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Abstract

Large Language Models (LLMs) have shown
that their reasoning ability could be enhanced
through approaches like Chain-of-Thought
(CoT) prompting. However, these methods
use single prompts for different types of ques-
tions and do not design appropriate prompts
for questions with different characteristics. In
this paper, we aim to explore a methodology
that generates differentially diverse reasoning
paths for different types of questions. To
achieve this, we propose a novel prompting
strategy called Differential Diversity Prompting
(DDPrompt). Firstly, we generate the optimal
prompts collection based on question charac-
teristics. Then, we use this optimal prompt
collection to generate multiple answers for a
question and choose the final answer by voting.
We evaluated DDPrompt on twelve reasoning
benchmarks and significant improvement in the
performance of LLMs on complex reasoning
tasks (e.g., GSM8K 75% → 84%, Tracking
Shuffled Objects (68.8% → 83.9%)).

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2023) have shown re-
markable abilities by learning from demonstrations
while keeping their parameters frozen, which is
called prompting. The design of prompting is cru-
cial as it can significantly impact the performance
of the LLMs on complex reasoning tasks (Chu
et al., 2023), such as arithmetic reasoning (Cobbe
et al., 2021; Patel et al., 2021), commonsense rea-
soning (Geva et al., 2021; Talmor et al., 2019),
symbolic reasoning (Wei et al., 2022; Srivastava
et al., 2022).

Recent studies (Chu et al., 2023) have explored
various prompting strategies. For instance, Chain-
of-Thought (CoT) prompting (Wei et al., 2022)
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provided step-by-step reasoning examples to facili-
tate LLMs decomposing complex reasoning tasks
into intermediate steps. However, this method re-
quired careful manual design of demonstrations,
which is time-consuming and labor-intensive. Zero-
Shot-CoT (Kojima et al., 2022) discovered that by
adding a single trigger sentence, such as "Let’s
think step by step", after the question to induce
the LLMs in generating the reasoning paths, they
could achieve competitive performance to standard
CoT. Some research (Wang et al., 2023; Naik et al.,
2023) have found that utilizing diverse prompts
could effectively improve the reasoning ability of
LLMs. For example, (Wang et al., 2023) intro-
duced a self-consistency technique involving gen-
erating multiple reasoning paths using a decoding
strategy different from standard CoT. (Naik et al.,
2023) leveraged LLMs to automatically generate
diverse prompts, which were then ensemble across
multiple inference calls for each question.

In this paper, we aim to improve the performance
of the LLMs by designing a prompting strategy that
decreases manual labor and increases the diversity
of prompts. One method we were considering is
to utilize diversity trigger sentences, such as "Let’s
think step by step", "Let’s think about this logically"
mentioned in Zero-Shot-CoT, to facilitate LLMs
generate diversity reasoning paths for each ques-
tion. However, this naive approach is inefficient.
As per human experience, choosing the appropriate
methods for a question based on its characteristics
is crucial. Inspired by this mind, we assume that
different trigger sentences have varying effects on
different types of questions. We choose appropriate
trigger sentences to generate reasoning paths for
a question. As shown in Figure 1, we conducted
a preliminary experiment on the GSM8K (Cobbe
et al., 2021). We noticed that the accuracy of dif-
ferent trigger sentences varied across different clus-
ters. Therefore, we explore an approach to generate
differentially diverse reasoning paths for different
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Figure 1: Accuracy(%) of different trigger sentences
for different clusters. We partition questions in
GSM8K (Cobbe et al., 2021) into several clusters based
on their similarity and use the method proposed in (Ko-
jima et al., 2022) to verify the accuracy of four trigger
sentences on questions in different clusters.

types of questions. To achieve this, we propose
a novel prompting strategy called the Differential
Diversity Prompting (DDPrompt). This approach
involves two stages. In the first stage, we generate
an optimal trigger sentence set for each type of
question. In the second stage, we utilize the opti-
mal trigger sentence set to obtain the final answer
for a question. By using this approach, we can
provide differentially diverse reasoning paths for
different types of questions and ensure an analysis
from various perspectives.

We evaluate DDPrompt on twelve reasoning
benchmarks from four categories of reasoning
tasks, including arithmetic, commonsense, sym-
bolic, and logical reasoning tasks. The result shows
that DDPrompt could significantly improve the per-
formance of LLMs compared to Zero-Shot-CoT.
For instance, GSM8K (75% → 84%), AQUA-RAT
(50% → 63%), Last Latter (64% → 89.8%), Track-
ing Shuffled Objects (68.8% → 83.9%).

2 Method

In this section, we provide a detailed explana-
tion of the techniques used in DDPrompt. This
method is distinct from the Zero-Shot-Cot (Ko-
jima et al., 2022), which uses a uniform trigger
for different questions, e.g., Let’s think step by
step. Figure 2 shows the difference between Zero-
Shot-Cot and DDPrompt. DDPrompt involves
two stages: Generating Optimal Trigger Sentence
Set(GOTSS) and Inference.

2.1 GOTSS

In this section, we introduce how to generate the
optimal trigger sentence set for different types of
questions, which consist of two parts: (1) Ques-
tion clustering, We partition the questions into a
small number of clusters based on their similarity;
(2) Generating Optimal collection. An optimal
trigger sentence set is generated for each cluster by
verifying the validity of different trigger sentences.

2.1.1 Question clustering

To classify the questions into different types, we
first cluster the questions based on their similarity.
Give a question collection Q. We obtain an em-
bedding for each question q ∈ Q using Sentence-
BERT (Reimers and Gurevych, 2019). Then, the
question embeddings are fed into the K-Means
clustering. Finally, we get a collection of clusters
C = {c1, c2, ..., cm}, where each cluster ci ∈ C
contain several questions of the same type and m
is the number of the cluster in C.

2.1.2 Generating Optimal Collection

Since different trigger sentences may perform dif-
ferently depending on the type of question. For
each cluster, we select a few best-performing trig-
ger sentences to form the optimal trigger sentence
set. Specifically, followed (Kojima et al., 2022),
we first manually constructed a set of different trig-
ger sentences T = {t1, t2, ..., tn}, where n is the
number of trigger sentence in T. Second, we verify
the effectiveness of n trigger sentences separately
for each cluster ci ∈ C obtained in the previous
parts. For each t ∈ T and each q ∈ ci, we input
[q, t] into (Kojima et al., 2022) to obtain an answer
a. We then compare a to the ground truth to de-
termine the accuracy of t for ci. After that, we get
the accuracy of n trigger sentences for ci. We then
choose the highest accuracy k trigger sentences to
form the optimal trigger sentence set for ci, where
k < n. We perform the above operation for each
c ∈ C, and finally get a collection of optimal trig-
ger sentence set D = {d1, d2, ..., dm}, where di is
the optimal trigger sentence set for ci.

During the GOTSS phase, we cluster the training
dataset and then randomly select a subset of sam-
ples to generate the optimal trigger sentence set. In
the case where only the test dataset is available, we
randomly partition the test dataset into a training
dataset and a test dataset, and then apply the same
procedure to the specified training dataset.
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Figure 2: Comparison of Zero-Shot-CoT and DDPrompt. Notice that both have two different types of questions: Q1

and Q2. Zero-Shot-CoT uses a single trigger, e.g., Let’s think step by step. However, DDPrompt uses an optimal
trigger sentence set depending on the type of question.

2.2 Inference

In the previous stage, we generated an optimal trig-
ger sentence set for each cluster. In this stage, we
leverage these optimal trigger sentence sets to infer
the answer to the question. As shown in Figure 2.
First, give a question q, we obtain embedding of
q using Sentence-BERT (Reimers and Gurevych,
2019). Then, we identify the cluster that is most
similar to q by computing the cosine similarity be-
tween q and each cluster ci ∈ C. Subsequently, we
select ci that is most similar to q and retrieve the
optimal trigger sentence set di = {t1, t2, ..., tk} for
ci. For each t ∈ di, we input [q, t] into (Kojima
et al., 2022) to obtain an answer a. Finally, we get
k answers for q and the final answer is determined
by utilizing majority voting.

3 Experiments

3.1 Tasks and Datasets

In the experiment, we evaluate DDPrompt on
twelve benchmarks from four categories of rea-
soning tasks: (1) Arithmetic (SingleEq (Koncel-
Kedziorski et al., 2015), AddSub (Hosseini et al.,
2014), MultiArith (Roy and Roth, 2015), AQUA-
RAT (Ling et al., 2017), GSM8K (Cobbe et al.,
2021), SVAMP (Patel et al., 2021)); (2) Com-
monsense (CSQA (Talmor et al., 2019), Strate-
gyQA (Geva et al., 2021)); (3) Symbolic (Last Let-
ter Concatenation, Coin Flip) (Wei et al., 2022); (4)
Logical (Date Understanding, Tracking Shuffled
Objects) (Srivastava et al., 2022).

3.2 Baselines

We compare DDPrompt to four baselines: Zero-
Shot (Kojima et al., 2022), Zero-Shot-CoT (Kojima
et al., 2022), Few-Shot (Wei et al., 2022), and Few-
Shot-CoT (Wei et al., 2022). Zero-Shot and Zero-
Shot-CoT utilize the same trigger sentence as stated
in (Kojima et al., 2022). Few-Shot and Few-Shot-
CoT use the same demonstration examples as stated
in (Wei et al., 2022)

In the experiment, we use the GPT3.5-turbo
from OpenAI1 as LLM. We manually constructed
n = 14 different trigger sentences and set k = 5.

3.3 Result

The accuracy of DDPrompt is compared with differ-
ent baseline methods for twelve reasoning datasets
in Table 1. DDPrompt shows significant improve-
ment in performing reasoning tasks as compared
to Zero-Shot-CoT. For instance, GSM8K (75%
→ 84%), AQUA-RAT (50% → 63%), Last Lat-
ter (64% → 89.8%), Tracking Shuffled Objects
(68.8% → 83.9%). DDPrompt outperforms eight
out of twelve reasoning tasks (SingleEq, Multi-
Arith, AQUA-RAT, GSM8K, SVAMP, CSQA, Last
Letter Concatenation, Tracking Shuffled Objects)
compared to Few-Shot-CoT that has manual de-
sign rationales. Additionally, for the arithmetic rea-
soning tasks, AQUA-RAT, GSM8K, and SVAMP
datasets involve multi-step reasoning, which is
more complex than other arithmetic datasets (Chu

1https://openai.com/



Method
Arithmetic

SingleEq AddSub MultiArith AQUA-RAT GSM8K SVAMP
Zero-Shot 80.1 78.7 59.7 25.6 13.0 61.4
Zero-Shot-CoT 90.6 79.2 96.2 50.0 75 78.1
Few-ShoT 86.8 86.1 81.5 44.9 42.5 76.6
Few-Shot-CoT 90.2 87.1 97.0 53.9 72.3 79.6
DDPrompt 92.5(+1.9) 86.9(+7.7) 98.7(+2.5) 63(+13) 84.0(+9) 83.6(+5.5)

Method
Commonsense Symbolic Logical

CSQA Strategy Coin Flip Last Letter Date Tracking
Zero-Shot 71.6 63.6 51.0 1.4 41.7 34.5
Zero-Shot-CoT 68.5 62.4 92.2 71.6 64.0 68.8
Few-Shot 70.4 43.1 50.2 6.6 52.3 30.9
Few-Shot-CoT 58.1 65.6 99.8 71.6 72.6 75.0
DDPrompt 74.5(+6) 64.6(+2.2) 95.2(+3) 89.8(+18.2) 72.1(+8.1) 83.9(+15.1)

Table 1: Accuracy(%) of twelve reasoning tasks. (*) indicate the improvement of DDPrompt compared to Zero-
Shot-CoT.

et al., 2023). DDPrompt has proved to be more ef-
fective in improving performance on these complex
datasets. It indicates that DDPrompt is better suited
for solving intricate and challenging problems.

In the datasets used in this paper, the first three
arithmetic datasets, i.e. SingleEq, AddSub, and
MultiArith, contain relatively simple problem(Chu
et al., 2023). Consequently, commendable re-
sults can be attained without necessitating multi-
perspective analysis, as shown in Table1. For these
datasets, using Zero-Shot-CoT and Few-Shot-CoT
produces satisfactory results, reducing the distinc-
tiveness of our approach’s advantage. However, for
the last three arithmetic datasets, especially AQUA-
RAT and GSM8K, which contain more intricate
problems(Chu et al., 2023), addressing these in-
tricate problems requires generating multiple rea-
soning paths for solving the problem from diverse
perspectives(Wang et al., 2023). This significantly
improves the performance of our method on more
complex arithmetic problems.

3.4 Ablation study

To evaluate the effectiveness of two design compo-
nents of DDPrompt, which are called Random-K
and Single: In the Random-K variation, K trig-
ger sentences are randomly selected and compared
with the K trigger sentences that have the highest
accuracy to evaluate the effectiveness of Top-K. In
the Single variation, only the Top 1 trigger sentence
is selected as a contrast experiment to evaluate the
effectiveness of diversity. We conduct an ablation
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Figure 3: Ablation Studies of Design Components.

study by removing each component one at a time.
Figure 3 shows an ablation study results with two
variations of DDPrompt. We can conclude that
both design components are effective and essential.

4 Related Works

Chain-of-Thought (CoT) (Wei et al., 2022) gen-
erated intermediate thought steps for problem-
solving and significantly improved the reasoning
ability of LLMs. Different from the CoT approach,
least-to-most (Zhou et al., 2023) suggested solv-
ing complex problems by decomposing them into
a series of simpler subproblems. These methods
are tedious to manually construct the appropriate
rationales for the different questions in the demon-
stration. Zero-Shot-CoT (Kojima et al., 2022) in-



volved adding a simple trigger sentence like "Let’s
think step by step" after the question to facilitate
LLMs generating a step-by-step reasoning path.
Auto-CoT (Zhang et al., 2022) proposed select-
ing demonstrations from different cluster methods
and exploiting the benefits of diversity in demon-
strations. (Wang et al., 2023) proposed a self-
consistency method that replaced the greedy decod-
ing method used in CoT with a temperature sample
to obtain a set of diverse reasoning paths. Li et
al. (Li et al., 2023) proposed sampling from vary-
ing prompts and then employed a verifier to verify
the quality of each reasoning path.

5 Conclusion

In this paper, we introduce DDPrompt, which is de-
signed to generate differentially diverse reasoning
paths for different types of questions. DDPrompt
consists of two stages: the GOTSS stage, which
generates the optimal trigger sentence set for each
type of question; the Inference stage, which uses
this optimal trigger sentence set to generate mul-
tiple answers for a question and choose the fi-
nal answer by majority voting. We evaluated
DDPrompt’s performance on twelve reasoning
benchmarks and observed a significant improve-
ment in the performance of LLMs.

6 Limitations

Our proposed DDPrompt is capable of generating
differentially diverse reasoning paths for different
types of questions. The inference stage requires
multiple trigger sentences and questions to be fed
into the LLM to generate multiple answers. As a
result, our method is much slower in reasoning than
other prompting methods. Additionally, another
limitation is that we tested DDPrompt using only
GPT3.5-turbo and have not yet evaluated it on other
LLMs. Therefore, we will evaluate DDPrompt on
other LLMs in the future.
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A Appendix

A.1 Compared to other methods
DDPrompt automatically generates diverse rea-
soning paths for different types of problems,
and clustering techniques constitute a compo-
nent of our methodology. It is similar to self-
consistency(SC)(Wang et al., 2023) and Auto-
CoT(Zhang et al., 2022). Furthermore, we con-
ducted complementary experiments on SC and
Auto-CoT employing GPT3.5-turbo on the AQUA-
RAT and GSM8K datasets. Notably, SC is a few-
shot method that requires manually constructing
reasoning paths. For a fair comparison, we com-
pare DDPrompt with zero-shot setting SC. The
results are presented in Table 2, and it reveals
that DDPrompt exhibits superior performance com-
pared to SC and Auto-CoT across both the AQUA-
RAT and GSM8K datasets.

Method GSM8K AQUA-RAT
Auto-CoT 76.7 55.9
SC 82.1 61
DDPrompt 84.0 63.0

Table 2: DDPrompt compared to other methods.

A.2 All trigger sentences
Table3 shows all trigger sentences used in this pa-
per.
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No. Trigger Sentences
1 Let’s think step by step.
2 We should think about this step by step.
3 First,
4 Before we dive into the answer,
5 Proof followed by the answer.
6 Let’s think step by step in a realistic way.
7 Let’s think step by step using common sense and knowledge.
8 Let’s think like a detective step by step.
9 Let’s think about this logically.
10 Let’s think step by step. First,
11 Let’s think
12 Let’s solve this problem by splitting it into steps.
13 The answer is after the proof.
14 Let’s be realistic and think step by step.

Table 3: All trigger sentences used in this paper.
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