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Abstract

Language models (LMs) can express factual
knowledge involving numeric properties such
as Karl Popper was born in 1902. However,
how this information is encoded in the model’s
internal representations is not understood well.
Here, we introduce a method for finding and
editing representations of numeric properties
such as an entity’s birth year. We find directions
that encode numeric properties monotonically,
in an interpretable fashion. When editing rep-
resentations along these directions, LM output
changes accordingly. For example, by patch-
ing activations along a "birthyear" direction we
can make the LM express an increasingly late
birthyear. Property-encoding directions exist
across several numeric properties in all models
under consideration, suggesting the possibil-
ity that monotonic representation of numeric
properties consistently emerges during LM
pretraining. Code: https://github.com/
bheinzerling/numeric-property-repr

A long version of this short paper is available
at: https://arxiv.org/abs/2403.10381

1 Introduction

Language models (LMs) can express factual knowl-
edge (Petroni et al., 2019; Jiang et al., 2020;
Roberts et al., 2020; Heinzerling and Inui, 2021;
Kassner et al., 2021). For example, when queried
In which year was Karl Popper born? Llama 2
(Touvron et al., 2023) gives the correct answer
1902. While the question if LMs “know” anything
at all is subject of debate (Bender and Koller, 2020;
Hase et al., 2023b; Mollo and Millière, 2023; Led-
erman and Mahowald, 2024), empirical work has
progressed from behavioral analysis focused on
the accuracy and robustness of knowledge expres-
sion (Shin et al., 2020; Jiang et al., 2021; Zhong
et al., 2021; Youssef et al., 2023) to representa-
tional analysis aimed at understanding how fac-

tual knowledge is encoded1 in model parameters
(De Cao et al., 2021; Mitchell et al., 2021; Meng
et al., 2022) and activations (Hernandez et al., 2023;
Merullo et al., 2023; Geva et al., 2023; Gurnee and
Tegmark, 2023).

However, representational analysis has mainly
targeted entity-entity relations such as Warsaw is
the capital of Poland. How LMs encode factual
knowledge involving numeric properties, such as
an entity’s birthyear, is less understood. Unlike
entity-entity relations, numeric properties have nat-
ural ordering and monotonic structure. While this
structure is intuitive for humans, LMs encounter
numeric properties mostly in form of unstructured
textual mentions. This raises the question if LMs
learn to represent numeric properties appropriately,
according to their structure.

Here, we devise a simple method for identify-
ing and manipulating representations of numeric
properties in LMs. We find low-dimensional sub-
spaces that strongly correlate with numeric proper-
ties across models and numeric properties, thereby
confirming and extending prior observations of rep-
resentations of numeric properties in LMs (Lié-
tard et al., 2021; Faisal and Anastasopoulos, 2023;
Gurnee and Tegmark, 2023; Godey et al., 2024).
Going beyond prior work (see §A), we show that
by causally intervening along directions in these
subspaces, LM output changes correspondingly.
That is, we find a monotonic relationship between
the intervention and the quantity expressed by the
LM. For example, an entity’s year of birth shifts ac-
cording to the strength and sign of the intervention
along a “birthyear” direction (Fig. 1). Taken to-
gether, our findings suggest that LMs represent nu-
meric properties in a way that reflects their natural
structure and that such monotonic representations
consistently emerge during LM pretraining.

1We say “X is encoded in Y” as shorthand for “X can be
easily extracted from Y”. See caveats in §5.
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Figure 1: Sketch of our main finding. Patching entity representations along specific directions in activation space
yields corresponding changes in model output.

Terminology. We briefly clarify important terms.
A quantity consists of a scalar numeric value
paired with a unit of measurement. A numeric
property is a property that can be described by
a quantity, e.g., birthyear, population size, geo-
graphic latitude. A numeric attribute is an in-
stance of a numeric property, associated with a
particular entity. For example, Karl Popper has
the numeric attribute birthyear:1902. By linear
representation we denote the idea that a numeric
attribute is encoded in a linear subspace of a LM’s
activation space. A monotonic representation is
a linear representation characterized by a mono-
tonic relationship between directions in activation
space and the value of the encoded numeric at-
tribute. That is, as activations shift along a particu-
lar direction the value of the corresponding numeric
attribute increases or decreases monotonically.

2 Finding Property-Encoding Directions

Motivation. While numeric properties generally
map naturally onto simple canonical structures,
such as number lines or coordinate systems, it is
not obvious that pretraining on largely unstructured
data enables LMs to appropriately represent such
structures. Our goal is to find out if and how nu-
meric properties are encoded in the geometry of
LM representations. How could such an encoding
look like? Based on two arguments, we hypoth-
esize that numeric properties are encoded in low-
dimensional linear subspaces of activation space.

The first argument rests on a key principle in
representation learning: a model generalizes if
and only if its representations reflect the structure
of the data (Conant and Ashby, 1970; Liu et al.,

2022). To the degree that current LMs generalize,
in the sense of achieving non-trivial performance
on benchmarks involving knowledge of numeric
properties (Petroni et al., 2019), we can expect that
their representations reflect the structure of numeric
properties. Since the natural structure of many nu-
meric properties is low-dimensional, we expect to
find low-dimensional structure in the representa-
tions of a well-performing model.

As second argument we adduce the linear rep-
resentation hypothesis, which posits a correspon-
dence between concepts and linear subspaces (El-
hage et al., 2022; Park et al., 2023; Nanda et al.,
2023). If the linear representation hypothesis is
true,2 this would imply that numeric properties are
encoded in linear subspaces. For brevity, we will
call a low-dimensional linear subspace of a LM’s
activation space a direction, regardless of whether
it is one- or multi-dimensional.

Method. Motivated by the hypothesis that nu-
meric properties are encoded as directions in acti-
vation space, we now devise an experimental setup
for finding out if such directions exist. A com-
mon choice for identifying linear structure is prin-
cipal component analysis (PCA; Pearson, 1901).
However, PCA looks for directions of maximum
variance, while we want to find directions that max-
imally covary with model outputs. This kind of
problem can be solved with partial least squares
regression (PLS; Wold et al., 2001).

Concretely, for a given numeric property we col-
lect n entities that have this property. For each

2For positive evidence, see Marks and Tegmark (2023);
Merullo et al. (2023); Tigges et al. (2023); Jiang et al. (2024)
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Figure 2: Low-dimensional subspaces of Llama-2-
13B’s activation space are predictive of the quantity ex-
pressed by the LM when queried for an entity’s birthyear.
Each line shows the performance of a regression model
fitted to predict the expressed birthyear from LM rep-
resentations, as a function of the number of PCA/PLS
components. Unlike PCA regression (dashed orange),
PLS (solid blue) identifies a small set of predictive com-
ponents. Controls with shuffled labels and random rep-
resentations fail to find predictive subspaces.

entity e we encode a prompt with a LM to ob-
tain entity representation xe of dimension d. That
is, X = [x1 · · · xn]T ∈ Rn×d. We also col-
lect the quantity ye expressed by the LM, i.e.,
Y = [y1 · · · yn]T ∈ Rn. Having collected en-
tity representations X and associated LM outputs
Y , we fit a k-component PLS model to predict Y
from a k-dimensional subspace of X . We vary the
number of components k and record goodness of
fit via the coefficient of determination R2.

Results. After selecting six frequent numeric
properties in Wikidata (Vrandečić and Krötzsch,
2014), for each property we sample n = 1000 pop-
ular3 entities and prompt the LM (in English) for
the corresponding attribute (See samples of entities
and prompts in §B). As entity representation we
take the hidden state of the entity mention’s last
token at layer l, choosing l as described in §F.

PLS regression results for Llama 2 13B repre-
sentations are shown in Fig. 2 and results for ad-
ditional models in §C. All properties can be pre-
dicted well (R2 ≥ 0.79), with the exception of
elevation (R2 = 0.43). Across all six properties,
PLS identifies small sets of predictive components.
For example, a PLS model with k = 7 components
achieves a goodness of fit of R2 = 0.91 when
predicting birthyear attributes from entity repre-

3We define popular entities as those in the top decile of the
rank mean of Wikidata degree and Wikipedia article length.
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Figure 3: Projection onto the top two PLS components
reveals monotonic structure in LM representations. Dots
represent entities and color corresponding birthyears.

sentations. Generally, all LMs appear to encode
almost the entirety (95% of maximum R2) of their
stored numeric attribute information in two- to six-
dimensional subspaces (see §D).

To further illustrate the low dimensionality of nu-
meric property representation, we plot a projection
onto the top two PLS components for the birthyear
property in Fig. 3 and for more properties and mod-
els in §E. Most plots show directions along which
attribute values increase monotonically, reflecting
good PLS fit for the corresponding properties.

3 Effect of Property-Encoding Directions

Motivation. So far, we have found correlative ev-
idence for the existence of directions in activation
space that monotonically encode numeric proper-
ties. However, representation is not a sufficient cri-
terion for computation (Lasri et al., 2022). In our
case this means that numeric properties might be
encoded in representations without affecting model
output. In order to make the stronger claim that
numeric properties are not only encoded monotoni-
cally, but that these representations have a mono-
tonic effect on LM output, we now perform inter-
ventions to establish causality.

Intuitively, we want to find out if making “small”
interventions leads to small changes in model out-
put, if “large” interventions lead to large changes,
and if the sign of the intervention matches the sign
of the change. We now formalize this intuition by
adapting the definition of linear representation by
Park et al. (2023) and Jiang et al. (2024).

Definition 1 (Linear representation of numeric
properties, adapted from Jiang et al. (2024)). A nu-
meric property is represented linearly if for all pairs
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Figure 4: Effect of activation patching along property-specific directions across six numeric properties. Each subplot
shows the change in the numeric attribute value expressed by Llama 2 13B, as a function of the edit weight αs. Red
lines show means across 100 entities and bands indicate standard deviations.

of attribute instances i, j with quantities qi ̸= qj
and their representations x⃗i, x⃗j , there exists a steer-
ing vector u⃗ so that x⃗i − x⃗j ∈ Cone(u⃗), where
Cone(v⃗) = {αv⃗ : α > 0} is the cone of vector v⃗.

Linearity of representations requires that repre-
sentations lie in a cone, but says nothing about their
ordering. To model the structure of numeric prop-
erties, we introduce the constraint that the ordering
of quantities is preserved in representation space.

Definition 2 (Monotonic representation of nu-
meric properties). A numeric property is repre-
sented monotonically if it is represented linearly
in Cone(u⃗) and for all triples of attribute instances
h, i, j with quantities qh > qi > qj and represen-
tations x⃗h, x⃗i, x⃗j the following holds: x⃗h − x⃗j =
αhj u⃗ and x⃗i − x⃗j = αij u⃗ if and only if αhj > αij .

There are many ways to operationalize this def-
inition. One is to prepare a series of monotonic
representations in Cone(u⃗) by varying α and then
testing if these representations yield monotonic out-
put changes, which is what we will do now.

Method. Viewing the LM as a causal graph
(Meng et al., 2022; McGrath et al., 2023), we inter-
vene via activation patching (Vig et al., 2020; Wang
et al., 2022; Zhang and Nanda, 2024) and observe
the effect on model output. Unlike the common
setup in which one replaces activations from one
input with activations from a different input, we

patch activations along directions, similar to the
manipulation method of Matsumoto et al. (2022).

Specifically, for each of the top K directions
u⃗k ∈ Rd, k ∈ [1 . .K] found by PLS, we pre-
pare patches p⃗s,k = αsu⃗k with edit weights αs

and step index s ∈ [1 . . 80]. Lacking a principled
method for choosing edit weights αs, we set their
range to the minimum and maximum PLS load-
ings on each property’s training split. This choice
yields patches covering the empirical range of ac-
tivation projections onto direction u⃗k. After sam-
pling ntrain = 1000 popular entities for each of the
six numeric properties we first fit PLS models for
each property, then apply activation patches p⃗s,k
to the representations of ntest = 100 held-out enti-
ties and for each entity record the LM’s expressed
quantity ys,k. To evaluate monotonicity, i.e., the no-
tion that small (large) edit weights αs should have
a small (large) effects and that negative (positive)
weights should decrease (increase) the expressed
quantity ys,k, we quantify the intervention effect
via the ranked Spearman correlation ρ(αs,k; ys,k).

Results. We are interested in the effects and
side effects on model output when patching ac-
tivations along property-specific directions. Look-
ing at effects first, we plot mean effects of di-
rected activation patching across six numeric prop-
erties in Fig. 4. We see that there are properties
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(a) Llama 2 7B
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(b) Llama 2 13B

Figure 5: Effects and side effects of directed activation patching. Diagonal entries (top-left to bottom right) show the
effect on the targeted property in terms of mean Spearman correlation between edit weight alphas, k and expressed
quantity ys, k. For example, patching an entity representation along a “birthyear” direction results in a corresponding
change in the quantity expressed by Llama 2 13B with a correlation of 0.84. Off-diagonal entries show side-effects,
e.g., “birthyear” patches affect LM output when queried for an entity’s death year with a correlation of 0.68.

for which directed activation patching has highly
monotonic effects, e.g., birthyear (ρ = 0.84), ele-
vation (ρ = 0.88), or work period start (ρ = 0.90),
suggesting that these properties have highly mono-
tonic representations. Other properties exhibit a
smaller degree of monotonic editability, e.g., longi-
tude (ρ = 0.55) and population (0.65), suggesting
that LM representations do not encode these prop-
erties as well. Figures for other models (see §G)
lead to similar conclusions.

Having observed the effects of our interventions
we now turn to their side effects on the expression
of properties that were not the target of the interven-
tion. For example, if we fitted a PLS regression to
find “birthyear” directions, birthyear is our targeted
property and all other properties, such as death
year or longitude are non-targeted properties. Us-
ing the directions found in §2, we prompt LMs for
non-targeted attributes, perform activation patch-
ing with weight αs along a direction found for the
targeted property and record expressed quantities
y′s,k. To see if non-targeted properties are affected
in a similar monotonic fashion as targeted ones, we
quantify the side-effect of directed activation patch-
ing as the mean Spearman correlation ρ(αs, y

′
s,k),

taken over 100 entities per property. We perform
this procedure for all combinations of targeted and
non-targeted properties, including three additional
properties, and show results in Fig. 5. In this fig-
ure, diagonal entries show the mean effect on tar-
geted properties and off-diagonal entries the size
of side-effects. For Llama 2 7B, the mean effect
size ρ̄ = 0.65 ± 0.12 (mean of diagonal entries),

is not much larger than the mean side-effect size
ρ̄ = 0.53 ± 0.11 (mean of off-diagonal entries).
In contrast, for Llama 2 13B the effect size of
ρ̄ = 0.85 ± 0.07 is much larger than the size of
side effects (ρ̄ = 0.58 ± 0.18). A plausible ex-
planation is that in Llama 2 7B properties share a
subspace which encodes generic numeric or small-
large ranges that are mapped to specific quanti-
ties depending on context, while the representation
space of Llama 2 13B is more akin to a mixture of
generic-numeric and property-specific subspaces.
More work is needed to test this hypothesis.

The analysis of side-effects is complicated by
real correlations between properties: Birthyear and
death year distances are bounded by the human
life span, latitude and population are correlated
since the Earth’s northern hemisphere is more pop-
ulous, etc. Consequently, one might argue that, say,
editing an entity’s birthyear should also affect LM
output when querying the entity’s death year.

4 Conclusions

We used partial least-squares regression to iden-
tify low-dimensional subspaces of activation space
that are predictive of the quantity an LM expresses
when queried for numeric attributes such as an
entity’s birthyear. We then performed activation
patching along directions in these subspaces and
observed corresponding changes in model output.
Our results suggest that LMs learn monotonic rep-
resentations of numeric properties and that these
representations exist in all of the examined LMs.
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5 Limitations

5.1 General limitations of representational
analysis

None of the language models studied in this work
are embodied agents or otherwise capable of em-
bodied cognition. Lacking direct sensorimotor
grounding (Harnad, 1990; Mollo and Millière,
2023; Harnad, 2024), LMs cannot directly per-
ceive, let alone precisely measure, the numerical
attributes of which we claim to have found mono-
tonic representations. It follows that any such repre-
sentations are an artifact of distributional patterns
in their training data, and that the best one can
hope for is isomorphy between model representa-
tions and the properties of the real-world entities to
which we tie those representations.

Leaving the groundedness of representations
aside, the idea that concepts, knowledge, or behav-
ior are “encoded” in neural representations might
seem intuitively appealing, but has been strongly
criticized, on theoretical grounds in the context of
biological and artificial neural networks in general
(Brette, 2019), and on empirical grounds in the
context of pretrained language models in particular
(Hase et al., 2023a; Niu et al., 2024).

Analysis of LM representations also has well-
known limitations. Under the mild assumption
that there exists a bijection between inputs and
their representations, all information extractable
from the input, i.e., the natural language prompt,
can also be extracted from the LM’s representation
of that sequence (Pimentel et al., 2020b). Hence
the question to be answered by representational
analysis is not whether a feature of interest can be
extracted or not, but how easy it is to extract. How
to best quantify “ease of extraction” (Pimentel et al.,
2020b) is an open question, although methods have
been proposed (Pimentel et al., 2020a; Voita and
Titov, 2020).

5.2 Specific limitations of the representational
analysis conducted in this work

The low-dimensional linear subspaces found in this
work allow relatively “easy” extraction when com-
pared to the nominally high dimensionalities of ac-
tivation space, but are still higher-dimensional than
necessary, since the represented structures (e.g.,
years, geographic coordinates) are canonically one-
to two-dimensional. Furthermore, activation space
is nominally high-dimensional but its intrinsic di-
mension is believed to be much lower (Li et al.,

2018; Aghajanyan et al., 2021; Razzhigaev et al.,
2024). For example Razzhigaev et al. (2024) pro-
vide estimates for the intrinsic dimension of various
LMs, ranging from about 10 to 70 dimensions (the
models used in our experiments are not covered).
If we view a non-linear, non-monotonic represen-
tation of full intrinsic dimensionality as the most
complex encoding with worst-case ease of extrac-
tion, and one- to two-dimensional linear monotonic
encodings as the simplest representation with op-
timal ease of extraction, then the low-dimensional
subspaces we found fall somewhere between these
bounds. Whether they are low-dimensional rela-
tive to the models’ intrinsic dimension is currently
unknown. Put differently, if the intrinsic dimen-
sion of Llama 2 7B turns out to be, say, 10, then
finding, a 10-dimensional subspace that encodes
all latitude information (see §D) is not surprising,
but necessary.

While we found evidence for monotonic repre-
sentation of numeric properties, it is likely that our
causal interventions via activation patching along
one-dimensional directions are too simplistic, con-
sidering the fact that according to our PLS regres-
sion results, numeric properties are encoded in low-
but not one-dimensional subspaces. Hence it is
possible that a more refined editing method oper-
ating on higher-dimensional directions will allow
more precise control over LM output. Furthermore,
our analysis is limited to popular entities, frequent
numeric properties, and English queries, i.e., the
combination most likely to be well-represented in
the LM training data.
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022. Inter-
pretability in the wild: a circuit for indirect object
identification in gpt-2 small.

Michael L. Waskom. 2021. seaborn: statistical data
visualization. Journal of Open Source Software,
6(60):3021.

Svante Wold, Michael Sjöström, and Lennart Eriks-
son. 2001. Pls-regression: a basic tool of chemo-
metrics. Chemometrics and intelligent laboratory
systems, 58(2):109–130.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.
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A Additional related work

Shaped by the locality of physical reality, the locality of human experience (Prystawski et al., 2023) gives
rise to distributional patterns of language use. Such patterns include patterns of geographic and temporal
coherence (Heinzerling et al., 2017), which reflect spatiotemporal proximity of real-world entities. These
patterns can be picked up by statistical models and allow, e.g., to predict geographic information from
co-occurrence statistics of cities mentioned in news articles (Louwerse and Zwaan, 2009). Probing static
word vector representations for numeric attributes of geopolitical entities, Gupta et al. (2015) obtain
good relative rankings, but do not evaluate absolute values nor analyze the geometry of representations.
Continuing this line of research, Liétard et al. (2021) probe LM representations for GPS coordinates.
Perhaps due to the—by current standards—small scale of the studied LMs, they find only limited success
but report that larger models appeared to encode more geographic information. Faisal and Anastasopoulos
(2023) measure how well the geographic proximity of countries can be recovered from LM representations
but differ from our work in their focus on the impact of politico-cultural factors.

Closest to our work is the analysis of geo-temporal information encoded in Llama 2 representations by
Gurnee and Tegmark (2023). Our work corroborates their finding of linear subspaces of activation space
which are predictive of numeric attributes, but is distinct in three important aspects. First, as we show in
§2, the subspaces found PCA, as used by Gurnee and Tegmark, are of considerably higher dimensionality
(50− 100) than the subspaces found by partial least-square regression (2− 17). Our finding thus tightens
the upper bound on the complexity of numeric property representation in recent LMs. Second, we make
explicit and formalize the notion of monotonic representation. Third, our interventions via directed
activation patching (§3) found one-dimensional directions with fine-grained effects on the expression of
numeric attributes, across all numeric properties and models we analyzed, thereby establishing a causal
relationship between monotonic representations and LM behavior.
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B Data sample

Property Prop. ID Entity Entity ID Prompt Value Unit

birthyear P569 Nina Foch Q235632 In what year was Nina Foch born? 1924 annum
birthyear P569 Geoffrey Holder Q945691 In what year was Geoffrey Holder born? 1930 annum
birthyear P569 Harriette L. Chandler Q5664432 In what year was Harriette L. Chandler born? 1937 annum
birthyear P569 Gabriel García Márquez Q5878 In what year was Gabriel García Márquez born? 1927 annum
birthyear P569 Norman Schwarzkopf Jr. Q310188 In what year was Norman Schwarzkopf Jr. born? 1934 annum
birthyear P569 Paul de Vos Q2610964 In what year was Paul de Vos born? 1590 annum
birthyear P569 Nicolas Carnot Q181685 In what year was Nicolas Carnot born? 1796 annum
birthyear P569 Steve Harvey Q2347009 In what year was Steve Harvey born? 1957 annum
birthyear P569 Tommy Lawton Q726272 In what year was Tommy Lawton born? 1919 annum
birthyear P569 Hans von Bülow Q155540 In what year was Hans von Bülow born? 1830 annum

death year P570 Johannes R. Becher Q58057 In what year did Johannes R. Becher die? 1958 annum
death year P570 Friedrich Georg Wilhelm

von Struve
Q57164 In what year did Friedrich Georg Wilhelm von

Struve die?
1864 annum

death year P570 Pierre Boulez Q156193 In what year did Pierre Boulez die? 2016 annum
death year P570 Giovanni da Palestrina Q179277 In what year did Giovanni da Palestrina die? 1594 annum
death year P570 Abdurrauf Fitrat Q317907 In what year did Abdurrauf Fitrat die? 1938 annum
death year P570 Lucian Freud Q154594 In what year did Lucian Freud die? 2011 annum
death year P570 Akseli Gallen-Kallela Q170068 In what year did Akseli Gallen-Kallela die? 1931 annum
death year P570 Spock Q16341 In what year did Spock die? 2263 annum
death year P570 William Orpen Q922483 In what year did William Orpen die? 1931 annum
death year P570 Carlos Santiago Mérida Q1043100 In what year did Carlos Santiago Mérida die? 1984 annum

population P1082 Akhisar Q209905 What is the population of Akhisar? 173026 1
population P1082 Tripura Q1363 What is the population of Tripura? 3665958 1
population P1082 Albert Q30940 What is the population of Albert? 9930 1
population P1082 High Wycombe Q64116 What is the population of High Wycombe? 120256 1
population P1082 Plön Q497060 What is the population of Plön? 8914 1
population P1082 Republika Srpska Q11196 What is the population of Republika Srpska? 1228423 1
population P1082 Lebanese Q2606511 What is the population of Lebanese? 8000000 1
population P1082 Geraardsbergen Q499532 What is the population of Geraardsbergen? 33403 1
population P1082 Gorzów Wielkopolski Q104731 What is the population of Gorzów Wielkopolski? 124295 1
population P1082 Harran Q199547 What is the population of Harran? 47606 1

evelation P2044 Sondrio Q6274 How high is Sondrio? 360 metre
evelation P2044 Rio Branco Q171612 How high is Rio Branco? 158 metre
evelation P2044 Demmin Q50960 How high is Demmin? 8 metre
evelation P2044 Cetinje Q173338 How high is Cetinje? 650 metre
evelation P2044 Highland Park Q576671 How high is Highland Park? 503 metre
evelation P2044 Gozo Q170488 How high is Gozo? 195 metre
evelation P2044 Saint-Jean-de-Maurienne Q208860 How high is Saint-Jean-de-Maurienne? 566 metre
evelation P2044 Butte Q467664 How high is Butte? 1688 metre
evelation P2044 Cottbus Q3214 How high is Cottbus? 76 metre
evelation P2044 Mahilioŭ Region Q189822 How high is Mahilioŭ Region? 191 metre

longitude P625.long Korean Empire Q28233 What is the longitude of Korean Empire? 126.98 degree
longitude P625.long Pine Bluff Q80012 What is the longitude of Pine Bluff? -92.00 degree
longitude P625.long Tegernsee Q260130 What is the longitude of Tegernsee? 11.76 degree
longitude P625.long Old Cölln Q269622 What is the longitude of Old Cölln? 13.40 degree
longitude P625.long Cambridge Q49111 What is the longitude of Cambridge? -71.11 degree
longitude P625.long Stryn Q5223 What is the longitude of Stryn? 6.86 degree
longitude P625.long Ciudad Real Province Q54932 What is the longitude of Ciudad Real Province? -4.00 degree
longitude P625.long Santa Catarina Q41115 What is the longitude of Santa Catarina? -50.49 degree
longitude P625.long Wake Forest University Q392667 What is the longitude of Wake Forest University? -80.28 degree
longitude P625.long West Lothian Q204940 What is the longitude of West Lothian? -3.50 degree

latitude P625.lat Küsnacht Q69216 What is the latitude of Küsnacht? 47.32 degree
latitude P625.lat Mount Jerome Cemetery Q917854 What is the latitude of Mount Jerome Cemetery? 53.32 degree
latitude P625.lat Dayton Children’s Hospital Q5243510 What is the latitude of Dayton Children’s Hospital? 39.77 degree
latitude P625.lat Le Flore County Q495944 What is the latitude of Le Flore County? 34.90 degree
latitude P625.lat Czechoslovakia Q33946 What is the latitude of Czechoslovakia? 50.08 degree
latitude P625.lat Pembroke College Q956501 What is the latitude of Pembroke College? 52.20 degree
latitude P625.lat Hayward Q491114 What is the latitude of Hayward? 37.67 degree
latitude P625.lat Banaskantha district Q806125 What is the latitude of Banaskantha district? 24.17 degree
latitude P625.lat Corbeil-Essonnes Q208812 What is the latitude of Corbeil-Essonnes? 48.61 degree
latitude P625.lat Elbasan Q114257 What is the latitude of Elbasan? 41.11 degree

Table 1: Random sample of the entities used in our experiments, along with corresponding numeric attributes
and prompts. Entities, their English labels, and numeric attributes for each property are extracted from an April
2022 dump of Wikidata (wikidata-20220421-all). In many cases Wikidata contains multiple values for a given
numeric attribute, e.g., reflecting chronological change such as the population of a city, or owing to conflicting
sources. In such cases we take the mode of the distribution as gold value. We also filter out quantities with
non-standard units, such as elevations measured in feet.
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C Regression on entity representations: Additional figures

0 10 20 30 40 50
#components

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(c) Birthyear

0 10 20 30 40 50
#components

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(d) Death year

0 10 20 30 40 50
#components

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(e) Population

0 10 20 30 40 50
#components

1.0

0.5

0.0

0.5

1.0

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(f) Elevation

0 10 20 30 40 50
#components

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(g) Latitude

0 10 20 30 40 50
#components

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(h) Longitude

Figure 6: Low-dimensional subspaces of Llama-2-13B’s 5120-dimensional activation space are predictive of the
quantity expressed by the LM when queried for a numeric attribute of an entity, across six different numeric
properties. Each subfigure shows the performance of a regression model fitted to predict the expressed quantities
from LM-internal entity representations (in layer l = 0.3), as a function of the number of PCA/PLS components
used for prediction. Unlike regression on PCA components (dashed orange), partial least squares regression (PLS,
solid blue) identifies a small set of predictive components. Controls with shuffled labels (dotted green, dash-dotted
red) and random entity representations (long-dash-dot purple, dash-dot-dot brown) fail to find predictive subspaces.
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Figure 7: Regression curves for Llama 2 7B. See explanation in Fig. 6.

187



0 10 20 30 40 50
#components

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Go

od
ne

ss
 o

f f
it 

(R
2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(a) Birthyear

0 10 20 30 40 50
#components

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(b) Death year

0 10 20 30 40 50
#components

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(c) Population

0 10 20 30 40 50
#components

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(d) Elevation

0 10 20 30 40 50
#components

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Go
od

ne
ss

 o
f f

it 
(R

2 )
Method

PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(e) Latitude

0 10 20 30 40 50
#components

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Go
od

ne
ss

 o
f f

it 
(R

2 )

Method
PLS
PCA
PLS (shuffled labels)
PCA (shuffled labels)
PLS (random reprs.)
PCA (random reprs.)

(f) Longitude

Figure 8: Regression curves for Falcon 7B. See explanation in Fig. 6.
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Figure 9: Regression curves for Mistral 7B. See explanation in Fig. 6.
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D Regression on entity representations: Additional analysis

Property Model R2 C
[
maxR2

]
C
[
≥ 0.95R2

]
C
[
≥ 0.90R2

]
C
[
≥ 0.80R2

]
C
[
≥ 0.70R2

]
C
[
≥ 0.60R2

]
C
[
≥ 0.50R2

]

birthyear (P569) Falcon 7B 0.75 4 2 2 2 1 1 1
birthyear (P569) Llama 2 13B 0.91 7 4 3 2 2 2 1
birthyear (P569) Llama 2 7B 0.90 11 6 4 3 2 2 1
birthyear (P569) Mistral 7B 0.89 4 3 2 2 2 1 1
death year (P570) Falcon 7B 0.61 2 2 2 2 1 1 1
death year (P570) Llama 2 13B 0.84 12 4 3 2 2 1 1
death year (P570) Llama 2 7B 0.82 11 4 4 3 2 1 1
death year (P570) Mistral 7B 0.80 4 3 3 2 2 1 1
latitude (P625.lat) Falcon 7B 0.67 6 3 3 3 2 2 2
latitude (P625.lat) Llama 2 13B 0.82 10 5 4 3 3 2 2
latitude (P625.lat) Llama 2 7B 0.83 10 5 3 2 2 2 2
latitude (P625.lat) Mistral 7B 0.79 9 4 3 3 2 2 2
longitude (P625.long) Falcon 7B 0.74 7 5 3 3 2 2 2
longitude (P625.long) Llama 2 13B 0.79 17 6 5 3 3 2 2
longitude (P625.long) Llama 2 7B 0.83 9 5 3 3 2 2 2
longitude (P625.long) Mistral 7B 0.78 6 5 3 3 2 2 1
population (P1082) Falcon 7B 0.67 4 3 3 2 1 1 1
population (P1082) Llama 2 13B 0.79 5 4 4 2 2 1 1
population (P1082) Llama 2 7B 0.73 5 4 3 2 2 1 1
population (P1082) Mistral 7B 0.76 5 4 2 2 1 1 1
elevation (P2044) Falcon 7B 0.23 2 2 2 2 2 1 1
elevation (P2044) Llama 2 13B 0.43 3 2 2 2 2 2 1
elevation (P2044) Llama 2 7B 0.37 2 2 2 2 2 1 1
elevation (P2044) Mistral 7B 0.41 3 3 2 2 2 1 1

Table 2: Number of partial least squares regression components C [T ] required for a given goodness of fit T ,
found using the experimental setup described in §2. For example, the C

[
≥ 0.95R2

]
column shows the number of

components required to reach 95 percent of the maximum goodness of fit for the respective property and model.
From this column we can read that, e.g., two components of Falcon 7B’s activation space are sufficient to reach 95
percent of the maximum goodness of fit when predicting the birthyear of entities, indicating that this property is
almost entirely encoded in a two-dimensional subspace of this model’s activation space.

E PLS projections of entity representations: Additional figures
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Figure 10: Projection onto the top two components of per-property partial least squares regressions reveals monotonic
structure in LM representations. We first fit a PLS model on Llama 2 13B entity representations from our training
split for each property, project entity representations from the test split, and then plot the resulting 2-d projections.
Each dot represents one entity and color saturation represents the value of the corresponding entity attribute. See
units for each property in Table 1.
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Figure 11: PLS projections of Llama 2 7B entity representations. See explanation in Fig. 10.
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Figure 12: PLS projections of Falcon 7B entity representations. See explanation in Fig. 10.
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Figure 13: PLS projections of Mistral 7B entity representations. See explanation in Fig. 10.
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Figure 14: Results of a cursory search for the best probing and edit locus, using Llama 2 7B.

Varying token position and layer, we edit the hidden state at this locus as described in §3 and record the
Spearman correlation between edit strength and the change in the quantity (here: birthyear) expressed by
the model. Correlation is highest (0.99) in the region between layers 0.2 and 0.4 and the last subword
token of the entity mention and the following token. Based on this, we choose the last mention token and
the middle point at layer l = 0.3 as locus for the regression experiments in §2 and activation patching
experiments in §3, across all numeric properties and LMs, but acknowledge that a more exhaustive search
would likely find better probing and edit loci.

A question left open so far is where activation patching should be performed. While automatic methods
for localizing model components and subnetworks of interest have been proposed (Conmy et al., 2023;
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Kramár et al., 2024), for simplicity we perform a coarse search across layers and token positions for one
numeric property and use the found setting for all experiments (see §F). In addition to this edit locus, we
also search for an edit window, whose purpose is to counteract iterative inference effects (McGrath et al.,
2023; Rushing and Nanda, 2024). Layer-wise we find that a window of ±2 layers around the edit locus
is most effective, which is smaller than the ±5 layers used in prior work (Meng et al., 2022; Hase et al.,
2023a). We also implement a token-wise window (Monea et al., 2024), finding that in addition to the last
entity mention token, patching up to two token representations to the left and one token representation
to the right works best for the prompts in our experiments. Typically, this token window size covers the
entity mention and the main verb or last token of the prompt, depending on the numeric property (see
prompts in §B). In summary, we patch activations in a 5-layer window centered on layer l = 0.3 and an
up-to 4-token window surrounding the last entity mention token. To improve output format adherence, we
append the instruction One word answer only to all prompts.
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G Edit curves for additional language models
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Figure 15: Effect of activation patching along property-specific directions across several numeric properties with
Llama 2 7B. See explanation in Fig. 4.
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Figure 16: Effect of activation patching along property-specific directions across several numeric properties with
Falcon 7B (Almazrouei et al., 2023). See explanation in Fig. 4.
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Figure 17: Effect of activation patching along property-specific directions across several numeric properties with
Mistral 7B (Jiang et al., 2023). See explanation in Fig. 4.

H Effect of property-encoding directions: Model output examples

αs ys,1 ys,2 ys,3 ys,4 ys,5 ys,6

1.00 1941 1955 1980 1980 2012 1929
0.90 1941 1955 1955 1984 2012 1929
0.80 1941 1955 1955 1984 2012 1929
0.70 1941 1955 1955 1980 1968 1929
0.60 1932 1955 1935 1958 1968 1929
0.50 1932 1940 1935 1958 1964 1929
0.40 1932 1930 1917 1958 1957 1902
0.30 1929 1930 1906 1958 1929 1902
0.20 1902 1902 1902 1934 1929 1902
0.10 1902 1902 1902 1902 1902 1902
0.00 1902 1902 1902 1902 1902 1902

-0.10 1887 1902 1902 1902 1882 1902
-0.20 1882 1902 1902 1887 1882 1902
-0.30 1883 1902 1902 1887 1882 1902
-0.40 1619 1902 1906 1887 1882 1901
-0.50 1619 1902 1906 1887 1882 1906
-0.60 1619 1902 1906 1887 1882 1906
-0.70 1619 1902 1906 1887 1880 1906
-0.80 1888 1902 1902 1887 1880 1906
-0.90 1815 1902 1902 1858 1880 1906
-1.00 1815 1902 1902 1858 1880 1906

ρ(αs, ys,k) 0.91 0.87 0.72 0.97 0.98 0.39

(a) Birthyear of Karl Popper

αs ys,1

1.00 7.5 billion
0.90 7.5 billion
0.80 7.5 billion
0.70 7.5 billion
0.60 7.5 billion
0.50 7.5 billion
0.40 1.3 billion
0.30 1.3 billion
0.20 1.3 billion
0.10 10 million
0.00 40,000

-0.10 40,000
-0.20 25,000
-0.30 25,000
-0.40 20,000
-0.50 20,000
-0.60 20,000
-0.70 12,000
-0.80 12,000
-0.90 12,000
-1.00 12,000

ρ(αs, ys,k) 0.98

(b) Population of Zittau

Table 3: The quantity ys,k expressed by a LM changes as a result of directed activation patching along direction
k with (normalized) edit weight αs, with αs = 0.00 corresponding to unedited model activations. Warm colors
indicate values larger than and cold colors values smaller than the true value, which, if output by the LM, is printed
black. Table (a) shows how one-dimensional directed patches along each of the top six “birthyear” PLS components
change the answer given by Llama 2 13B to the prompt: In what year was Karl Popper born? One word answer
only. It is apparent that the most-correlated component (k = 1) does not necessarily correspond to the direction
in which model behavior exhibits highest monotonicity, which in this case is component k = 5 with a Spearman
correlation of 0.98. Table (b) shows the effect of patching along the top “population” component on Llama 2 13B
when prompted: What is the population of Zittau? One word answer only.

194



Table 3 gives examples of how numeric attribute expression changes as a result of directed activation
patching. Patching along “birthyear” directions results in the expression of different years, although
the degree of monotonicity, as quantified by Spearman correlation ρ, varies. Patching along the top
“population” direction causes the model to generate a range of outputs that can be interpreted as population
sizes, although the largest values are more suited to a planetary than a municipal scale. The sequence
of outputs has rather sudden jumps, e.g., from 40,000 (unedited model, αs = 0.00) to 10 million after
taking the first step in the “larger population” direction (αs = 0.10). The pattern of jumps and plateaus is
plausibly connected to several factors such as tokenization effects and the likely high frequency of certain
numerals (1.3 billion: population of China at some point in time; 7.5 billion: population of Earth, etc.)
in the training data, but we leave a detailed investigation to future work. The pattern also indicates that
activation space, while apparently monotonic, is not linear in this direction. The intervention also induces
a switch from positional notation (40,000) to named numbers (million, billion), which showcases effects
beyond single tokens.
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