group.",
"input": "Herbert Diess.",
"output": "Oliver Blume."

}

Test
(REL)

{
"instruction": "The current chief executive officer of Volkswagen Group is",
"input": "",
"output": "Oliver Blume."

}

Rephrase
(GEN)

{
"instruction": "What is the name of the current Volkswagen Group CEO?",
"input": "",
"output": "Oliver Blume."

}

Invariant
(LOC)

{
"instruction": "The headquarter of Volkswagen Commercial Vehicles is in?",
"input": "",
"output": "Hanover."

}

Table 9: Fine-tuning and testing examples.

we apply LoRA to all layers. For freeze tuning,
we fine-tune the MLP weights of the last 5 layers
of the LLaMA model. Results shows that apply-
ing LoRA to MLP weights is more effective in
memorizing new facts than applying LoRA to self-
attention weights. While freeze tuning can also
effectively have the knowledge update induced into
the model, the Locality score for freeze tuning is
lower than the LoRA MLP setting, which means
freeze tuning leads to deterioration of the LLM’s
existing invariant knowledge.

P-tuning ablation and parameter study. Al-
though P-tuning can be equally effective for KE,
we find that it requires more epochs of fine-tuning
to ensure successful knowledge edits. The required
time to perform knowledge edits becomes longer.
In Fig. 6, we compare the performance difference
between LSTM and MLP encoders across different
epochs when using the P-tuning technique, when
the number of prompt embedding tokens is set to
n = 20. We observe that the application of LSTM
encoder allows P-tuning edit performance to con-
verge faster than when using the MLP encoder. In
Fig. 7, we instead compare the performance of

P-tuning when different number of prompt embed-
ding tokens are used. Using more than n = 20
tokens do not seem to gives a significant advantage
in the edit accuracy.
Fine-grained performance analysis of time-
invariant knowledge. For the KE experiment of
using LoRA on MLP layers of LLaMA-7B, we
perform a fine-grained performance analysis of the
different type of time-invariant knowledge and list
the performance in Table 10. We make a conjecture
that those time-invariant knowledge with smaller
valid candidate set for the target, such as “language”
or “capital”, tends to be well retained. These predi-
cates are mostly 1-to-1 or N-to-1. In contrast, when
the cardinality of the valid candidate set becomes
larger, often for N-to-N predicates, such as “twin
city” and “music label”, the exact subject, object
association becomes harder to retain.
Implementation details. Experiments were con-
ducted on a compute node with 8 NVIDIA Tesla
A100 GPUs, each with 40GB memory. We develop
the fine-tuning pipeline based on LLaMA-Factory2

2https://github.com/hiyouga/LLaMA-Factory

592

Best 3 ROUGE-1
native language of 70.2
official language of 61.7

Capital of 58.7
Worst 3 ROUGE-1

twin cities 1.55
is a 5.68

is represented by music label 9.47

Table 10: Performance on different type of invariant
knowledge.

Parameter Value
layers [5]
fact_token subject_last
v_num_grad_steps 25
v_lr 5e-1
v_loss_layer 31
v_weight_decay 1e-3
clamp_norm_factor 4
kl_factor 0.0625
mom2_adjustment false
context_template_length_params [[5, 10], [10, 10]]
rewrite_module_tmp model.layers..mlp.down_proj
layer_module_tmp model.layers.
mlp_module_tmp model.layers..mlp
attn_module_tmp model.layers..self_attn
ln_f_module model.norm
lm_head_module lm_head
mom2_dataset wikipedia
mom2_n_samples 100000
mom2_dtype float32

Table 11: ROME Configuration Parameters.

Parameter Value
layers [4, 5, 6, 7, 8]
clamp_norm_factor 4
layer_selection all
fact_token subject_last
v_num_grad_steps 25
v_lr 5e-1
v_loss_layer 31
v_weight_decay 1e-3
kl_factor 0.0625
mom2_adjustment true
mom2_update_weight 15000
rewrite_module_tmp model.layers..mlp.down_proj
layer_module_tmp model.layers.
mlp_module_tmp model.layers..mlp
attn_module_tmp model.layers..self_attn
ln_f_module model.norm
lm_head_module lm_head
mom2_dataset wikipedia
mom2_n_samples 100000
mom2_dtype float32

Table 12: MEMIT Configuration Parameters.

(Zheng et al., 2024) and refer to PEFT package in
HuggingFace3 for the implementation of LoRA and
P-tuning. We use EasyEdit4 (Wang et al., 2023a)

3https://huggingface.co/docs/peft/index
4https://github.com/zjunlp/EasyEdit

to reproduce the ROME and MEMIT fine-tuning
baseline results.

For results in Table 1, the 7 different relations
that we evaluate on are ‘captain’, ‘CEO’, ‘chairper-
son’, ‘head coach’, ‘head of govt’, ‘head of state’,
‘headquarter location’. The reason for the perfor-
mance comparison of the smaller subset is to con-
duct similar experiments that were done in (Zhong
et al., 2023). For LoRA, Freeze tuning, Full fine-
tuning, we fine-tune the base model for 10 epochs,
whereas for P-tuning, we fine-tune 800 epochs to
achieve the optimal performance. Full fine-tuning
of the base model requires DeepSpeed ZeRO-3 of-
fload. In LoRA experiments, the LoRA rank is
set to r = 32, and MLP means applying LoRA to
Wgate, Wup , Wdown matrices, and Attn means to
apply LoRA to Wq, Wk, Wv, Wo matrices. In P-
tuning experiments, the number of prompt tokens
is set of n = 20. In the MLP encoder, there are 3
linear layers with ReLU activation in between. In
the LSTM encoder, a bidirectional LSTM is used
and the output is passed to 2 linear layers with
ReLU activation in between. For all the above ex-
periments, we used the AdamW optimizer and set
the learning rate to 5e− 5, per device train batch
size to 4, gradient accumulation steps to 4. For
the ROME and MEMIT baselines, we used the de-
fault hyperparameter settings provided in EasyEdit,
shown in Table 11 and 12.

For the knowledge modification and knowledge
injection experiments in Table 2, we oversample
each knowledge injection samples four times due
to the limited number of training examples, as gen-
erating an update example for knowledge injection
is not possible. The hyperparameter settings are
kept the same as above.

593

