
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 38–46
August 11-16, 2024 ©2024 Association for Computational Linguistics

Revisiting Code Similarity Evaluation with Abstract Syntax Tree Edit
Distance

Yewei Song1, Cedric Lothritz1,2, Daniel Tang1, Tegawendé F. Bissyandé1, and Jacques Klein1

1University of Luxembourg
2Luxembourg Institute of Science and Technology

1{yewei.song, xunzhu.tang, tegawende.bissyande, jacques.klein}@uni.lu
2{cedric.lothritz}@list.lu

Abstract

This paper revisits recent code similarity evalu-
ation metrics, particularly focusing on the ap-
plication of Abstract Syntax Tree (AST) editing
distance in diverse programming languages. In
particular, we explore the usefulness of these
metrics and compare them to traditional se-
quence similarity metrics. Our experiments
showcase the effectiveness of AST editing dis-
tance in capturing intricate code structures, re-
vealing a high correlation with established met-
rics. Furthermore, we explore the strengths
and weaknesses of AST editing distance and
prompt-based GPT similarity scores in com-
parison to BLEU score, execution match, and
Jaccard Similarity. We propose, optimize, and
publish an adaptable metric that demonstrates
effectiveness across all tested languages, repre-
senting an enhanced version of Tree Similarity
of Edit Distance (TSED).

1 Introduction and Related Work

In the fields of natural language processing and soft-
ware engineering, code generation tasks are gaining
more and more attention. Assessing the quality of
generated code is now critically important, but we
still lack evaluation methods other than traditional
statistical sequence evaluation methods. Widely
used semantic evaluation metrics like BLEU score
and Jaccard similarity rely on statistical character-
istics, overlooking the intricate grammatical struc-
tures and logical relationships inherent in complex
programming languages.

However, recent developments in the NLP field
paved the way for novel evaluation metrics which
we explore in this study. For one, the staggering
number of powerful large language models (LLMs)
such as GPT-3.5/4 (Achiam et al., 2023) revolution-
ized the NLP landscape and led to noteworthy ad-
vancements in the realm of code review and evalua-
tion (Wang et al., 2023; Tang et al., 2024). Another
recent study introduced the novel TSED metric and

used it to evaluate text-to-SQL tasks (Song et al.,
2023). For this study, we take advantage of these
developments to (1) prompt the GPT-4 model to
generate similarity scores for code, and (2) expand
on the TSED metric.

We utilize these two different metrics (GPT and
TSED) to evaluate the structural similarity of differ-
ent programming languages and how they relate to
execution matches. Furthermore, we address how
these metrics are correlated to semantic similarity
metrics like the BLEU score. Finally, we investi-
gate some limitations of these metrics by delving
into the impact of TSED’s penalty weight of tree
operations on evaluation accuracy and exploring
the stability of outputs from the GPT LLMs.

As a result, we have these 3 contributions from
this research: (a) we propose and publish a new tool
for 48 programming languages1, (b) we discuss 2
recent evaluation metrics and 2 traditional metrics
and compare them via correlation coefficient, recall
to execution match, (c) we discuss the unstable
nature of GPT similarity scoring and the ways to
optimize TSED.

2 Approaches

2.1 TSED on Programming Languages

Applying the TSED evaluation method, initially
designed for SQL analysis, we have undergone
modifications to extend its applicability to various
programming languages. The fundamental TSED
approach, illustrated in Figure 1, encompasses AST
parsing, AST Editing Distance Calculation, and
normalization, closely resembling the methodology
outlined in the original paper. However, we have
made modifications to both the AST parsing and
normalization.

Code Parsing: Parsing in the domain of pro-
gramming languages involves parsing raw code

1https://github.com/Etamin/TSED

38

Code 1

Code 2

Tr
ee

-s
itt

er
 P

ar
se

r

Tree 1

Tree 2

Distance
Computation

Strategy
Computation

Strategy S
Tree Edit Distance

MaxNodeNum
TSED

APTED Algorithm
Editing Distance Computation

Normalization

Figure 1: Pipeline of TSED Code Evaluation Metric

text into its associated AST. This parsing under-
scores the complexity of interpreting various pro-
gramming constructs and converting them into a
structured grammar tree representation.

We use tree-sitter2 as our AST parser which is
based on GLR(generalized left-to-right rightmost),
a powerful parsing algorithm commonly found in
the literature (Latif et al., 2023; Tomita, 1991; Clem
and Thomson, 2021).

Tree Distance Computation: For calculat-
ing tree edit distance as ∆, we utilize the same
function as outlined in the TSED paper, which
is APTED(All Path Tree Edit Distance) algo-
rithm (Pawlik and Augsten, 2015, 2016). Consid-
ering G1 as predicted code’s AST and G2 as AST
from ground-truth:

∆(G1, G2) = min
ops

n∑

i=1

w(opi) (1)

Here, ops is a sequence of edit operations trans-
forming G1 into G2, with w(opi) as the cost for
the ith operation.

Normalization: Normalization of tree edit dis-
tances accounts for the complexity of the code by
considering the maximum number of nodes be-
tween two trees, and we add a ramp function to
avoid some extreme situations:

TSED = max{1− δ

MaxNodes(G1, G2)
, 0} (2)

This provides a metric for structural similarity
comparison of programming code, enabling a nu-
anced analysis beyond mere syntactic comparison.

2.2 GPT Structure Similarity
Between 2020 and 2023, OpenAI introduced the
GPT-3/3.5 and GPT-4 models, showcasing remark-

2https://tree-sitter.github.io/tree-sitter/

able reasoning capabilities and achieving state-of-
the-art performance across numerous tasks (Brown
et al., 2020). Our approach involves utilizing
prompts to elicit the model’s output regarding the
structural similarity between two code segments,
resulting in a score on a scale from 0 to 1. A score
of 1 indicates identical structures, while 0 signifies
complete dissimilarity. Despite its effectiveness,
this metric operates as a black box, leaving us un-
aware of the specific calculations performed by
GPT or whether it consistently employs the same
metric. From various research papers, we’ve ob-
served that these LLMs tend to produce more un-
stable results with each iteration (Tian et al., 2023;
Liu et al., 2023).

Given 2 Java code paragraphs, please gen-
erate a similarity score from 0 to 1 (to three
decimal places), by grammar parsing struc-
ture. Answer with a format like [[0.777]].
=====Code 1=====
[Java code snippet 1]
=====Code 2=====
[Java code snippet 2]
=====End=====

This prompt above is designed to calculate and
return a similarity score between two Java code
snippets based on their grammatical structure. The
similarity score ranges from 0 to 1, with three dec-
imal places of precision. A score of 1 indicates
identical grammatical structures, while a score of
0 indicates completely different structures. The
output format [[0.777]] facilitates easy extraction
and post-processing of the score.

39

3 Research Questions and Targets

RQ1: Can TSED be used in more programming
languages? We investigate the adaptability of AST
Edit Distance which is a generalized version of
TSED, exploring its effectiveness in languages like
Python and Java to assess its applicability for code
similarity analysis.
RQ2: How are TSED and GPT similarity cor-
related to semantic similarity and execution
match? We assess the correlation between these
different metrics to understand their respective con-
tributions in evaluating code similarity across mul-
tiple programming languages.
RQ3: What are the limits of these metrics? We
assess the stability of GPT-based similarity output
and analyze how parameters, particularly operation
weights (delete, insert, rename), influence TSED.

4 Experiments

4.1 General Setup

In this study, our primary objective is to apply the
theoretical framework to a diverse range of pro-
gramming languages. To achieve this, we aim to
identify executable datasets and evaluate them us-
ing predefined metrics. The experimental setup
comprises two key tasks: firstly, expanding the ap-
plication of TSED and GPT similarity to additional
programming languages, followed by exploring the
correlation between these metrics. Subsequently,
we seek to assess the stability of GPT scoring and
examine the impact of various parameters on the
TSED metric. This structured approach allows us
to comprehensively investigate the adaptability, cor-
relations, and stability of the chosen metrics across
a spectrum of programming languages.

4.2 Evaluation Metrics

• BLEU Score is calculated as the geometric mean
of the modified precision scores for various n-
gram lengths, providing a concise and standard-
ized similarity measurement between the gener-
ated and reference text (Papineni et al., 2002).

• Jaccard Similarity is a measure of similarity
between two sets and is calculated by dividing the
size of the intersection of the sets by the size of
their union, offering a quantitative assessment of
the degree of overlap between the sets’ elements.

• Execution Match Execution Match pertains to
the consistency in execution outcomes between

generated code and its corresponding ground
truth, evaluating the equivalence in practical func-
tionality. 1 in Execution match means they have
the same execution results, and 0 means different.

• GPT Similarity mentioned in the Section 2.2

• TSED mentioned in the Section 2.1.

4.3 Datasets
Although the execution match metric is infre-
quently employed in programming code-related
datasets, its prominence has increased in recent
years. Our comparative analysis involved assessing
datasets from various papers, considering factors
such as dataset sizes, programming languages, and
executables. As highlighted in Table 1, the MBXP
dataset encompasses 13 different languages, serv-
ing as a function-level benchmark that effectively
evaluates programming paragraphs. However, the
MBXP dataset includes ground-truth solutions for
only 7 languages, with C# omitted due to com-
pilation issues. Additionally, we consider the
CoderEval dataset to facilitate a comparison be-
tween Python and Java code generation, leveraging
its longer test samples, results are in the appendix.

Table 1: Widely-used code generation benchmarks, se-
lected from GitHub

Benchmark Language Samples Executeable
CoNaLA(Yin et al., 2018) Python 500 No
Concode(Iyer et al., 2018) Java 2000 No
MBXP(Athiwaratkun et al., 2022) Multilingual 974 Yes
InterCode(Yang et al., 2023) Bash, SQL 200, 1034 Yes
CoderEval(Yu et al., 2024) Python, Java 230 Yes
RepoEval(Liao et al., 2023) Python 383 No

In the Bash-Shell scenarios, we reproduce results
and conduct a comparative analysis using the In-
terCode dataset. Notably, we identify the SPIDER
dataset within InterCode and establish it as a base-
line. SPIDER, previously evaluated in comparison
to the TSED paper, is a substantial human-labeled
dataset for the text-to-SQL task. This dataset en-
compasses databases with intricate join solutions
across diverse domains (Yu et al., 2018).

5 Results

5.1 Similarity Results
As we analyze the results presented in Table 2,
our experiment demonstrates the effective perfor-
mance of TSED and GPT similarity in evaluating
the MBXP dataset across all 6 programming lan-
guages. No instances of parsing or scoring genera-
tion failures were observed, confirming the robust-
ness of these metrics across languages.

40

Table 2: Evaluation Metrics comparison for 6 languages
on MBXP dataset, prediction generated by GPT-3.5-
Turbo model, ground truth from dataset

Languages TSED BLEU Jaccard Sim GPT-4 Execution
Java 0.3746 0.2041 0.2733 0.8143 0.6550
Python 0.1888 0.0843 0.2000 0.6751 0.6842
JavaScript 0.2037 0.0846 0.2037 0.6763 0.6811
Typescript 0.1360 0.0637 0.1397 0.5313 0.6642
Ruby 0.1727 0.0438 0.1810 0.7067 0.6428
Kotlin 0.3412 0.1847 0.3109 0.7073 0.5569

RQ1: Can TSED be used in more programming
languages?

Answer: The exploration of TSED’s adaptability
beyond SQL shows promise, especially in lan-
guages like Java and Kotlin, indicating its poten-
tial for code analysis. TSED proves effective in
programming languages with functional parsers,
allowing for structural similarity calculation.

Python Java JavaScript

TypeScript Ruby Kotlin

Figure 2: MBXP dataset, Pearson Correlation Heatmap
between evaluation-metrics on GPT-3.5

Moreover, TSED shows a commendable corre-
lation ranging from 0.6 to 0.8 with BLEU score
and Jaccard similarity, as illustrated in Figure 2.
Additionally, TSED exhibits a strong correlation
with GPT similarity, especially in Java and Python
during the CoderEval test, as depicted in Figure 3,
underscoring its sensitivity to code structure. We
employ thresholding to establish a prediction-to-
execution match. If the metric value exceeds the
threshold T , we assign the prediction as 1; other-
wise, it is set to 0. The optimal threshold values
are determined through enumeration to achieve the
best match results. Based on their F1/Accuracy
match to the Execution match, both TSED and
GPT similarity exhibit higher accuracy compared
to semantic metrics in Table 3. Notably, GPT simi-
larity demonstrates a slightly superior F1 score and
TSED gives good results on accuracy.

Java

Python

ChatGPT CodeGen PanGu

Figure 3: CoderEval Pearson Correlation Heatmap be-
tween evaluation-metrics/models/languages

RQ2: How are TSED and GPT similarity corre-
lated to semantic similarity and execution match?

Answer: Our evaluation of TSED metrics, GPT-
based similarity, and other semantic evaluation
metrics revealed consistently high Pearson cor-
relations between TSED, GPT Score, BLEU
Score, and Jaccard Similarity. TSED exhibited no-
table accuracy in matching with Execution-Match,
while GPT score demonstrated the highest F1
score, highlighting their respective strengths in
capturing structural and semantic nuances in code
across various programming languages.

5.2 Stability of GPT Scoring

To understand how unstable GPT scoring is, we
execute the GPT-4 Similarity scoring five times on
identical prediction sets, we establish the initial
result as a baseline to assess differences through
statistical indicators such as Mean Squared Error
(MSE) or Mean Absolute Error (MAE) in compari-
son to the first scoring. Table 4 demonstrates that
GPT scoring exhibits limited stability in the context
of code similarity evaluation.

5.3 Parameter optimization of TSED

We can configure the penalty weight of 3 operations
in tree distance computing: Delete, Insert, and
Rename. Figure 4 which is from a test for the
MBXP/Java dataset shows is ‘Insert’ has a sweet
spot of 0.8. ’Delete’ and ’Rename’ operations just
keep them in 1.0 penalty weight as the best choice.
But we need to keep in mind it can be different in
other programming languages.

41

Table 3: Execution Match F1 score & Accuracy for each thresholding metrics

Languages TSED GPT BLEU Jaccard
Threshold F1 Acc Threshold F1 Acc Threshold F1 Acc Threshold F1 Acc

Python 0.23 0.5650 0.6057 0.83 0.6403 0.6735 0.07 0.5719 0.6150 0.19 0.5907 0.6253
Java 0.10 0.5108 0.6499 0.56 0.5693 0.6396 0.03 0.5184 0.5755 0.16 0.5612 0.6018
JavaScript 0.12 0.5494 0.6002 0.69 0.5924 0.6205 0.02 0.4964 0.5267 0.12 0.5245 0.5885
Typescript 0.07 0.5367 0.5822 0.51 0.5521 0.5708 0.01 0.4987 0.5553 0.08 0.5284 0.5708
Ruby 0.13 0.5045 0.5306 0.54 0.6051 0.6811 0.01 0.4375 0.4490 0.12 0.5142 0.5612
Kotlin 0.28 0.6834 0.6823 0.8 0.6681 0.6721 0.1 0.6441 0.6457 0.22 0.6387 0.6533

Table 4: Unstable nature of GPT-4 scoring output

Metrics 1st 2nd 3rd 4th
Mean Squared Error 0.0581 0.0583 0.0527 0.0628
Mean Absolute Error 0.1902 0.1940 0.1825 0.1996

Weight

P
ea

rs
on

 c
or

re
la

tio
n

co
ef

fic
ie

nt

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.3 0.5 0.8 1.0

Delete Insert Rename

Figure 4: Change each of penalty weight influence cor-
relation to GPT structure similarity score

RQ3: What are the limits of these metrics?

Answer: Penalty weight parameters play influen-
tial roles in the TSED metric. Besides, GPT-based
similarity metrics offer higher performance at the
cost of more money, leading to a bit of unstable
output. This underscores the need to carefully
balance performance and stability considerations
in code similarity assessment across various pro-
gramming languages.

5.4 Efficiency

The table 5 illustrates the computational time (in
ms) required by each programming language tested,
including TSED, BLEU score, Jaccard similarity,
and GPT 3.5 Score. Our findings indicate that the
performance of TSED is comparable to the BLEU
score, with significantly lower computational time
compared to GPT-3.5. This suggests that TSED is

indeed efficient enough to be applied at scale.

6 Conclusion

In this paper, we applied TSED to more program-
ming languages, compared GPT similarity and
TSED to semantic metrics, and checked represen-
tation to execution match. Then we discuss limi-
tations about the stability of GPT scoring and the
penalty parameters of TSED.

Limitations

While our study provides valuable insights into
code similarity assessment using TSED and GPT-
based metrics, it is essential to acknowledge certain
limitations. Firstly, the generalizability of our find-
ings may be influenced by the specific datasets and
programming languages employed in our analysis.
Additionally, the stability of GPT-based similarity
metrics, as highlighted in our results, poses a limita-
tion in terms of consistent and reliable code assess-
ments. Furthermore, variations in the interpretation
and definition of similarity metrics across differ-
ent studies may introduce inherent biases. Lastly,
the effectiveness of TSED metrics may be con-
tingent upon the quality of the employed parsers
and the fine-tuning of penalty parameters. These
limitations underscore the need for caution when
extrapolating our results to diverse contexts and em-
phasize the necessity for further research to address
these challenges.

Ethics Statement

Our research adheres to ethical standards, prioritiz-
ing integrity and respect for all involved parties. We
ensured data privacy, obtained informed consent

Table 5: Average execution time(ms) of metrics and programming languages

Python Java JavaScript TypeScript C# Ruby Kotlin
TSED 0.0227 0.0645 0.0315 0.0697 0.0373 0.0092 0.0307
BLEU 0.0075 0.0113 0.0155 0.0163 0.0160 0.0116 0.0144
Jaccard 1.6e-5 2.9e-5 1.9e-5 2.4e-5 2.7e-5 1.5e-5 1.8e-5
GPT3.5ß Score 1304 1860 1231 1339 1470 1044 1681

42

where applicable, and maintained transparency in
our methodologies. The study was conducted with
the utmost consideration for ethical guidelines and
the welfare of participants, upholding the principles
of fairness, accountability, and academic integrity
throughout the research process.

Acknowledgment

This research was funded in whole, or in part, by
the Luxembourg National Research Fund (FNR),
grant references NCER22/IS/16570468/NCER-
FT and BRIDGES2021/IS/16229163/LuxemBERT.
We extend our heartfelt appreciation to our collab-
orator, BGL BNP PARIBAS, for their invaluable
support and special thanks to Saad Ezzini from Lan-
caster University for his advisory contributions.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al.
2022. Multi-lingual evaluation of code generation
models. arXiv preprint arXiv:2210.14868.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Timothy Clem and Patrick Thomson. 2021. Static analy-
sis at github: An experience report. Queue, 19(4):42–
67.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to
code in programmatic context. arXiv preprint
arXiv:1808.09588.

Afshan Latif, Farooque Azam, Muhammad Waseem
Anwar, and Amina Zafar. 2023. Comparison of lead-
ing language parsers–antlr, javacc, sablecc, tree-sitter,
yacc, bison. In 2023 13th International Conference
on Software Technology and Engineering (ICSTE),
pages 7–13. IEEE.

Dianshu Liao, Shidong Pan, Qing Huang, Xiaoxue Ren,
Zhenchang Xing, Huan Jin, and Qinying Li. 2023.
Context-aware code generation framework for code
repositories: Local, global, and third-party library
awareness. arXiv preprint arXiv:2312.05772.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt
understands, too. AI Open.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

Mateusz Pawlik and Nikolaus Augsten. 2015. Efficient
computation of the tree edit distance. ACM Transac-
tions on Database Systems (TODS), 40(1):1–40.

Mateusz Pawlik and Nikolaus Augsten. 2016. Tree edit
distance: Robust and memory-efficient. Information
Systems, 56:157–173.

Yewei Song, Saad Ezzini, Xunzhu Tang, Cedric
Lothritz, Jacques Klein, Tegawendé Bissyandé, An-
drey Boytsov, Ulrick Ble, and Anne Goujon. 2023.
Enhancing text-to-sql translation for financial system
design. arXiv preprint arXiv:2312.14725.

Daniel Tang, Zhenghan Chen, Kisub Kim, Yewei Song,
Haoye Tian, Saad Ezzini, Yongfeng Huang, and
Jacques Klein Tegawende F Bissyande. 2024. Col-
laborative agents for software engineering. arXiv
preprint arXiv:2402.02172.

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-
Chi Cheung, Jacques Klein, and Tegawendé F Bis-
syandé. 2023. Is chatgpt the ultimate program-
ming assistant–how far is it? arXiv preprint
arXiv:2304.11938.

Masaru Tomita. 1991. Generalized LR parsing.
Springer Science & Business Media.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu,
Song Wang, and Qing Wang. 2023. Software testing
with large language model: Survey, landscape, and
vision. arXiv preprint arXiv:2307.07221.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. arXiv preprint arXiv:2306.14898.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In Proceedings of the 15th interna-
tional conference on mining software repositories,
pages 476–486.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,

43

http://arxiv.org/abs/2005.14165
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

and Tao Xie. 2024. Codereval: A benchmark of prag-
matic code generation with generative pre-trained
models. In Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering, pages
1–12.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

A Additional Experiment Details

A.1 Parser Comparison
The ANTLR3 (ANother Tool for Language Recog-
nition) tool, serving as a distinct AST parser com-
pared to tree-sitter, demonstrated notable differ-
ences. Following our evaluation using identical
settings for TSED metrics, as Figure 5 shows, it
became evident that the correlation with other met-
rics was inferior to the original solutions. This
experiment underscores the crucial role of parser
performance in the computation procedure, high-
lighting the significance of selecting an appropriate
parser for accurate and reliable code similarity as-
sessments.

ChatGPT CodeGen PanGu-Coder

Figure 5: CoderEval Java Pearson Correlation Heatmap
between evaluation-metrics/models/languages on TSED
with ANTLR parser

A.2 Other experiment results
Due to space constraints, a subset of experimental
data is provided in the appendix. A comprehensive
evaluation of CoderEval and InterCoder is detailed
in Table 6, while specific original sample data from
the MBXP dataset is presented in Table 7.

CoderEval, designed for class-level code genera-
tion tasks, proves to be a challenging test. Utilizing
Pass@10 data as a test sample, TSED demonstrates
a robust correlation with semantic indicators in
both Java and Python languages. Additionally, a
noteworthy correlation is observed between TSED
and GPT Similarity.

In the case of InterCoder, we confirm that TSED
calculations extend to Bash scripts. Also, the cor-
relation in Figure 6 between TSED to semantic
metrics is acceptable, the GPT score doesn’t have
a good correlation to others. We also replicate the
performance of the SPIDER dataset, noting differ-
ences from the original paper but not to a significant
extent.

Despite the notably low semantic similarity be-
tween the MBXP built-in samples and the ground

3https://www.antlr.org/

44

truth, a relatively high execution match is observed.
We acknowledge this disparity and plan to address
it through optimization in future research endeav-
ors.

Table 6: 4 Evaluation Metrics compared to Ground
Truth on CoderEval(Java&Python) / InterCode(Bash) /
SPIDER(SQL)

Languages Model TSED BLEU Jaccard Sim GPT-4 Execution
Java ChatGPT 0.4971 0.3655 0.3384 0.7392 0.3539

CodeGen 0.3616 0.2871 0.2506 0.6603 0.1391
PanGu 0.5029 0.3722 0.3849 0.6778 0.2543

Python ChatGPT 0.2840 0.1285 0.1763 0.5883 0.2104
CodeGen 0.2703 0.1778 0.1821 0.5604 0.0948
PanGu 0.2829 0.0868 0.1567 0.5086 0.1183

Shell
GPT-4 0.5853 0.2816 0.3567 0.8511 0.4851
starchat 0.4065 0.1594 0.2081 0.6740 0.2374
vicuna 0.4755 0.1621 0.2295 0.7164 0.2451

SQL
ChatGPT-3.5 0.6824 0.3304 0.3710 0.9461 0.6482
nsql-6B 0.8022 0.4493 0.4356 0.9265 0.5483
RESDSQL 0.7422 0.2084 0.1868 0.9629 0.7756

Table 7: 4 Evaluation Metrics compare to Ground Truth
on 7 languages MBXP Dataset Samples

Languages TSED BLEU Jaccard Sim GPT-4 Execution
Java 0.2218 0.1046 0.1960 0.4248 0.853
Python 0.1550 0.0255 0.1222 0.3396 0.822
JavaScript 0.1870 0.0573 0.1685 0.4005 0.786
Typescript 0.1186 0.0288 0.1260 0.4247 0.872
Ruby 0.2073 0.0235 0.1796 0.4830 0.589
Kotlin 0.1720 0.0336 0.1877 0.3976 0.637

Bash

SQL

GPT-4 nsql RESDSQL+PICARD

GPT-4 StarChat Vicuna

Figure 6: InterCode/SPIDER Pearson Correlation
Heatmap between evaluation-metrics/models/languages

B Case Studies

B.1 A. Low BLEU, but high TSED

Code Paragraph 1
int result = 0;

for(int i = 0; i < n; i++) {
result = n * (7 * n - 5) / 2;

}

return result;
}

}
Code Paragraph 2
int jacobsthalNumber = 1;

for(int i = 2; i <= n; i++){
jacobsthalNumber =

↪→ jacobsthalNumber + (n
↪→ - i) * (i - 1);

}
return jacobsthalNumber;

}
}

In the provided code snippets, both segments
involve loops for performing calculations, which
contributes to their high structural similarity. How-
ever, the semantic similarity is relatively low due to
the significant disparity in variable names, which
occupy a considerable portion of the tokens. De-
spite the differences in semantics, the BLEU score,
a metric commonly used for evaluating text similar-
ity, yields a score of 0.359, indicating some level
of similarity. In contrast, the Tree Similarity of
Edit Distance (TSED) metric, which accounts for
structural differences, produces a higher score of
0.8, highlighting the effectiveness of TSED in cap-
turing structural similarities even when semantic
differences exist.

B.2 BLEU and TSED similar

Code Paragraph 1
def max_of_two(a, b):

if a > b:
return a

else:
return b

Code Paragraph 2
def max_of_two(a, b):

return max(a, b)

Both the BLEU score (0.408) and the TSED (0.444)
score suggest that while the two code snippets
achieve somehow similar functionality, they do so
using different structural approaches.

Token Similarity: Despite structural differ-
ences, the two snippets share many common tokens,
leading to a moderate BLEU score. This reflects
their similar semantic intent and consistent use of
basic programming constructs.

Structural Difference: The TSED score high-
lights the structural changes. The first snippet uses

45

explicit control flow statements (if-else), while the
second snippet uses a built-in function (max). This
difference is significant enough to lower the struc-
ture similarity score but not so drastic as to suggest
entirely different functionalities.

Overall, these scores indicate that the snippets
are functionally similar (performing the same task)
with some commonality in token usage but exhibit
distinct structural approaches in their implemen-
tations. This case illustrates how different coding
styles and structures can be used to achieve the
same outcome in programming.

B.3 Let ChatGPT explain in detail

Prompt: Given 2 Java code paragraphs,
please generate a similarity score from 0
to 1 (to three decimal places), by grammar
parsing structure. Answer with a format
like [[0.777]]. And give us 3 dimensions
of similarity in integer score 1 5, which is
“functional”, “tree structure”, and “semanti-
cal”; Then give the reason of the score you
think if it’s high or low.

int result = 0;
for(int i = 0; i < n; i++) {

result = n * (7 * n - 5) / 2;
}

return result;
}

}
int jacobsthalNumber = 1;

for(int i = 2; i <= n; i++){
jacobsthalNumber =

↪→ jacobsthalNumber + (n
↪→ - i) * (i - 1);

}
return jacobsthalNumber;

}
}

Here is the similarity score and the three dimen-
sions of similarity for the given code snippets:
[[0.875]] Functional Similarity: 4 Tree Structure
Similarity: 5 Semantical Similarity: 3 Explanation:

• Functional Similarity (4): Both code snippets
perform calculations within a loop structure,
albeit with different mathematical operations.
They both iterate over the variable i to calcu-
late a result based on the value of n.

• Tree Structure Similarity (5): The overall
structure of both code snippets is highly simi-
lar, with both containing a loop structure fol-
lowed by a calculation and a return statement.

• Semantical Similarity (3): While the overall
structure is similar, the semantics differ sig-
nificantly. The variable names (result vs. ja-
cobsthalNumber) and the mathematical opera-
tions performed within the loop differ, leading
to a moderate level of semantic dissimilarity.

46

