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Abstract

While human speakers use a variety of different
expressions when describing the same object in
an image, giving rise to a distribution of plau-
sible labels driven by pragmatic constraints,
the extent to which current Vision & Language
Large Language Models (VLLMs) can mimic
this crucial feature of language use is an open
question. This applies to common, everyday ob-
jects, but it is particularly interesting for uncom-
mon or novel objects for which a category label
may be lacking or fuzzy. Furthermore, simi-
lar patterns of variation are observed among
human speakers for highly context-sensitive
expressions, such as the quantifiers ‘few’ or
‘most’. In our work, we evaluate VLLMs (FRO-
MAGe, BLIP-2, LLaVA) on three categories
(nouns, attributes, and quantifiers) where hu-
mans show great subjective variability concern-
ing the distribution over plausible labels, using
datasets and resources mostly under-explored
in previous work. Our results reveal mixed
evidence on the ability of VLLMs to capture
human naming preferences at generation time:
while some models are good at mimicking hu-
man distributions for nouns and attributes, all
of them fail to assign quantifiers, a task that
requires more accurate, high-level reasoning.

1 Introduction

Recent years have witnessed increasing popular-
ity in the development of Large Language Mod-
els (LLMs) given their notable performance in fol-
lowing instructions, answering questions, and in
many reasoning tasks, serving as general-purpose
assistants (Huang and Chang, 2023; Zhao et al.,
2023). In parallel, a new generation of powerful Vi-
sion and Language LLMs (VLLMs) with excellent
visual understanding and generation capabilities
have emerged (Gan et al., 2022; Li et al., 2023a).
Rapidly, these models have outperformed previous
approaches in many downstream tasks. In our work,
we focus on the Natural Language Generation skills

of powerful VLLMs by analyzing an important but
under-explored problem, namely, their ability to
capture human production variability (in terms of
distribution over plausible labels/descriptions) in
naming tasks.

Previous work highlighted that speakers display
a wide range of variability when asked to utter
sentences, resulting in inter-speaker variability but
also variability over time for the same speaker (Lev-
elt, 1993; Fan et al., 2018; Alva-Manchego et al.,
2021; Takmaz et al., 2024). In particular, in ob-
ject naming, speakers may refer to objects appear-
ing in a visual scene in many different ways (Graf
et al., 2016). Objects generally belong to multiple
categories/super-categories, and all the lexicalized
labels of such categories are valid (Brown, 1958).
However, although multiple labels are valid, hu-
mans pragmatically adapt their naming preferences
depending on the context (Olson, 1970; Rohde
et al., 2012), resulting in some labels being more
frequently uttered than others. For instance, ‘mam-
mal’ is a correct label to describe a Gold Retriever,
but pragmatically less likely than ‘dog’. Similarly,
speakers tend to prefer sub-ordinate words like ‘car’
instead of the potentially ambiguous super-ordinate
word ‘vehicle’ in case multiple vehicles appear in
the image. In our work, we are interested in captur-
ing both these two features: while many labels are
equally valid and acceptable when naming or de-
scribing entities, these labels distribute according
to a certain likelihood distribution.

In our work, we investigate this issue, which
has recently entered the NLP research community
(Plank, 2022), in three different production condi-
tions. First of all, we consider the ManyNames
dataset (Silberer et al., 2020a,b), where annotators
assign labels to describe common objects in images
in a referential expression generation setting (Yu
et al., 2016; Kazemzadeh et al., 2014). We also
explore two additional resources that have not re-
ceived much attention within the NLP community
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Figure 1: Datasets used in our experiments and distribution of human answers/labels. In NOUN (left), we focus on
the frequency of color and texture attributes in the generated descriptions. In ManyNames (middle), each object is
associated with the frequency of the nouns used to describe it. In QUANT (right), each image is associated with a
probability distribution over a list of quantifiers that humans selected when answering the question ‘How many of
the objects are animals?’.

and that allow us to broaden the horizons of this
phenomenon. First, we analyze the NOUN dataset
(Horst and Hout, 2016), where speakers describe
uncommon and novel objects: we focus on both
the choice of the adjectives and how they distribute
in the across-subject distribution. Finally, we inves-
tigate human production variability arising from
the context-sensitive nature of non-numerical quan-
tifiers using the data collected by Pezzelle et al.
(2018).

We evaluate three VLLMs (FROMAGe, BLIP-2,
LLaVA) on the above-mentioned tasks in a zero-
shot setting. We sample multiple times from the
model using nucleus sampling, mimicking various
human speakers, and compare the generated sam-
ples against human production patterns using differ-
ent metrics (Jensen–Shannon divergence and Pear-
son’s correlation, depending on the task at hand).
Our results show that models weakly to moderately
mimic human distributions in naming common and
uncommon objects. Instead, all of them fail to
mimic human distributions when selecting quanti-
fiers, as highlighted by our in-depth analyses.

2 Tasks and Datasets

We use the images and corresponding human labels
or descriptions from three datasets in English, that
we briefly describe below.

NOUN The Novel Object and Unusual Name
(NOUN) dataset (Horst and Hout, 2016) contains

64 images of multipart, multicolored, and three-
dimensional uncommon and novel objects. The
dataset was originally created for behavioral stud-
ies on word learning and, to the best of our knowl-
edge, it has not been used for NLP research. We
focus on the naming task, where participants were
asked to answer the question “What would you call
this object?”. The answers are sentences like: ‘a
plastic object with red stuff on top’. For each ob-
ject, the proportion of colors (e.g., ‘red’, ‘bronze’)
and textures (e.g., ‘soft’, ‘rough’) was calculated
as the number of attributes given the number of
responses. An example from the dataset is reported
in Figure 1 (left), together with the ratio of col-
ors and textures in human responses. In NOUN,
we examine human production preferences on a
high level, by looking at the frequency according
to which certain adjectives (related to color and
texture attributes) are used.

ManyNames In ManyNames (Silberer et al.,
2020a,b), the authors collected names for 25K ob-
jects appearing in real-world images from Visu-
alGenome (Krishna et al., 2017) by asking human
annotators to generate a name for them. Each ob-
ject (highlighted by a red box in the image) is as-
sociated with an average number of 35.3 annota-
tions. More than 90% of the objects are associated
with more than one unique label (5.7 average name
types per object). An example is shown in Fig-
ure 1 (middle). When describing the object in the
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NOUN

Q: What do you see in the image?

LLaVA 🌋: 
1) The image features a green toy with an 
orange nose and two orange wheels.

2) The image features a green and orange 
toy shaped like a face, with a big nose.

ManyNames

Q: Please name the object in the red box 
with the first name that comes to mind.

LLaVA 🌋: 
1) jet 2) plane

3) plane 4) jet

5) jet 6) jet

QUANT

Q: How many animals are there in the 
image? Pick the best among the following 
options: A: the smaller part, B: many, C: 
almost none, D: some, E: none, F: all, G: 
most, H: few, I: almost all

LLaVA 🌋: 
1) D (some) 2) I (almost all)
3) D (some) 4) H (few) 

Figure 2: Examples of the output generated by LLaVA (multiple samples with nucleus sampling decoding) for the
three tasks analyzed in our work. For each task, a sample of the answers provided by the model is displayed. For
space constraints, we only report a few random samples for each task.

red box, most annotators referred to it as ‘chair’,
while around 30% said ‘sofa’, and the remaining
ones used ‘couch’ and ‘armchair’. The images in
ManyNames are classified into 7 domains (e.g., ve-
hicles, people, animals, etc.): for computational
constraints, we evaluated 300 randomly sampled
objects from each domain. Different from NOUN,
we examine production preferences on a more fine-
grained level using the actual distribution over mul-
tiple labels.

QUANT To study how quantifiers are used when
referring to quantities grounded in images, Pezzelle
et al. (2018) introduced a dataset of visual abstract
scenes containing a variable number of animals and
artifacts and asked human participants to answer
the question “How many of the objects are ani-
mals?". Participants could select the answer from a
list of nine pre-selected quantifiers: ‘none’, ‘almost
none’, ‘the smaller part’, ‘few’, ‘some’, ‘many’,
‘most’, ‘almost all’, and ‘all’. The authors used im-
ages with 17 different proportions of animals and
artifacts (ranging from 0% to 100%). In our work,
we tested 50 images for each of the 17 proportions
in the dataset, resulting in a total number of 850
images.1

1The actual images used in our experiment come from
Testoni et al. (2019), which built a large-scale dataset using
the stimuli and pipeline by Pezzelle et al. (2018).

3 Experiments

3.1 Generation

In our work, we test the performance of three mod-
els in a zero-shot setting: BLIP-2 (Li et al., 2023b),
FROMAGe (Koh et al., 2023), and LLaVA 1.5
(Liu et al., 2023b,a). All three models can be
prompted for zero-shot generation. Additional de-
tails are discussed in Appendix A.4. For each of
the three tasks described in Section 2, we used
prompts that resembled the instructions provided
to human annotators during the dataset collection.
ManyNames: Q: Please name the object in the red
box with the first name that comes to mind. A:.
NOUN: Q: What do you see in the image? A:.
QUANT: Question: How many animals are there
in the image? Pick the best among the following op-
tions: , followed by the list of the nine quantifiers,
each associated with a letter (from A to I). The
ordering of the quantifiers is randomized at each
inference step. Although investigating several vari-
ations of the above-mentioned prompts is beyond
the scope of the paper, we discuss some insights
on this aspect in Appendix A.5. We sample multi-
ple times from each model using nucleus sampling
decoding (Holtzman et al., 2019), with p = 0.9,
t = 0.5 (different hyperparameter configurations
did not significantly affect the overall results, as
discussed in Appendix A.5). For each task, we
sample the model 20 times and filter out ill-formed
answers, such as empty strings or question repeti-
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Figure 3: For NOUN and QUANT, the plot shows the
correlation between human responses and model sam-
ples. For ManyNames, it shows the inverse JS diver-
gence between the frequency of the nouns chosen by
annotators and the ones generated by the model.

tions. After filtering, we randomly take 10 genera-
tions per image for ManyNames and NOUN, and
15 for QUANT. In this way, we have the same num-
ber of generations for each image/object. Some
examples of the output generated by LLaVa for
the three tasks analyzed are reported in Figure 2.
We release our code at: https://github.com/
albertotestoni/ndq_visual_objects.

3.2 Evaluation

Each object in NOUN is associated with color and
texture saliency, i.e., how often speakers described
the object using these attributes. We use a string-
match approach (see Appendix A.2) to analyze
the model output and compute color and texture
saliency. We then compute the Pearson’s r correla-
tion between human and model saliency, consider-
ing all objects.

Each object in ManyNames is associated with
H unique nouns assigned by human annotators and
M unique nouns sampled from the model output,
together with their frequency. Given A = H ∪M ,
we construct two term-frequency vectors for hu-
man and model output, h and m, respectively, with
|h| = |m| = |A|. Each noun in A is mapped to a
unique position in h and m and each vector is filled
with its normalized frequency. We evaluate the
models by computing the inverse Jensen–Shannon
(JS, bounded between 0 and 1) divergence (Lin,
1991) between h and m. See Figure 6 in the Ap-
pendix for an example.

Each image in QUANT is associated with a prob-
ability distribution over 9 quantifiers, depending on
the proportion of animals and artifacts. From the
model outputs, we extract the relative frequency of
each quantifier and compute Pearson’s r correlation
with the human distribution. We then average the
correlation results over all images. Correlation is
bounded between -1 and 1. Higher is better for all
the metrics.

3.3 Results

As we can observe from Figure 3, the results for
ManyNames and NOUN (color saliency) show a
clear trend: all the models correlate, to some extent,
with human production, with LLAVA obtaining the
highest correlations for both tasks (around 0.5) and
significantly outperforming (t-test, p < 0.01) both
BLIP2 and FROMAGe.2 These findings align with
previous work showing the primacy of LLaVA over
other models (Liu et al., 2023b,a). However, the
remaining tasks show critical weaknesses for all
models. First, none of the models achieve a statis-
tically significant correlation for texture saliency
(all have p > 0.05). We conjecture that texture at-
tributes are less common for the models compared
to colors, and thus they may be less accurate when
generating them: we leave an in-depth analysis of
this issue for future work. Despite the correlation
results being similar across models, our manual
inspection reveals interesting differences: while
the low performance of FROMAGe is due to an
under-generation of texture attributes, the opposite
is true for LLaVA, with BLIP-2 being more flexi-
ble in terms of texture attribute generation but not
aligned with human variability (see Figure 7 for
an example). Finally, all models show almost no
correlation in assigning quantifiers to visual scenes,
highlighting a severe limitation of all models on
this task. We scrutinize this issue in the following
Section.

4 The Curious Case of Quantifiers

We run some analyses to investigate the poor
performance of all models in the QUANT task.
First of all, we acknowledge that the multiple-
choice prompting used in QUANT is different and
more complex than the prompts used for the other
datasets. Still, it is unlikely that this is the main
reason behind the poor performance of all models.

2Appendix A.1 shows per-domain results for ManyNames.
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Figure 4: Pearson correlation results (y-axis) broken
down by proportion of targets (animals) in the image
(x-axis) in the QUANT task and dataset.

Figure 4 shows the correlation results broken
down by the proportion of animals in the image.
We observe that even though the overall correla-
tion results are similar across models (Figure 3),
they perform quite differently depending on the
proportion of animals in the scene. While BLIP-2
performs relatively well on the ‘extreme’ propor-
tions (no animals or all animals in the image, when
speakers generally choose the quantifiers ‘none’
and ‘all’, respectively), LLaVA excels at intermedi-
ate proportions, and FROMAGe performs better on
proportions above 50%. Can we conclude that mod-
els properly handle the task of assigning the most
likely quantifiers for some proportions? These re-
sults evoke two hypotheses: (a) The models are
capable of selecting plausible quantifiers only for
some proportions or, vice versa, they understand
only some of the quantifiers analyzed; (b) The mod-
els have a bias towards some specific quantifiers,
regardless of the proportion of targets in the scene,
leading to a decent perform on some proportions
as a side effect. Our additional analyses, reported
in Figures 8 and 9 in the Appendix, support hy-
pothesis (b): FROMAGe has a strong bias towards
selecting the quantifier ‘many’; BLIP-2 frequently
selects the extreme quantifiers ‘none’ and ‘all’, and
its selection is not influenced by the proportion of
targets; LLaVA has a bias towards selecting the
quantifier ‘some’, regardless of the proportion of
targets.

To further shed light on this result, we qualita-
tively assess the ‘counting’ skills of the models, a
crucial skill to succeed in assigning quantifiers. As
the examples in Figure 11 in the Appendix illus-
trate, all models struggle to successfully count how
many animals appear in the image. We hypothe-
size that the reason for the poor performance in

assigning quantifiers lies in the quantity estimation
and comparison skills of the models. This obser-
vation is in line with recent research investigating
the poor ‘counting’ skills of current models (Paiss
et al., 2023).

5 Conclusion

While human speakers exhibit a wide range of hu-
man production variability in naming tasks, mir-
roring pragmatic constraints and subjective pref-
erences, it is not clear to what extent VLLMs can
mimic this peculiar trait of language use. In our
work, we investigate this issue in three tasks: nam-
ing common objects, naming novel objects, and
assigning quantifiers. Our results reveal that best-
performing models achieve a moderate correlation
with human patterns in some tasks (object names
and color terms). However, all models dramatically
fail when assigning quantifiers, the only production
setup that requires some form of reasoning, i.e., the
ability to reason over sets of objects and process
quantities. Based on our analyses, we hypothesize
that the reason behind this failure stems from the
poor “counting” skills of the models.

Limitations

In the following, we discuss some limitations of
our study that may inspire follow-up work in this
direction. The poor performance on the quantifica-
tion tasks may stem from the higher complexity of
the prompt used (multiple choice prompting). Even
though in our paper we discuss how analyzing the
output variability allows us to gain valuable in-
sights even when the model is not accurate, we can
not rule out the possibility that a simpler prompt
may lead to more accurate results. As an initial
step, we used a prompt that corresponds to the in-
struction provided to the participants of the original
experiment in Pezzelle et al. (2018). In Appendix
A.5 we discuss the effect of re-phrasing the original
prompt instructions.

Moreover, it is worth noting that the human pro-
duction variability analyzed in our experiments is
obtained by aggregating data coming from multiple
speakers. Even though we do aim at this, we ac-
knowledge that it is unlikely that one single model
can mimic such a rich variability. Our study is more
focused on understanding to what extent current
Vision & Language LLMs can mimic this feature,
showing the suitability of some tasks and datasets
not explored in previous work.
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Finally, we computed the color and saliency fea-
ture for NOUN using a string-matching approach
based on a manually defined list of keywords (as
described in Appendix A.2. We acknowledge that
this approach may underestimate the color and tex-
ture saliency in the model output. Although in this
case, the small size of the dataset allowed us to
verify that this is not the case, we believe that it
is important to take this point into account when
running experiments on a larger scale. Moreover,
as a limitation of the NOUN dataset (and not of
our experimental setup), we do not have access to
the actual color and texture labels used by human
participants during the dataset collection. For this
reason, in NOUN we do not consider the actual dis-
tribution of the attributes used by human speakers
but just their overall frequency.
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A Appendix

A.1 ManyNames Appendix

Figure 9 shows the results on the ManyNames
dataset broken down by the image domain. LLaVA
outperforms other models in most of the domains,
but for clothing and people it is comparable to
BLIP-2. Note that all model reach have the poor-
est performance on these two domains. As high-
lighted by Silberer et al. (2020a,b) and confirmed
by our manual inspection, models confuse people
and clothing objects much more frequently than hu-
mans do. ManyNames is licensed under Creative
Commons Attribution 4.0 International.

A.2 NOUN Appendix

We define the following list of color and texture
attributes to analyze the samples generated by the
model with a string-matching approach.

Colors = [“Red”, “Orange”, “Yellow”, “Green”,
“Blue”, “Purple”, “Pink”, “Brown”, “Gray”,
“Black”, “White”, “Beige”, “Turquoise”, “Teal”,
“Magenta”, “Lavender”, “Indigo”, “Maroon”,
“Gold”, “Silver”, “Bronze”, “Copper”, “Olive”,
“Navy”, “Sky blue”, “Cream”, “Peach”, “Rose”,
“Fuchsia”, “Coral”, “Mint”, “Chartreuse”,
“Salmon”, “Sienna”, “Slate”, “Tan”, “Crimson”,
“Ivory”, “Khaki”, “Lilac”, “Mauve”, “Mustard”,
“Rust”, “Scarlet”, “Tangerine”, “Vermilion”,
“Violet”, “Wheat”, “Brick red”, “Caramel”]

Textures = [“Smooth”, “Rough”, “Fuzzy”,
“Soft”, “Hard”, “Bumpy”, “Slick”, “Sticky”,
“Grainy”, “Sandy”, “Slippery”, “Jagged”, “Sharp”,
“Coarse”, “Silky”, “Velvety”, “Wet”, “Dry”,
“Glossy”, “Matte”, “Sparkly”, “Metallic”,
“Wooden”, “Leathery”, “Plastic”, “Rubber”,
“Furry”, “Woolly”, “Feathery”, “Smooth”, “Satin”,
“Lace”, “Crochet”, “Knitted”, “Embroidered”,
“Linen”, “Silk”, “Velvet”, “Suede”, “Corduroy”,
“Denim”, “Felt”, “Tweed”, “Mesh”, “Hairy”,
“Crisp”, “Crumbly”, “Flaky”, “Puffy”, “Spongy”,
“Crunchy”, “Chewy”, “Gummy”, “Slimy”,
“Starchy”, “Syrupy”, “Icy”, “Rocky”, “Stony”,
“Sandy”, “Peppery”, “Salty”, “Sour”, “Sweet”,
“Tangy”, “Tart”, “Spicy”, “Herbaceous”, “Earthy”,
“Mossy”, “Woody”, “Smoky”, “Smokey”, “Rusty”,
“Corroded”, “Weathered”, “Rugged”, “Smooth”,
“Polished”, “Shiny”, “Gleaming”, “Dull”,
“Muddy”, “Cloudy”, “Milky”, “Transparent”,
“Translucent”, “Opaque”]

Figure 7 shows an example of the output of dif-
ferent models, together with their color and texture
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Figure 5: Inverse Jensen–Shannon divergence broken
down by the image domain in ManyNames.

saliency as well as human saliency values. NOUN
is released without a specific license.

A.3 QUANT Appendix
Figures 8 and 9 show additional analyses on the
QUANT dataset. They are discussed in Section
4. Figure 11 shows some qualitative examples of
the models’ output when asked to answer the ques-
tion ‘How many animals are there in the image?’.
The images are randomly selected from QUANT.
QUANT is released without a specific license.

A.4 Models Appendix
While FROMAGe is trained with a contrastive
learning objective for image captioning and it is
shown to perform particularly well with longer
textual contexts, BLIP-2 jointly optimizes three
pre-training objectives that share the same input
format and model parameters: image-text con-
trastive learning, image-grounded text generation,
and image-text matching. The main innovation of
LLaVA is the use GPT-4 generated visual instruc-
tion tuning data. Moreover, LLaVA has a simpler
scheme to connect image and language represen-
tations compared to BLIP-2 and FROMAGe. We
used blip2-opt-2.7b and llava-v1.5-7b, while
for FROMAGe we used the model made available
by Koh et al. (2023). FROMAGe and LLaVA are
released with an Apache-2.0 license. BLIP-2 is
distributed with BSD 3-Clause License. We run
our experiments under the model license.

A.5 Generation Details
The Effect of Different top_p Values We ex-
perimented with various top_p values for nucleus

sampling decoding. As illustrated in Figure 10
(showing the results for LLaVA, with similar re-
sults for the other models), we observe that this
variable does not play a significant role in our ex-
perimental setup for all the tasks analyzed.

Different prompts In our experiments, we
prompted the models with the same instructions
provided to human annotators during the collec-
tion of the different datasets analyzed. We also
experimented with small variations of the above-
mentioned prompts, such as ‘What is the object
in the image?’ for the NOUN dataset, ‘Name the
object in the red box with the most appropriate
single name’ for ManyNames, and a more detailed
instruction for QUANT, such as ‘Carefully examine
the image. Can you determine the proportion of an-
imals present, compared to objects? Please select
the most accurate answer from the options below’.
While we do not observe any significant differ-
ence between NOUN and ManyNames, the revised
prompt for QUANT leads to a slight improvement
in the model performance, with LLaVA reaching
a correlation of 0.29. Still, the low absolute cor-
relation coefficient highlights that computational
models struggle to accurately assign quantifiers to
visual scenes. This result demonstrates that the
prompt may influence the performance of the mod-
els on this task. Although exploring which prompts
work best was beyond the scope of this paper, we
leave a systematic exploration of this aspect to fu-
ture research.

A.6 Additional Details
The data used in our work do not contain any infor-
mation that names or uniquely identifies individual
people or offensive content. FROMAGe has 5M
trainable parameters and a total number of around
7.2B parameters. BLIP-2 has 188M trainable pa-
rameters and 2.7B total parameters. LLaVA has 7B
parameters. All the models are evaluated on a sin-
gle GPU (NVIDIA RTX A5000). We experimented
with a few configurations of hyperparameters for
nucleus sampling generation ( described in Section
3). We did not find significant differences across
different hyperparameters. We used the SciPy li-
brary (https://scipy.org/) to compute the cor-
relation/divergence results. We used the NLTK li-
brary (https://www.nltk.org/) to extract nouns
from the model output for ManyNames.
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Figure 6: Toy example to show how the effect of over-generating a noun that was not often assigned by humans
(model 1) and generating a noun that was not selected by humans (model 2) on the inverse Jensen–Shannon
divergence metric.
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Figure 7: Example of the model output in the NOUN dataset.
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Figure 8: Density plot reporting the frequency distribution of responses for the 9 quantifiers (y-axis) against the
proportion of targets in the scene (x-axis).
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Figure 9: How often each quantifier (x-axis) is selected
by the model (y-axis, expressed as %), regardless of the
proportion of targets (i.e., animals) in the image.
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Figure 10: The role of different top_p values for nucleus
sampling decoding using the LLaVa model.
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Correct: 0 1     2 7

FROMAGe: 3         15          ‘many’      ‘many’

BLIP-2: 1 5     7 8

LLaVA: 0 1     2 4

Correct: 2 6     4         14

FROMAGe: 3      ‘many’     4      ‘many’

BLIP-2: 6         12    10         70

LLaVA: 3 4     4         12

How many animals are there in the image?

Figure 11: How many animals are there in the image? All models fail to successfully count the number of animals
in the image. Note that models generally output a number but sometimes FROMAGe outputs the quantifier ‘many’
which, interestingly, is the quantifier the model is strongly biased towards as illustrated in Figure 8 and discussed in
Section 4.
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