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Abstract

Large Language Models (LLMs) demonstrate
remarkable potential across various domains;
however, they exhibit a significant performance
gap in Information Extraction (IE). Note that
high-quality instruction data is the vital key for
enhancing the specific capabilities of LLMs,
while current IE datasets tend to be small
in scale, fragmented, and lack standardized
schema. To this end, we introduce IEPILE, a
comprehensive bilingual (English and Chinese)
IE instruction corpus, which contains approxi-
mately 0.32B tokens. We construct IEPILE by
collecting and cleaning 33 existing IE datasets,
and introduce schema-based instruction gener-
ation to unearth a large-scale corpus. Experi-
mentally, IEPILE enhance the performance of
LLMs for IE, with notable improvements in
zero-shot generalization. We open-source the
resource and pre-trained models, hoping to pro-
vide valuable support to the NLP community.

1 Introduction

Large Language Models (LLMs) have achieved
significant breakthroughs in multiple Natural Lan-
guage Processing (NLP) tasks (Du et al., 2022; Tou-
vron et al., 2023b; Jiang et al., 2023; Zhao et al.,
2023; Pu et al., 2023; Yang et al., 2024; Wu et al.,
2023; Wang et al., 2023c; Fei et al., 2024). How-
ever, recent studies (Li et al., 2023a; Ma et al.,
2023; Xu et al., 2023; Wadhwa et al., 2023; Wan
et al., 2023; Gao et al., 2023; Li et al., 2023b; Jiao
et al., 2023; Huang et al., 2023; Wang et al., 2024)
indicate a significant performance gap in the task of
Information Extraction (IE) when utilizing LLMs.
(Lee et al., 2022a; Gao et al., 2023) further illus-
trate that the major reason may lie in limited high-
quality, large-scale data corpus. Concretely, most
IE datasets are often limited in size, scattered in
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distribution, and lack standardization in schema1.
Faced with these limitations, there is an urgent

need to collect instruction data in a unified and au-
tomated manner to build a high-quality, large-scale
IE corpus. To this end, we collect and clean vari-
ous existing IE datasets to obtain a comprehensive
bilingual IE instruction dataset named IEPILE2.
During the corpus construction, we find existing
methods for constructing IE instruction data suffer
from two issues for generalizable IE: 1) Schema
Query Disparity: There may be inconsistency
in the number of schema queries within instruc-
tion between training and evaluation which can
harm model generalization; 2) Semantic Confu-
sion: The co-occurrence of semantically similar
schemas within instructions may confuse the model.
Thus, we introduce a schema-based instruction gen-
eration strategy. We first construct a hard negative
schema dictionary to promote the more frequent
occurrence of semantically similar schema in in-
structions. Then, we introduce batched instruction
generation, dynamically limiting the number of
schemas queried in each instruction to split_num,
which not only addresses the issue of performance
degradation due to inconsistent numbers of schema
queries during training and evaluation, but also en-
hances the robustness when dealing with semanti-
cally confusing schema. Finally, we obtain IEPILE

which contains approximately 0.32B tokens.
By fine-tuning a selection of the latest promi-

nent models (Yang et al., 2023; Touvron et al.,
2023b; Bai et al., 2023) on the IEPILE dataset, we
show that LLMs with IEPILE can yield better zero-
shot performance than baselines. This achievement
not only verifies the effectiveness of the IEPILE

dataset but also provides a framework for creating
IE datasets in other domains.

1We refer to the schema as pre-defined types of entities,
relations, events (arguments and roles), etc.

2IEPILE adhere to the CC BY-NC-SA 4.0 license except
for ACE2005 which adheres to the LDC User Agreement.
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Figure 1: An overview of the construction of IEPILE, including Data Collection and Cleaning, as well as Schema-
Based Instruction Generation (Hard Negative Schema Construction and Batched Instruction Generation).

2 IEPILE

In this section, we introduce the construction of
IEPILE and provide details in Appendix B.
2.1 Data Collection and Cleaning
To broadly cover various domains and meet the
practical demands, we collect datasets necessary
for IE from multiple data sources. Our corpus
mainly involves bilingual data (Chinese and En-
glish) and focuses on three principal categories of
IE tasks: Named Entity Recognition (NER), Rela-
tion Extraction (RE), and Event Extraction (EE). In
total, we gather 26 English datasets and 7 Chinese
datasets. We also employ standardization proce-
dures to maintain data quality and format unifor-
mity, involving format unification, instance dedu-
plication, and the exclusion of low-quality data.
2.2 Schema-Based Instruction Generation
We concentrate on instruction-based information
extraction (IE), a methodology that incorporates
three crucial elements to compose an instruction:
1) Task Description, a template utilized to distin-
guish between different IE tasks; 2) Input Text,
the source text to be extracted; and 3) Schema
sequence, which defines the information that the
model is supposed to extract, including entity types,
relations, events, etc. Among these, the schema
sequence is critical as it reflects the specific ex-
traction requirements and is dynamically variable.
Therefore, the construction of the schema sequence
within an instruction holds critical significance.

Positive and Negative Schema Mechanism in In-
structions. Firstly, we define schemas that actu-
ally exist within the input text as positive schemas
and those that do not appear as negative schemas.

As illustrated in Figure 1, the “location contains”
present in the annotation is a positive schema, while
all other schemas from the predefined label set L
are negative schemas. Traditional IE frameworks,
which are treated as sequence labeling tasks, take
text as input and produce a label for each token as
output, without involving the concept of positive or
negative schemas within the model’s input. How-
ever, in the era of generative IE, represented by
models like UIE (Lu et al., 2022a), introduce the
concept of integrating a schema sequence (refers
to as Structural Schema Instructor, or SSI) in the
model’s input to guide its output, restricting the
range of output to the SSI. The method necessitates
including the entire predefined label set of a dataset
as the SSI to guide the model’s output during in-
ference. As a result, if the SSI during the training
contains only positive schemas, the model will tend
to generate corresponding answers for every label
within the SSI during inference. Therefore, to make
the model explicitly reject generating outputs for
negative schemas, it is necessary to incorporate
negative schemas into the SSI.

In this paper, the schema sequence included in
the instructions follows the concept of SSI. How-
ever, we observe that existing research (Wang et al.,
2023b; Xiao et al., 2023) tends to adopt a rather
crude schema processing strategy when construct-
ing instructions, meaning that all schemas within
a predefined label set are used to build the instruc-
tions. This approach potentially entails two sig-
nificant issues: 1) Inconsistency in the number
of schema queries within instruction between
training and evaluation. For example, the model’s
performance will decrease if it is trained on about
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Algorithm 1 Schema-Based Instruction Generation
Require: Text S, Predefined label set L, Positive schema set

Pos_L, Number of schemas to split split_num
Ensure: Set of Instructions

Step 1: Initialize Hard Negative Schema Dictionary K
for all schema in L do
K[schema]← SEMANTIC-SIMILAR(schema,L)

end for
Step 2: Obtain Hard Negative Schemas
Hard_L← ∅
for all schema in Pos_L do

Hard_L← Hard_L ∪ K[schema]
end for
Other_L← L− Pos_L−Hard_L
Other_L← RANDOM-SELECT(Other_L, split_num)

Neg_L← Hard_L ∪Other_L
L′ ← Neg_L ∪ Pos_L
Shuffle L′ to obtain a randomized sequence
Step 3: Batched Instruction Generation
Instructions← []

num_batches← ⌈ |L′|
split_num

⌉
for i← 1 to num_batches do

Batch← SEQUENTIAL-SELECT(L′, split_num, i)

Instructions ← Instructions ∪
GENERATE-INSTRUCTION(Batch)

end for

20 schema queries but tested with either 10 or 30,
even if the training and evaluation schemas are
similar in content. 2) Inadequate differentiation
among schemas in the instructions. For example,
semantically similar schemas like “layoffs”, “de-
part” and “dismissals”, may present co-occurrence
ambiguities that could confuse the LLMs. Such
schemas should co-occur more frequently within
the instruction. Therefore, we introduce: 1) Hard
Negative Schema Construction; and 2) Batched In-
struction Generation. Detailed information can be
found in Figure 1 and Algorithm 1.

Hard Negative Schema Construction. As il-
lustrated in Figure 1, assume that dataset D pos-
sesses a predefined label set L. For a given text
S, the schemas present in its annotation consti-
tute the positive schema set Pos_L, while others
form the negative schema set Neg_L. In our anal-
ysis, we discover that the primary cause of model
mistakes stems from the semantic ambiguity of
the schema. In traditional approaches, the Neg_L
is simply defined as L − Pos_L. However, they
overlook a critical aspect: it is important to pay
special attention to negative schemas that are se-
mantically similar to positive schemas. Inspired
by the theory of contrastive learning, we propose
the concept of a hard negative schema dictionary
K, where each key represents a unique schema and

Figure 2: Distribution of different tasks, domains, and
source datasets within the IEPILE.

the associated value is a collection of schemas that
are semantically similar to the key schema. The
hard negative schemas are constructed by query-
ing GPT-4 and manually reviewing them. Based
on this, we define the hard negative schema set
as Hard_L = K[Pos_L], and the other negative
schema set as Other_L = L−Pos_L−Hard_L.
The final Neg_L is constituted by Hard_L and a
small subset of Other_L. Through this strategy,
we not only present semantically similar schemas
more frequently within the instruction but also re-
duce the number of training instances without sac-
rificing model performance.

Batched Instruction Generation. Subsequently,
we obtain the final schema set L′ = Pos_L +
Neg_L. We employ a batched instruction genera-
tion method, dynamically limiting the number of
schemas inquired in each instruction to the num-
ber of split_num, which ranges between 4 and 6.
Therefore, L′ will be divided into |L′|/split_num
batches for querying, with each batch querying
split_num schemas. Consequently, even if the
number of schemas inquired during the evaluation
phase differs from that of training, the batched
mechanism allows us to distribute the inquiries
across split_num schemas, thereby mitigating the
decline in generalization performance.
2.3 Data Statistics
Based on the aforementioned methods, we obtain
the IEPILE dataset, which includes roughly 2 mil-
lion instruction entries and approximately 0.32B to-
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Method
NER RE EE

CrossNER FewRel Wiki-ZSL Avg WikiEvents RAMS CrudeOil News Avg
LLaMA2 34.82 6.53 9.43 7.98 0.00 0.00 0.00 0.00
Baichuan2 38.93 5.94 4.15 5.05 0.00 0.00 0.00 0.00
Qwen1.5 50.13 7.82 6.94 7.38 0.00 0.00 0.00 0.00
Mistral 42.83 6.84 5.10 5.97 0.00 0.00 0.00 0.00
ChatGPT 58.37 9.96 13.14 11.55 2.95 8.35 1.41 4.24
GPT-4 58.49 22.43 23.76 23.10 5.24 10.14 26.13 13.84
UIE 38.37 - - - 5.12 9.25 6.45 6.94
InstructUIE 49.36 39.55 35.20 37.38 11.64 24.27 23.26 19.72
YAYI-UIE 50.39 36.09 41.07 38.58 10.97 18.87 12.45 14.10
Baichuan2-IEPILE 55.55 41.28 37.61 39.45 9.12 20.19 36.61 21.97
LLaMA2-IEPILE 56.50 37.14 36.18 36.66 13.93 23.62 33.87 23.81
Qwen1.5-IEPILE 57.90 40.92 38.49 39.71 11.38 21.26 30.69 21.11
LLaMA3-IEPILE 56.11 35.58 37.18 36.38 9.71 20.27 39.88 23.29
OneKE 60.91 39.19 42.18 40.68 12.43 22.58 38.49 24.50

Table 1: Zero-shot performance on English datasets. UIE necessitates predefined entity types; given that such
information is not provided by the FewRel and Wiki-ZSL datasets, we are unable to evaluate UIE’s performance on
these datasets. For the task of event extraction, we only present the results of event detection in the main text.

kens (utilizing the Baichuan2 tokenizer). Figure 2
displays the distribution of domains and source
datasets within the IEPILE, including 33 datasets
spanning multiple domains such as general, news,
finance, and biomedical. Additionally, Table 12
provides examples of instructions and outputs for
3 different tasks within the IEPILE.

3 Experiments

Based on IEPILE, we fine-tune several latest promi-
nent models, then compare their zero-shot gener-
alization capabilities against a range of baseline
models. Results of the full supervision evaluation
and training details are described in Appendix C.
3.1 Experimental Settings
Evaluation Metrics: We employ span-based
Micro-F1 as the metric for measuring model per-
formance. Baselines: We select a range of strong
models for comparative analysis, which include
UIE (Lu et al., 2022a), LLaMA2-13B-Chat (Tou-
vron et al., 2023b), Baichuan2-13B-Chat (Yang
et al., 2023), Qwen1.5-14B-Chat (Bai et al., 2023),
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), Chat-
GPT (Ouyang et al., 2022), GPT-4 (OpenAI,
2023), LLaMA3-8B-Instruct, InstructUIE (Wang
et al., 2023b), YAYI-UIE (Xiao et al., 2023). Zero-
shot Benchmark: We collect 13 datasets that are
not present in the training set. OneKE: Addition-
ally, we perform full-parameter fine-tuning of the
alpaca2-chinese-13B model utilizing IEPILE and

other proprietary information extraction datasets.
This paper also reports its results; for more detailed
information, please refer to Appendix C.2.
3.2 Main Results
In Tables 1 and 2, we report the zero-shot per-
formance across three tasks and two languages.
Overall, after training with the IEPILE, the mod-
els achieve better results in the majority of tasks.
We believe the success is due to the hard negative
schema construction and batched instruction gen-
eration strategy, which can mitigate the train-eval
mismatch and semantic ambiguity for the diverse
schema. We also observe that IEPILE-models are
slightly behind GPT-4 in English NER. We hy-
pothesize that the marginal gap may be attributed
to GPT-4’s exposure to a vast corpus of similar
data during its training. Moreover, it is essential
to note that InstructUIE focuses on English data
while IEPILE incorporates both English and Chi-
nese data. This disparity in data may influence
the capability of the model in English, potentially
reducing the performance. Additionally, OneKE
achieves the best results in nearly all zero-shot eval-
uation tasks. We attribute this success to the en-
hancements brought by full parameter fine-tuning.
3.3 Analysis
Inconsistency in the Number of Schema Queries
Hurt Generalization. We investigate the impact
on model performance when different numbers of
schema queries are used during the training and
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Method
NER RE EE

Boson Weibo Avg SKE2020 COAE2016 IPRE Avg FewFC CCF Law Avg
LLaMA2 8.19 2.43 5.31 0.50 3.11 0.31 1.31 0.23 0.08 0.16
Baichuan2 27.39 7.62 17.51 7.23 11.65 1.45 6.78 11.82 2.73 7.28
Qwen1.5 26.49 25.34 25.92 7.69 11.97 2.16 7.27 11.47 3.25 7.36
Mistral 29.13 10.02 19.58 6.84 5.24 0.82 4.30 4.69 0.23 2.46
ChatGPT 38.53 29.30 33.92 24.47 19.31 6.73 16.84 16.15 0.00 8.08
GPT-4 48.15 29.80 38.98 56.77 41.15 18.15 38.69 74.25 42.12 58.19
YAYI-UIE 49.25 36.46 42.86 70.80 19.97 22.97 37.91 81.28 12.87 47.08
Baichuan2-IEPILE 55.77 38.03 46.90 72.50 47.43 29.76 49.90 83.59 63.53 73.56
LLaMA2-IEPILE 54.45 34.97 44.71 72.18 46.70 28.55 49.14 70.10 59.90 65.00
Qwen1.5-IEPILE 63.08 37.50 50.29 72.29 50.70 30.55 51.18 78.77 61.43 70.10
LLaMA3-IEPILE 61.88 37.43 49.66 73.67 48.12 31.29 51.03 81.52 59.92 70.72
OneKE 72.61 35.06 53.84 74.15 49.83 29.95 51.31 80.11 62.19 71.15

Table 2: Zero-shot performance on Chinese datasets. Since UIE and InstructUIE do not train with Chinese data, we
do not report performance of these two models on Chinese datasets.

Figure 3: (a) When there is an inconsistency in the
number of schema inquiries during the training and
evaluation, the performance of the model significantly
decreases. (b) The impact of removing the hard negative
schema dictionary on the performance of the model.

evaluation. We train the Baichuan2 using full-
schema instructions on 3 datasets: Ontonotes (18
schemas), DuIE2.0 (49 schemas), and ACE2005
(33 schemas). For the evaluation, we test the
model using two strategies: one with the full set
of schema queries and another with a fixed set of
10 schema queries. The results depicted in Fig-
ure 3 (a) indicate that the mismatch in the number
of schema queries during evaluation significantly
reduces the model’s performance. Further analy-
sis of the model’s outputs reveals that the model
always tends to generate outputs for each inquiry.
We hypothesize that the number of schema queries
is one of the key factors affecting the generaliza-
tion ability. The model needs to first adapt to the
number of schema inquiries that are rare during the
training and then adapt to the unseen schema.

Inadequate Differentiation Among Schemas
Lead to Semantic Similar Confusion. We also
evaluate the impact of removing the “Hard Nega-
tive Schema Dictionary” on the performance of
Baichuan2-IEPILE, with particular attention to
schemas that are hard to differentiate. According
to the results in Figure 3 (b), we notice that the
hard negative schema dictionary plays a relatively
limited role in the NER task, which may be due
to the clear boundaries inherent to entity recogni-
tion. However, the utilization of the hard negative
schema dictionary notably enhances model perfor-
mance in the DuIE2.0 and DuEE1.0 datasets. We
observe that semantically similar and easily con-
fused schemas frequently appeared in the model’s
outputs, such as predicting “dismissal” and “res-
ignation” in the event of “layoff”. Therefore, pro-
cessing instructions that are semantically prone
to confusion poses significant challenges, and the
hard negative schema dictionary plays a crucial
role in bolstering model robustness and improving
the accuracy of predictions.

4 Conclusion and Future Work

In this paper, we introduce IEPILE, by collecting
and cleaning existing Information Extraction (IE)
datasets and utilizing a schema-based instruction
generation strategy. Experimental results indicate
that IEPILE can help enhance the zero-shot gener-
alization capabilities of LLMs in instruction-based
IE. In the future, we will continue to maintain the
corpus and try to integrate new resources including
open-domain IE, and document-level IE.
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Limitations

From the data perspective, our study primarily fo-
cuses on schema-based IE, which limits our abil-
ity to generalize to human instructions that do not
follow our specific format requirements. Addition-
ally, our work is limited to two languages and does
not address Open Information Extraction(Open IE),
though we plan to extend to more languages and
Open IE scenarios in the future. From the model’s
perspective, our research evaluates limited models,
along with a few baselines due to the computation
resources. Theoretically, IEPILE can be applied
to any other LLMs, such as ChatGLM (Du et al.,
2022) and Gemma (Mesnard et al., 2024).

Ethical Considerations

In this paper, we strictly adhered to the standards
and principles of ethics. All data collected are from
publicly available materials, ensuring the trans-
parency and legality of the research. We thor-
oughly review the data, verifying the legitimacy
of their sources and compliance with their usage,
thus avoiding any infringement on personal privacy
or involvement with unauthorized information.

Acknowledgements

We would like to express our sincere gratitude to
the anonymous reviewers for their thoughtful and
constructive feedback. This work was supported by
the National Natural Science Foundation of China
(No. 62206246, No. NSFCU23B2055, No. NS-
FCU19B2027), the Fundamental Research Funds
for the Central Universities (226-2023-00138), Zhe-
jiang Provincial Natural Science Foundation of
China (No. LGG22F030011), Yongjiang Talent
Introduction Programme (2021A-156-G), and In-
formation Technology Center and State Key Lab
of CAD&CG, Zhejiang University. This work was
supported by Ant Group and Zhejiang University -
Ant Group Joint Laboratory of Knowledge Graph.

References
Arthur Amalvy, Vincent Labatut, and Richard Dufour.

2023. Learning to rank context for named entity
recognition using a synthetic dataset. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 10372–10382.
Association for Computational Linguistics.

Jinze Bai, Shuai Bai, Yunfei Chu, et al. 2023. Qwen
technical report. arXiv preprint arXiv:2309.16609.

Tom B. Brown, Benjamin Mann, Nick Ryder, et al. 2020.
Language models are few-shot learners. In NeurIPS
2020.

Xavier Carreras and Lluís Màrquez. 2004. Introduction
to the conll-2004 shared task: Semantic role labeling.
In Proceedings of the Eighth Conference on Compu-
tational Natural Language Learning, CoNLL 2004,
Held in cooperation with HLT-NAACL 2004, Boston,
Massachusetts, USA, May 6-7, 2004, pages 89–97.
ACL.

Chih-Yao Chen and Cheng-Te Li. 2021. ZS-BERT:
towards zero-shot relation extraction with attribute
representation learning. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 3470–3479. Association for
Computational Linguistics.

Pei Chen, Haotian Xu, Cheng Zhang, and Ruihong
Huang. 2022a. Crossroads, buildings and neighbor-
hoods: A dataset for fine-grained location recogni-
tion. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL 2022, Seattle, WA, United States, July
10-15, 2022, pages 3329–3339. Association for Com-
putational Linguistics.

Xiang Chen, Lei Li, Yuqi Zhu, Shumin Deng, Chuanqi
Tan, Fei Huang, Luo Si, Ningyu Zhang, and Huajun
Chen. 2024. Sequence labeling as non-autoregressive
dual-query set generation. IEEE/ACM Transactions
on Audio, Speech, and Language Processing.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022b. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization
for relation extraction. In WWW ’22: The ACM Web
Conference 2022, Virtual Event, Lyon, France, April
25 - 29, 2022, pages 2778–2788. ACM.

Yew Ken Chia, Lidong Bing, Soujanya Poria, and Luo
Si. 2022. Relationprompt: Leveraging prompts to
generate synthetic data for zero-shot relation triplet
extraction. In Findings of the Association for Com-
putational Linguistics: ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 45–57. Association for Com-
putational Linguistics.

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao, Zhipeng
Chen, Wentao Ma, Shijin Wang, and Guoping Hu.
2019. A span-extraction dataset for chinese ma-
chine reading comprehension. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 5882–5888. Association for
Computational Linguistics.

Rezarta Islamaj Dogan, Robert Leaman, and Zhiyong
Lu. 2014. NCBI disease corpus: A resource for

132

https://aclanthology.org/2023.emnlp-main.642
https://aclanthology.org/2023.emnlp-main.642
https://aclanthology.org/W04-2412/
https://aclanthology.org/W04-2412/
https://doi.org/10.18653/V1/2021.NAACL-MAIN.272
https://doi.org/10.18653/V1/2021.NAACL-MAIN.272
https://doi.org/10.18653/V1/2021.NAACL-MAIN.272
https://doi.org/10.18653/V1/2022.NAACL-MAIN.243
https://doi.org/10.18653/V1/2022.NAACL-MAIN.243
https://doi.org/10.18653/V1/2022.NAACL-MAIN.243
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.5
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.5
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.5
https://doi.org/10.18653/V1/D19-1600
https://doi.org/10.18653/V1/D19-1600
https://doi.org/10.1016/J.JBI.2013.12.006


disease name recognition and concept normalization.
J. Biomed. Informatics, 47:1–10.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320–335.

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins,
and Benjamin Van Durme. 2020. Multi-sentence
argument linking. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics.

Zhaoye Fei, Yunfan Shao, Linyang Li, Zhiyuan Zeng,
Hang Yan, Xipeng Qiu, and Dahua Lin. 2024. Query
of CC: unearthing large scale domain-specific knowl-
edge from public corpora. CoRR, abs/2401.14624.

Jun Gao, Huan Zhao, Yice Zhang, Wei Wang, Chang-
long Yu, and Ruifeng Xu. 2023. Benchmark-
ing large language models with augmented instruc-
tions for fine-grained information extraction. CoRR,
abs/2310.05092.

Runwei Guan, Ka Lok Man, Feifan Chen, Shanliang
Yao, Rongsheng Hu, Xiaohui Zhu, Jeremy S. Smith,
Eng Gee Lim, and Yutao Yue. 2023. Findvehi-
cle and vehiclefinder: A NER dataset for natu-
ral language-based vehicle retrieval and a keyword-
based cross-modal vehicle retrieval system. CoRR,
abs/2304.10893.

Tongfeng Guan, Hongying Zan, Xiabing Zhou, Hongfei
Xu, and Kunli Zhang. 2020. Cmeie: Construction
and evaluation of chinese medical information extrac-
tion dataset. In Natural Language Processing and
Chinese Computing - 9th CCF International Con-
ference, NLPCC 2020, Zhengzhou, China, October
14-18, 2020, Proceedings, Part I, volume 12430 of
Lecture Notes in Computer Science, pages 270–282.
Springer.

Honghao Gui, Shuofei Qiao, Jintian Zhang, Hong-
bin Ye, Mengshu Sun, Lei Liang, Huajun Chen,
and Ningyu Zhang. 2023. Instructie: A bilin-
gual instruction-based information extraction dataset.
CoRR, abs/2305.11527.

Harsha Gurulingappa, Abdul Mateen Rajput, and Luca
Toldo. 2012. Extraction of adverse drug effects from
medical case reports. J. Biomed. Semant., 3:15.

Cuiyun Han, Jinchuan Zhang, Xinyu Li, Guojin Xu,
Weihua Peng, and Zengfeng Zeng. 2022. Duee-fin:
A large-scale dataset for document-level event ex-
traction. In Natural Language Processing and Chi-
nese Computing - 11th CCF International Confer-
ence, NLPCC 2022, Guilin, China, September 24-25,
2022, Proceedings, Part I, volume 13551 of Lecture
Notes in Computer Science, pages 172–183. Springer.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A

large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 4803–4809.
Association for Computational Linguistics.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang,
Monica Agrawal, Xiaoyi Jiang, and David A. Sontag.
2023. Tabllm: Few-shot classification of tabular data
with large language models. In International Confer-
ence on Artificial Intelligence and Statistics, 25-27
April 2023, Palau de Congressos, Valencia, Spain,
volume 206 of Proceedings of Machine Learning
Research, pages 5549–5581. PMLR.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. Semeval-2010 task 8: Multi-
way classification of semantic relations between pairs
of nominals. In Proceedings of the 5th International
Workshop on Semantic Evaluation, SemEval@ACL
2010, Uppsala University, Uppsala, Sweden, July
15-16, 2010, pages 33–38. The Association for Com-
puter Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Kuan-Hao Huang, I-Hung Hsu, Tanmay Parekh, Zhiyu
Xie, Zixuan Zhang, Premkumar Natarajan, Kai-Wei
Chang, Nanyun Peng, and Heng Ji. 2023. A reeval-
uation of event extraction: Past, present, and future
challenges. CoRR, abs/2311.09562.

Wenhao Huang, Qianyu He, Zhixu Li, Jiaqing Liang,
and Yanghua Xiao. 2024. Is there a one-model-fits-
all approach to information extraction? revisiting
task definition biases.

Sharmistha Jat, Siddhesh Khandelwal, and Partha P.
Talukdar. 2017. Improving distantly supervised rela-
tion extraction using word and entity based attention.
In 6th Workshop on Automated Knowledge Base Con-
struction, AKBC@NIPS 2017, Long Beach, Califor-
nia, USA, December 8, 2017. OpenReview.net.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Yizhu Jiao, Ming Zhong, Sha Li, Ruining Zhao, Siru
Ouyang, Heng Ji, and Jiawei Han. 2023. Instruct
and extract: Instruction tuning for on-demand in-
formation extraction. In Proceedings of the 2023

133

https://doi.org/10.1016/J.JBI.2013.12.006
https://doi.org/10.48550/ARXIV.2401.14624
https://doi.org/10.48550/ARXIV.2401.14624
https://doi.org/10.48550/ARXIV.2401.14624
https://doi.org/10.48550/ARXIV.2310.05092
https://doi.org/10.48550/ARXIV.2310.05092
https://doi.org/10.48550/ARXIV.2310.05092
https://doi.org/10.48550/ARXIV.2304.10893
https://doi.org/10.48550/ARXIV.2304.10893
https://doi.org/10.48550/ARXIV.2304.10893
https://doi.org/10.48550/ARXIV.2304.10893
https://doi.org/10.1007/978-3-030-60450-9_22
https://doi.org/10.1007/978-3-030-60450-9_22
https://doi.org/10.1007/978-3-030-60450-9_22
https://doi.org/10.48550/ARXIV.2305.11527
https://doi.org/10.48550/ARXIV.2305.11527
https://doi.org/10.1186/2041-1480-3-15
https://doi.org/10.1186/2041-1480-3-15
https://doi.org/10.1007/978-3-031-17120-8_14
https://doi.org/10.1007/978-3-031-17120-8_14
https://doi.org/10.1007/978-3-031-17120-8_14
https://doi.org/10.18653/V1/D18-1514
https://doi.org/10.18653/V1/D18-1514
https://doi.org/10.18653/V1/D18-1514
https://proceedings.mlr.press/v206/hegselmann23a.html
https://proceedings.mlr.press/v206/hegselmann23a.html
https://aclanthology.org/S10-1006/
https://aclanthology.org/S10-1006/
https://aclanthology.org/S10-1006/
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2311.09562
https://doi.org/10.48550/ARXIV.2311.09562
https://doi.org/10.48550/ARXIV.2311.09562
http://arxiv.org/abs/2403.16396
http://arxiv.org/abs/2403.16396
http://arxiv.org/abs/2403.16396
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://aclanthology.org/2023.emnlp-main.620
https://aclanthology.org/2023.emnlp-main.620
https://aclanthology.org/2023.emnlp-main.620


Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 10030–10051. Association for
Computational Linguistics.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
Tsujii. 2003. GENIA corpus - a semantically anno-
tated corpus for bio-textmining. In Proceedings of
the Eleventh International Conference on Intelligent
Systems for Molecular Biology, June 29 - July 3, 2003,
Brisbane, Australia, pages 180–182.

Veysel Kocaman and David Talby. 2020. Biomedical
named entity recognition at scale. In Pattern Recogni-
tion. ICPR International Workshops and Challenges
- Virtual Event, January 10-15, 2021, Proceedings,
Part I, volume 12661 of Lecture Notes in Computer
Science, pages 635–646. Springer.

Aman Kumar and Binil Starly. 2022. "fabner": informa-
tion extraction from manufacturing process science
domain literature using named entity recognition. J.
Intell. Manuf., 33(8):2393–2407.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022a. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages
8424–8445. Association for Computational Linguis-
tics.

Meisin Lee, Lay-Ki Soon, Eu-Gene Siew, and Ly Fie
Sugianto. 2022b. Crudeoilnews: An annotated crude
oil news corpus for event extraction. In Proceedings
of the Thirteenth Language Resources and Evalua-
tion Conference, LREC 2022, Marseille, France, 20-
25 June 2022, pages 465–479. European Language
Resources Association.

Gina-Anne Levow. 2006. The third international chi-
nese language processing bakeoff: Word segmenta-
tion and named entity recognition. In Proceedings of
the Fifth Workshop on Chinese Language Processing,
SIGHAN@COLING/ACL 2006, Sydney, Australia,
July 22-23, 2006, pages 108–117. Association for
Computational Linguistics.

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023a. Evaluating
chatgpt’s information extraction capabilities: An as-
sessment of performance, explainability, calibration,
and faithfulness. CoRR, abs/2304.11633.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023b.
Codeie: Large code generation models are better
few-shot information extractors. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
15339–15353. Association for Computational Lin-
guistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level
event argument extraction by conditional generation.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, pages
894–908. Association for Computational Linguistics.

Shuangjie Li, Wei He, Yabing Shi, Wenbin Jiang, Haijin
Liang, Ye Jiang, Yang Zhang, Yajuan Lyu, and Yong
Zhu. 2019. Duie: A large-scale chinese dataset for
information extraction. In Natural Language Pro-
cessing and Chinese Computing - 8th CCF Interna-
tional Conference, NLPCC 2019, Dunhuang, China,
October 9-14, 2019, Proceedings, Part II, volume
11839 of Lecture Notes in Computer Science, pages
791–800. Springer.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020a. A unified MRC
framework for named entity recognition. In ACL
2020, pages 5849–5859. Association for Computa-
tional Linguistics.

Xinyu Li, Fayuan Li, Lu Pan, Yuguang Chen, Weihua
Peng, Quan Wang, Yajuan Lyu, and Yong Zhu. 2020b.
Duee: A large-scale dataset for chinese event extrac-
tion in real-world scenarios. In Natural Language
Processing and Chinese Computing - 9th CCF In-
ternational Conference, NLPCC 2020, Zhengzhou,
China, October 14-18, 2020, Proceedings, Part II,
volume 12431 of Lecture Notes in Computer Science,
pages 534–545. Springer.

Jingjing Liu, Panupong Pasupat, Scott Cyphers, and
James R. Glass. 2013. Asgard: A portable archi-
tecture for multilingual dialogue systems. In IEEE
International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2013, Vancouver, BC,
Canada, May 26-31, 2013, pages 8386–8390. IEEE.

Zihan Liu, Yan Xu, Tiezheng Yu, Wenliang Dai, Ziwei
Ji, Samuel Cahyawijaya, Andrea Madotto, and Pas-
cale Fung. 2021. Crossner: Evaluating cross-domain
named entity recognition. In Thirty-Fifth AAAI Con-
ference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Arti-
ficial Intelligence, IAAI 2021, The Eleventh Sympo-
sium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 13452–13460. AAAI Press.

Jie Lou, Yaojie Lu, Dai Dai, Wei Jia, Hongyu Lin, Xi-
anpei Han, Le Sun, and Hua Wu. 2023. Universal
information extraction as unified semantic match-
ing. In Thirty-Seventh AAAI Conference on Artifi-
cial Intelligence, AAAI 2023, Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence,
IAAI 2023, Thirteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2023, Wash-
ington, DC, USA, February 7-14, 2023, pages 13318–
13326. AAAI Press.

Keming Lu, Xiaoman Pan, Kaiqiang Song, Hongming
Zhang, Dong Yu, and Jianshu Chen. 2023. PIVOINE:

134

http://bioinformatics.oupjournals.org/cgi/content/abstract/19/suppl_1/i180?etoc
http://bioinformatics.oupjournals.org/cgi/content/abstract/19/suppl_1/i180?etoc
https://doi.org/10.1007/978-3-030-68763-2_48
https://doi.org/10.1007/978-3-030-68763-2_48
https://doi.org/10.1007/S10845-021-01807-X
https://doi.org/10.1007/S10845-021-01807-X
https://doi.org/10.1007/S10845-021-01807-X
https://doi.org/10.18653/V1/2022.ACL-LONG.577
https://doi.org/10.18653/V1/2022.ACL-LONG.577
https://aclanthology.org/2022.lrec-1.49
https://aclanthology.org/2022.lrec-1.49
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/
https://aclanthology.org/W06-0115/
https://doi.org/10.48550/ARXIV.2304.11633
https://doi.org/10.48550/ARXIV.2304.11633
https://doi.org/10.48550/ARXIV.2304.11633
https://doi.org/10.48550/ARXIV.2304.11633
https://doi.org/10.18653/V1/2023.ACL-LONG.855
https://doi.org/10.18653/V1/2023.ACL-LONG.855
https://doi.org/10.18653/V1/2021.NAACL-MAIN.69
https://doi.org/10.18653/V1/2021.NAACL-MAIN.69
https://doi.org/10.1007/978-3-030-32236-6_72
https://doi.org/10.1007/978-3-030-32236-6_72
https://doi.org/10.1007/978-3-030-60457-8_44
https://doi.org/10.1007/978-3-030-60457-8_44
https://doi.org/10.1109/ICASSP.2013.6639301
https://doi.org/10.1109/ICASSP.2013.6639301
https://doi.org/10.1609/AAAI.V35I15.17587
https://doi.org/10.1609/AAAI.V35I15.17587
https://doi.org/10.1609/aaai.v37i11.26563
https://doi.org/10.1609/aaai.v37i11.26563
https://doi.org/10.1609/aaai.v37i11.26563
https://doi.org/10.48550/arXiv.2305.14898


instruction tuning for open-world information extrac-
tion. CoRR, abs/2305.14898.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022a. Uni-
fied structure generation for universal information
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 5755–5772. Association for
Computational Linguistics.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022b. Uni-
fied structure generation for universal information
extraction. In ACL 2022, pages 5755–5772. Associa-
tion for Computational Linguistics.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of enti-
ties, relations, and coreference for scientific knowl-
edge graph construction. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 3219–3232. Association
for Computational Linguistics.

Yubo Ma, Yixin Cao, Yong Hong, and Aixin Sun. 2023.
Large language model is not a good few-shot informa-
tion extractor, but a good reranker for hard samples!
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 10572–10601. Association for Computa-
tional Linguistics.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi,
Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, and et al. 2024.
Gemma: Open models based on gemini research and
technology. CoRR, abs/2403.08295.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
Jie Ma, Alessandro Achille, Rishita Anubhai,
Cícero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation be-
tween augmented natural languages. In ICLR 2021.
OpenReview.net.

Nanyun Peng and Mark Dredze. 2015. Named en-
tity recognition for chinese social media with jointly
trained embeddings. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, Septem-
ber 17-21, 2015, pages 548–554. The Association for
Computational Linguistics.

Sameer S. Pradhan and Nianwen Xue. 2009. Ontonotes:
The 90% solution. In Human Language Technolo-
gies: Conference of the North American Chapter of
the Association of Computational Linguistics, Pro-
ceedings, May 31 - June 5, 2009, Boulder, Colorado,
USA, Tutorial Abstracts, pages 11–12. The Associa-
tion for Computational Linguistics.

Xiao Pu, Mingqi Gao, and Xiaojun Wan. 2023. Sum-
marization is (almost) dead. CoRR, abs/2309.09558.

Sampo Pyysalo and Sophia Ananiadou. 2014. Anatom-
ical entity mention recognition at literature scale.
Bioinform., 30(6):868–875.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Machine Learning and Knowl-
edge Discovery in Databases, European Conference,
ECML PKDD 2010, Barcelona, Spain, September
20-24, 2010, Proceedings, Part III, volume 6323 of
Lecture Notes in Computer Science, pages 148–163.
Springer.

Oscar Sainz, Iker García-Ferrero, Rodrigo Agerri,
Oier Lopez de Lacalle, German Rigau, and Eneko
Agirre. 2023. Gollie: Annotation guidelines im-
prove zero-shot information-extraction. CoRR,
abs/2310.03668.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning, CoNLL 2003, Held in cooperation with
HLT-NAACL 2003, Edmonton, Canada, May 31 -
June 1, 2003, pages 142–147. ACL.

Taneeya Satyapanich, Francis Ferraro, and Tim Finin.
2020. CASIE: extracting cybersecurity event infor-
mation from text. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 8749–8757. AAAI Press.

Zhaoyue Sun, Jiazheng Li, Gabriele Pergola, Byron C.
Wallace, Bino John, Nigel Greene, Joseph Kim, and
Yulan He. 2022. PHEE: A dataset for pharmacovigi-
lance event extraction from text. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
5571–5587. Association for Computational Linguis-
tics.

Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and Min-
lie Huang. 2019. A hierarchical framework for rela-
tion extraction with reinforcement learning. In The
Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, The Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational

135

https://doi.org/10.48550/arXiv.2305.14898
https://doi.org/10.48550/arXiv.2305.14898
https://doi.org/10.18653/V1/2022.ACL-LONG.395
https://doi.org/10.18653/V1/2022.ACL-LONG.395
https://doi.org/10.18653/V1/2022.ACL-LONG.395
https://doi.org/10.18653/V1/D18-1360
https://doi.org/10.18653/V1/D18-1360
https://doi.org/10.18653/V1/D18-1360
https://aclanthology.org/2023.findings-emnlp.710
https://aclanthology.org/2023.findings-emnlp.710
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/V1/D15-1064
https://doi.org/10.18653/V1/D15-1064
https://doi.org/10.18653/V1/D15-1064
https://aclanthology.org/N09-4006/
https://aclanthology.org/N09-4006/
https://doi.org/10.48550/ARXIV.2309.09558
https://doi.org/10.48550/ARXIV.2309.09558
https://doi.org/10.1093/BIOINFORMATICS/BTT580
https://doi.org/10.1093/BIOINFORMATICS/BTT580
https://doi.org/10.1007/978-3-642-15939-8_10
https://doi.org/10.1007/978-3-642-15939-8_10
https://doi.org/10.48550/ARXIV.2310.03668
https://doi.org/10.48550/ARXIV.2310.03668
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://doi.org/10.1609/AAAI.V34I05.6401
https://doi.org/10.1609/AAAI.V34I05.6401
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.376
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.376
https://doi.org/10.1609/AAAI.V33I01.33017072
https://doi.org/10.1609/AAAI.V33I01.33017072


Advances in Artificial Intelligence, EAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019,
pages 7072–7079. AAAI Press.

Simone Tedeschi and Roberto Navigli. 2022. Multinerd:
A multilingual, multi-genre and fine-grained dataset
for named entity recognition (and disambiguation).
In Findings of the Association for Computational
Linguistics: NAACL 2022, Seattle, WA, United States,
July 10-15, 2022, pages 801–812. Association for
Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, et al.
2023a. Llama: Open and efficient foundation lan-
guage models. CoRR, abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, et al. 2023b.
Llama 2: Open foundation and fine-tuned chat mod-
els. CoRR, abs/2307.09288.

David Vilar, Markus Freitag, Colin Cherry, Jiaming
Luo, Viresh Ratnakar, and George F. Foster. 2023.
Prompting palm for translation: Assessing strategies
and performance. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 15406–15427. Asso-
ciation for Computational Linguistics.

Somin Wadhwa, Silvio Amir, and Byron C. Wallace.
2023. Revisiting relation extraction in the era of large
language models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 15566–15589. Asso-
ciation for Computational Linguistics.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilingual
training corpus.

Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu,
Haiyue Song, Jiwei Li, and Sadao Kurohashi. 2023.
GPT-RE: in-context learning for relation extraction
using large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 3534–3547. Association
for Computational Linguistics.

Haitao Wang, Zhengqiu He, Jin Ma, Wenliang Chen,
and Min Zhang. 2019. Ipre: a dataset for inter-
personal relationship extraction. In Natural Lan-
guage Processing and Chinese Computing: 8th CCF
International Conference, NLPCC 2019, Dunhuang,
China, October 9–14, 2019, Proceedings, Part II 8,
pages 103–115. Springer.

Jiaqi Wang, Yuying Chang, Zhong Li, Ning An, Qi Ma,
Lei Hei, Haibo Luo, Yifei Lu, and Feiliang Ren. 2024.
Techgpt-2.0: A large language model project to solve
the task of knowledge graph construction.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.
2023a. GPT-NER: named entity recognition via large
language models. CoRR, abs/2304.10428.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, Jihua Kang, Jingsheng Yang,
Siyuan Li, and Chunsai Du. 2023b. Instructuie:
Multi-task instruction tuning for unified information
extraction. CoRR, abs/2304.08085.

Zengzhi Wang, Rui Xia, and Pengfei Liu. 2023c. Gen-
erative AI for math: Part I - mathpile: A billion-
token-scale pretraining corpus for math. CoRR,
abs/2312.17120.

Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang,
Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
Yufeng Chen, Meishan Zhang, Yong Jiang, and Wen-
juan Han. 2023. Zero-shot information extraction via
chatting with chatgpt. CoRR, abs/2302.10205.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng
Wan, and Philip S. Yu. 2023. Multimodal large lan-
guage models: A survey. In IEEE International Con-
ference on Big Data, BigData 2023, Sorrento, Italy,
December 15-18, 2023, pages 2247–2256. IEEE.

Xinglin Xiao, Yijie Wang, Nan Xu, Yuqi Wang,
Hanxuan Yang, Minzheng Wang, Yin Luo, Lei
Wang, Wenji Mao, and Daniel Zeng. 2023. YAYI-
UIE: A chat-enhanced instruction tuning frame-
work for universal information extraction. CoRR,
abs/2312.15548.

Tingyu Xie, Qi Li, Yan Zhang, Zuozhu Liu, and Hong-
wei Wang. 2023. Self-improving for zero-shot named
entity recognition with large language models. CoRR,
abs/2311.08921.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, and
Enhong Chen. 2023. Large language models for
generative information extraction: A survey. CoRR,
abs/2312.17617.

Liang Xu, Yu Tong, Qianqian Dong, Yixuan Liao, Cong
Yu, Yin Tian, Weitang Liu, Lu Li, and Xuanwei
Zhang. 2020. CLUENER2020: fine-grained named
entity recognition dataset and benchmark for chinese.
CoRR, abs/2001.04351.

Aiyuan Yang, Bin Xiao, Bingning Wang, et al. 2023.
Baichuan 2: Open large-scale language models.
CoRR, abs/2309.10305.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R.
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai.
2024. If LLM is the wizard, then code is the wand: A
survey on how code empowers large language models
to serve as intelligent agents. CoRR, abs/2401.00812.

Dongxu Zhang and Dong Wang. 2015. Relation
classification via recurrent neural network. CoRR,
abs/1508.01006.

Jiasheng Zhang, Xikai Liu, Xinyi Lai, Yan Gao, Shusen
Wang, Yao Hu, and Yiqing Lin. 2023a. 2iner: In-
structive and in-context learning on few-shot named

136

https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.60
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.60
https://doi.org/10.18653/V1/2022.FINDINGS-NAACL.60
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://aclanthology.org/2023.acl-long.859
https://aclanthology.org/2023.acl-long.859
https://doi.org/10.18653/V1/2023.ACL-LONG.868
https://doi.org/10.18653/V1/2023.ACL-LONG.868
https://doi.org/https://doi.org/10.35111/mwxc-vh88
https://doi.org/https://doi.org/10.35111/mwxc-vh88
https://aclanthology.org/2023.emnlp-main.214
https://aclanthology.org/2023.emnlp-main.214
http://arxiv.org/abs/2401.04507
http://arxiv.org/abs/2401.04507
https://doi.org/10.48550/arXiv.2304.10428
https://doi.org/10.48550/arXiv.2304.10428
https://doi.org/10.48550/ARXIV.2304.08085
https://doi.org/10.48550/ARXIV.2304.08085
https://doi.org/10.48550/ARXIV.2304.08085
https://doi.org/10.48550/ARXIV.2312.17120
https://doi.org/10.48550/ARXIV.2312.17120
https://doi.org/10.48550/ARXIV.2312.17120
https://doi.org/10.48550/arXiv.2302.10205
https://doi.org/10.48550/arXiv.2302.10205
https://doi.org/10.1109/BIGDATA59044.2023.10386743
https://doi.org/10.1109/BIGDATA59044.2023.10386743
https://doi.org/10.48550/ARXIV.2312.15548
https://doi.org/10.48550/ARXIV.2312.15548
https://doi.org/10.48550/ARXIV.2312.15548
https://doi.org/10.48550/ARXIV.2311.08921
https://doi.org/10.48550/ARXIV.2311.08921
https://doi.org/10.48550/ARXIV.2312.17617
https://doi.org/10.48550/ARXIV.2312.17617
http://arxiv.org/abs/2001.04351
http://arxiv.org/abs/2001.04351
https://doi.org/10.48550/ARXIV.2309.10305
https://doi.org/10.48550/ARXIV.2401.00812
https://doi.org/10.48550/ARXIV.2401.00812
https://doi.org/10.48550/ARXIV.2401.00812
http://arxiv.org/abs/1508.01006
http://arxiv.org/abs/1508.01006
https://aclanthology.org/2023.findings-emnlp.259
https://aclanthology.org/2023.findings-emnlp.259


entity recognition. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Singapore,
December 6-10, 2023, pages 3940–3951. Association
for Computational Linguistics.

Sheng Zhang, Hao Cheng, Jianfeng Gao, and Hoifung
Poon. 2023b. Optimizing bi-encoder for named en-
tity recognition via contrastive learning. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Yue Zhang and Jie Yang. 2018. Chinese NER using
lattice LSTM. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 1: Long Papers, pages 1554–1564. As-
sociation for Computational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing
Hao, Peng Zhou, and Bo Xu. 2017. Joint extraction
of entities and relations based on a novel tagging
scheme. In ACL 2017, pages 1227–1236. Associa-
tion for Computational Linguistics.

Yang Zhou, Yubo Chen, Jun Zhao, Yin Wu, Jiexin Xu,
and Jinlong Li. 2021. What the role is vs. what plays
the role: Semi-supervised event argument extraction
via dual question answering. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 14638–14646. AAAI Press.

A Related Work

A.1 Information Extraction Datasets
Large-scale pre-trained corpora are crucial for
the effectiveness of LLMs, providing a wealth of
knowledge and a foundation for language compre-
hension. At the same time, the annotated data for
information extraction (IE) also holds its impor-
tance. Although the field of IE has accumulated
a considerable amount of annotated data (Walker
et al., 2006; Riedel et al., 2010; Sang and Meulder,
2003; Luan et al., 2018; Gui et al., 2023), these
datasets are often limited in size, scattered in distri-
bution, and lack standardization in schema. Faced
with these limitations, there is an urgent need for
generating instruction data through unified and au-
tomated methods to bridge the gap presented by
the current absence of centralized, large-scale IE
instruction datasets. In this paper, we concentrate
on instruction-based IE scenarios. We develop a
comprehensive, schema-rich instruction dataset for
IE by collecting and cleaning existing IE datasets,
called IEPILE. IEPILE is designed to enhance the
adaptability and processing capabilities of LLMs
for different IE tasks, simultaneously strengthen-
ing their generalization skills to extract from new
domains and schemas.
A.2 Information Extraction Models
Recently, LLMs (Brown et al., 2020; Ouyang et al.,
2022; Touvron et al., 2023a,b) demonstrate their
exceptional versatility and generalization capabil-
ities across a variety of downstream tasks (Vilar
et al., 2023; Hegselmann et al., 2023). Particularly
in the domain of IE, these models have the potential
to tackle many challenges previously encountered
in research (Zheng et al., 2017; Li et al., 2020a;
Paolini et al., 2021; Lu et al., 2022b; Lou et al.,
2023; Chen et al., 2022b, 2024), such as adaptabil-
ity issues when dealing with unseen labels. Some
studies (Wei et al., 2023; Wang et al., 2023a; Xie
et al., 2023) make significant performance gains in
low-resource settings by designing prompt-based
frameworks and leveraging models like ChatGPT
for in-context learning. Moreover, research ef-
forts such as InstructUIE (Wang et al., 2023b),
PIVOINE (Lu et al., 2023), and YAYI-UIE (Xiao
et al., 2023), which employ instruction-tuning of
open-source LLMs, also achieve notable successes
on IE. Additional research explore areas such as
prompt learning (Zhang et al., 2023a), guidelines
(Sainz et al., 2023) and synthetic dataset (Amalvy
et al., 2023). Despite these advancements, cur-
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rent models fine-tuned with instruction data face a
major challenge: the coarse schema handling strate-
gies in constructing instructions could potentially
impair the models’ capacity for generalization.

B Construction Details of IEPILE

B.1 Data Collection and Clean
Data Collection To comprehensively cover var-
ious domains and meet the practical demands of
information extraction (IE), we collect IE datasets
from multiple sources. IEPILE dataset mainly in-
volves bilingual data (Chinese and English) and
three IE tasks: Named Entity Recognition (NER),
Relation Extraction (RE), and Event Extraction
(EE). The English part mainly comes from the
benchmark dataset IEINSTRUCTIONS (Wang
et al., 2023b), while the Chinese data is similar to
the Chinese datasets mentioned in the YAYI-UIE
(Xiao et al., 2023). It should be noted that our Chi-
nese dataset collection is conducted concurrently
with the aforementioned research.

Specifically, the NER datasets include fifteen
English datasets such as ACE2005 (Walker
et al., 2006), AnatEM (Pyysalo and Anani-
adou, 2014), BC2GM (Kocaman and Talby,
2020), BC4CHEMD (Kocaman and Talby, 2020),
BC5CDR (Zhang et al., 2023b), CoNLL2003
(Sang and Meulder, 2003), FabNER (Kumar and
Starly, 2022), FindVehicle (Guan et al., 2023),
GENIA-Ent (Kim et al., 2003), HarveyNER (Chen
et al., 2022a), MIT Movie (Liu et al., 2013),
MIT Restaurant (Liu et al., 2013), MultiNERD
(Tedeschi and Navigli, 2022), NCBI-Disease (Do-
gan et al., 2014), Ontonotes (Pradhan and Xue,
2009), and three Chinese datasets including MSRA
(Levow, 2006), Resume NER (Zhang and Yang,
2018), CLUE NER (Xu et al., 2020). The RE task
encompasses eight English datasets including ADE
Corpus (Gurulingappa et al., 2012), CoNLL2004
(Carreras and Màrquez, 2004), GIDS (Jat et al.,
2017), KBP37 (Zhang and Wang, 2015), NYT
(Riedel et al., 2010), NYT11-HRL (Takanobu
et al., 2019), SciERC (Luan et al., 2018), Semeval-
RE (Hendrickx et al., 2010), and two Chinese
datasets, CMeIE (Luan et al., 2018), DuIE2.0
(Hendrickx et al., 2010). The EE task covers three
English datasets: ACE2005 (Walker et al., 2006),
CASIE (Satyapanich et al., 2020), PHEE (Sun
et al., 2022), and two Chinese datasets, DuEE1.0
(Satyapanich et al., 2020), DuEE-fin (Sun et al.,
2022). These datasets span various domains such

as general, medical, financial, and more. For more
detailed statistical information, please refer to Ta-
bles 9, 10 and 11.

Data Cleaning During the data cleaning process,
we address each dataset individually. Firstly, we
calculate the text overlap within each dataset’s train-
ing, validation, and test sets. If a text is discovered
to have multiple occurrences within the same file
accompanied by inconsistent annotations, we ex-
clude all corresponding instances from the dataset.
Secondly, we compare the text overlap between
training, validation, and test sets. If texts from the
test set appear previously in the training or valida-
tion sets, we would exclude these instances from
the training and validation sets. Furthermore, we
formulate three heuristic rules to eliminate low-
quality and meaningless data:

1) Non-alphabetic characters comprising more
than 80% of the text;

2) Text length under five characters without any
labels;

3) A high prevalence of stopwords such as ‘the,’
‘to,’ ‘of,’ etc., exceeding 80%.

We believe that the aforementioned cleaning
measures will positively affect model training and
enhance its performance. Moreover, our efforts
unify data formats across various tasks and conduct
a thorough audit of each dataset, creating detailed
data records that include the volume of data, do-
mains, schemas, and other information. Figure 4 is
an example of a data record for Ontonotes.
B.2 Schema-Based Instruction Generation
Hard Negative Schema Construction. As illus-
trated in Figure 1, assume that dataset D possesses
a predefined label set L. For a given text S, the
schemas present in its annotation constitute the pos-
itive schema set Pos_L, while others form the neg-
ative schema set Neg_L. Inspired by the theory of
contrastive learning, we construct a hard negative
schema dictionary K, where each key represents a
unique schema and the associated value is a collec-
tion of schemas that are semantically similar to the
key schema. Consequently, the set of hard negative
schema, Hard_L, is defined as K[Pos_L]. How-
ever, if Neg_L is composed solely of Hard_L,
it would lack a sufficient number of negative in-
stances for the model to learn effectively. There-
fore, we define another set of negative schemas,
Other_L = L −Hard_L − Pos_L. Ultimately,
the Neg_L is composed of Hard_L and a small
number of Other_L (roughly split_num). The
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Figure 4: An exemplar of data records for OntoNotes:
the domain, the number and details of schemas, the total
volume of data, the split_num, the number of instruc-
tions produced using our method, along with the distri-
bution of split count within the interval [(split_num /
2), (split_num + split_num / 2)].

rationale behind the development of these hard neg-
atives is two-fold: firstly, to induce a more frequent
co-occur of semantically similar schemas within
the instructions, and secondly, to reduce the vol-
ume of training instances without sacrificing the
model’s performance. In the context of a dataset
comprising 48 schemas with a given split_num
of 4, traditional mode would dictate the creation
of 12 unique instructions per data point. However,
through the integration of hard negatives, this req-
uisite can be substantially minimized to a mere 3
instructions.

Batched Instruction Generation. Subsequently,
we obtain the final schema set L′ = Pos_L +
Neg_L. During the instruction generation phase,
the role of schemas is critically vital, as it reflects
the specific extraction requirements and is dynami-
cally variable. Traditional practices typically in-
tegrate the full schema set into the instruction.
However, in this study, we employ a batched in-
struction generation method, dynamically limiting
the number of schemas inquired in each instruc-
tion to the number of split_num, which ranges
between 4 to 6. Therefore, L′ will be divided
into |L′|/split_num batches for querying, with
each batch querying split_num schemas. Conse-
quently, even if the number of schemas inquired
during the evaluation phase differs from that of
training, the batched mechanism allows us to dis-
tribute the inquiries across split_num schemas,
thereby mitigating the decline in generalization
performance.

Selection of split_num. In the determination of
the optimal range for split_num, our methodol-
ogy integrates empirical results with an in-depth
analysis of dataset characteristics. For a dataset
containing N different labels, the theoretical value
of split_num should fall within the interval [1,
N]. Addressing datasets with heterogeneous label
counts, our objective is to identify a split_num
value that offers broad applicability across numer-
ous datasets, thus ensuring this value serves as a
common divisor for the majority of dataset label
counts. For instance, for Named Entity Recog-
nition datasets, we set split_num to 6; for Re-
lation Extraction and Event Extraction datasets,
we establish split_num at 4. We also observe
that when split_num is 1, the ratio of positive
to negative samples significantly impacts model
performance, and the corresponding number of
training samples becomes vast, affecting efficiency
adversely. More crucially, we believe that enu-
merating multiple schemas in instructions aids the
model in more effectively learning to distinguish
and identify various schemas, thereby enhancing
model performance.

Furthermore, to enhance model robustness and
its clear understanding of the dynamically changing
schema sequences in instructions, we set the actual
number of schema splits within a dynamic range
of [split_num // 2, split_num + split_num // 2].
Specifically, if the number of schemas in the last
batch is less than half of split_num, it is merged
with the previous batch; otherwise, it stands as an
independent batch.

Instruction Format The instruction format of
IEPILE adopts a structure akin to JSON strings, es-
sentially constituting a dictionary-type string. This
structure is comprised of three main components:
(1) “instruction”, which is the task description out-
lining the objective of the instruction’s execution;
(2) “schema”, a list of labels that need to be ex-
tracted; (3) “input”, the source text from which
information is to be extracted. Examples of instruc-
tions corresponding to various tasks can be found
in Table 12.

B.3 Data Statistics
Based on the aforementioned methodologies, we
construct a high-quality information extraction in-
struction dataset known as IEPILE. This dataset
contains approximately two million instances and
approximately 0.32B tokens. Each instance of
IEPILE comprises two fields: “instruction” and
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“output”, which are formatted for direct use in the
instruction tuning.

C Experiments

C.1 Experimental Settings
Evaluation Metrics We employ span-based
Micro-F1 as the primary metric for measuring
model performance. For the NER task, the model
is required to accurately identify the boundaries of
entities and their corresponding types. For the RE
task, the model must precisely determine the sub-
ject and object entities within a relation, as well as
the type of relation between them. UIE necessitates
predefined entity types; given that the FewRel and
Wiki-ZSL datasets do not provide such informa-
tion, we are unable to evaluate UIE’s performance
on these datasets. As for the EE task, we match the
event triggers, denoted as Trigger, and the argu-
ments, referred to as Argument, independently.

Baseline models To assess the zero-shot gener-
alization capabilities, we select a range of strong
models for comparative analysis:

• UIE (Lu et al., 2022a): is a unified text-
to-structure generation framework that can
model various information extraction (IE)
tasks generically.

• LLaMA2-13B-Chat (Touvron et al., 2023b):
is a series of LLMs ranging from 7 billion to
70 billion parameters.

• Baichuan2-13B-Chat (Yang et al., 2023): is a
collection of multilingual LLMs containing 7
billion and 13 billion parameters.

• Qwen1.5-14B-Chat (Bai et al., 2023): is a
comprehensive language model series that en-
compasses distinct models with varying pa-
rameter counts.

• Mistral-7B-Instruct-v0.2 (Jiang et al., 2023):
is a 7-billion-parameter LLM.

• ChatGPT (Ouyang et al., 2022): also known
as GPT-3.5-turbo, represents the most ad-
vanced artificial intelligence language model
with chat optimization capabilities to date.

• GPT-4 (OpenAI, 2023): Known as the most
powerful closed-source chat model to date.

• LLaMA3-8B-Instruct 3: The latest release
in the LLaMA model series, achieving sig-
nificant improvements across various bench-
marks.

• InstructUIE (Wang et al., 2023b): a unified
IE framework based on multi-task instruction
tuning.

• YAYI-UIE (Xiao et al., 2023): is an end-
to-end, chat-enhanced, universal information
extraction framework that supports both Chi-
nese and English, fine-tuned with instructional
prompts for generalized information.

C.2 OneKE
We leverage IEPILE, InstructIE (Gui et al., 2023),
CMRC (Cui et al., 2019), along with certain propri-
etary business information extraction datasets from
Ant Group, to compile a comprehensive training
dataset consisting of 2.5 million instances. Subse-
quently, we undertake full-parameter fine-tuning
of the alpaca2-chinese-13b4 model on this train-
ing dataset, resulting in the refined model named
OneKE.

Zero-shot Dataset To ensure the validity of the
zero-shot evaluation and prevent result bias due to
data similarity, we select datasets primarily derived
from news and biomedical fields as our training
sets. This selection is intended to train the model’s
capability for instruction following and schema-
based extraction. For the evaluation data, we adopt
the 13 cross-domain datasets recommended in IE-
INSTRUCTIONS and YAYI-UIE, which include:
for Named Entity Recognition (NER) tasks, we
use the CrossNER (Liu et al., 2021), Weibo NER
(Peng and Dredze, 2015), and Boson5; in Relation
Extraction (RE) tasks, we choose FewRel (Han
et al., 2018), Wiki-ZSL (Chen and Li, 2021),
COAE20166, IPRE (Wang et al., 2019), and
SKE20207; and for Event Extraction (EE), we in-
clude RAMS (Ebner et al., 2020), WikiEvents (Li
et al., 2021), CrudeOilNews (Lee et al., 2022b),
FewFC (Zhou et al., 2021), and CCF law 8. These

3https://ai.meta.com/blog/meta-llama-3/.
4https://huggingface.co/hfl/

chinese-alpaca-2-13b.
5https://github.com/InsaneLife/
6https://github.com/Sewens/COAE2016
7https://aistudio.baidu.com/datasetdetail/

177191
8https://aistudio.baidu.com/projectdetail/

4201483
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Method
EN CH

WikiEvents RAMS
CrudeOil

News
Avg FewFC

CCF
Law

Avg

Trigger

LLaMA2 0.00 0.00 0.00 0.00 0.23 0.08 0.16
Baichuan2 0.00 0.00 0.00 0.00 11.82 2.73 7.28
Qwen1.5 0.00 0.00 0.00 0.00 11.47 3.25 7.36
Mistral 0.00 0.00 0.00 0.00 4.69 0.23 2.46

ChatGPT 2.95 8.35 1.41 4.24 16.15 0.00 8.08
GPT4.0 5.24 10.14 26.13 13.84 74.25 42.12 58.19

UIE 5.12 9.25 6.45 6.94 - - -
InstructUIE 11.64 24.27 23.26 19.72 - - -
YAYI-UIE 10.97 18.87 12.45 14.10 81.28 12.87 47.08

Baichuan2-IEPILE 9.12 20.19 36.61 21.97 83.59 63.53 73.56
LLaMA2-IEPILE 13.93 23.62 33.87 23.81 70.10 59.90 65.00
Qwen1.5-IEPILE 11.38 21.26 30.69 21.11 78.77 61.43 70.10
LLaMA3-IEPILE 9.71 20.27 39.88 23.29 81.52 59.92 70.72

OneKE 12.43 22.58 38.49 24.50 80.11 62.19 71.15

Argument

LLaMA2 0.00 0.00 0.00 0.00 0.00 0.06 0.03
Baichuan2 0.79 1.81 0.48 1.03 6.91 13.04 9.98
Qwen1.5 0.64 2.31 0.74 1.23 6.37 14.48 10.43
Mistral 0.24 0.65 0.16 0.35 7.43 6.60 7.02

ChatGPT 2.07 2.21 8.60 4.29 44.40 44.57 44.49
GPT4.0 3.35 7.35 17.25 9.32 48.05 47.49 47.77

UIE 1.78 2.14 8.95 4.29 - - -
InstructUIE 5.88 6.21 21.78 11.29 - - -
YAYI-UIE 5.11 8.21 19.74 11.02 63.06 59.42 61.24

Baichuan2-IEPILE 7.64 10.42 20.40 12.82 57.93 65.43 61.68
LLaMA2-IEPILE 12.55 11.30 18.47 14.11 43.26 35.71 39.49
Qwen1.5-IEPILE 11.93 10.57 20.22 14.24 59.49 58.86 59.18
LLaMA3-IEPILE 12.10 10.96 19.20 14.09 48.19 42.59 45.39

OneKE 11.88 13.26 20.11 15.08 58.83 62.38 60.61

Table 3: Zero-shot performance on Event Extraction (EE) task. Within each column, shadow and shadow represent
the top 2 results.

datasets cover a wide range of fields including lit-
erature, music, law, and oil news. It is noteworthy
that these evaluation data sets are not used during
the training, ensuring that our evaluation accurately
reflects the model’s generalization and adaptation
capabilities for unseen domains and unseen schema
data in zero-shot information extraction.

C.3 Zero-shot performance on Event
Extraction

As illustrated in Table 3, the model trained with
IEPILE exhibits outstanding performance in zero-
shot event extraction (EE) tasks, surpassing other
baselines. Notably, in the Chinese EE task, the
LLaMA2-IEPILE model’s performance is slightly
inferior to YAYI-UIE’s, revealing LLaMA2’s limi-
tations in processing Chinese data. However, in the

English EE task, LLaMA2-IEPILE’s performance
is significantly superior to that of similar models.
This contrast highlights the potential influence of
language type on model performance.

C.4 Hyper-parameter

In our research, we select four pre-trained mod-
els, Baichuan2-13B-Chat and LLaMA2-13B-Chat,
Qwen1.5-14B-Chat, and LLaMA3-8B-Instruct, as
the base models for our study. Specifically, we em-
ploy the LoRA (Hu et al., 2022) technique and uti-
lize 8 NVIDIA A800 GPUs to perform instruction
tuning on our IEPILE dataset. Detailed configura-
tions of the hyperparameters during the fine-tuning
process are presented in Table 4.
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Hyperparameter Value
Number of Epochs 5
Learning Rate 5e-5
Batch Size 20
Accumulate 4
Lora_r 64
Lora_alpha 64
Lora_dropout 0.05

Table 4: Training Hyperparameters

Dataset Supervised Zero-shot
ACE2004 84.28 77.01
People Daily 98.34 95.29

Table 5: The results of individual LoRA fine-tuning
on ACE2004 and People Daily datasets for Baichuan2-
13B-Chat, compared with the zero-shot generalization
results of Baichuan2-IEPILE on these two datasets.

C.5 Supervision Results
Due to limited computational resources, I report
only the supervised results for the Baichuan2-
IEPILE, LLaMA2-IEPILE, and OneKE models.
Tables 6, 7, and 8 present our experimental re-
sults under a supervised learning setting on the
training dataset. Specifically, it can be observed
that after training on the IEPILE, the model excels
in Named Entity Recognition (NER), Relation Ex-
traction (RE), and Event Detection (ED), ranking
top 2 across these tasks. The model’s performance
is only slightly behind other baselines in the Event
Argument Extraction. Additionally, we record the
model’s performance in Chinese NER, RE, and
EE tasks, where it demonstrates robust results. In
a comprehensive assessment, the IEPILE-trained
model showcases performance on par with other
models in instruction-based information extraction
(IE) tasks and significantly improves performance
in zero-shot IE tasks compared to other models.
This indicates the significant application prospects
and potential of IEPILE in the current field of IE.

C.6 Impact of Potential Dataset Bias on
Model Performance and Generalization

During the research, we identify that potential bi-
ases introduced by the datasets used can affect the
model’s performance and generalization capability.
Firstly, biases in the definition of schemas within
the datasets have a negative impact on model per-
formance (Huang et al., 2024). In the early stages
of training, we observe instability in results due to

mutual interference among multiple datasets that
contain the same schemas but with differing def-
initions. For instance, despite wikiann, wikineu-
ral, polyglot-NER, and CoNLL2003 all containing
common schemas such as people and organization,
they each possess distinct scheme definitions. Con-
sequently, in the later stages, only CoNLL2003
is retained. Secondly, the model demonstrates
good generalization when dealing with datasets
having schemas similar to those in the training
set. As shown in Table 5, despite not being in-
cluded in the training corpus, the People Daily and
ACE2004 NER datasets share similar schemas with
the MASR and ACE2005 NER dataset in the train-
ing set, and the Baichuan2-IEPILE model is still
capable of handling them proficiently. Lastly, the
use of common, coarse-grained labels (such as “per-
son” and “organization”) within the IEPILE lead
the model, after training, to favor these coarse cat-
egories over fine-grained ones (such as “scientist”
and “company”) when predicting instructions that
included both levels of granularity.
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Dataset InstructUIE YAYI-UIE Baichuan2-IEPILE LLaMA2-IEPILE OneKE

ACE2005 86.66 81.78 81.86 81.14 83.45
AnatEM 90.89 76.54 87.21 86.90 87.88
BC2GM 85.16 82.05 80.73 83.07 82.05
BC4CHEMD 90.30 88.46 90.45 90.07 90.56
BC5CDR 89.59 83.67 88.07 88.01 88.45
CoNLL2003 92.94 96.77 92.49 92.98 93.04
FabNER 76.20 72.63 77.07 76.33 81.06
FindVehicle 89.47 98.47 98.49 97.91 99.45
GENIA-Ent 74.71 75.21 76.66 77.32 78.29
HarveyNER 88.79 69.57 67.70 62.64 69.87
MIT Movie 89.01 70.14 88.23 89.54 89.96
MIT Restaurant 82.55 79.38 79.85 81.30 79.89
MultiNERD 92.32 88.42 94.60 94.24 94.69
NCBI-Disease 90.23 87.29 85.26 87.59 86.95
Ontonotes 90.19 87.04 87.55 90.34 89.08
Avg 87.27 82.49 85.08 85.29 86.24
MSRA - 95.57 87.99 86.32 89.02
Resume NER - - 93.92 92.86 95.84
CLUE NER - - 80.19 76.57 78.43

Table 6: Overall supervision results on Named Entity Recognition (NER) datasets. Within each row, shadow and
shadow represent the top 2 results.

Dataset InstructUIE YAYI-UIE Baichuan2-IEPILE LLaMA2-IEPILE OneKE

ADE Corpus 82.31 84.14 83.73 85.87 87.24
CoNLL2004 78.48 79.73 72.87 73.71 76.16
GIDS 81.98 72.36 74.71 74.13 76.69
KBP37 36.14 59.35 65.09 61.49 65.23
NYT 90.47 89.97 93.00 92.22 94.04
NYT11-HRL 56.06 57.53 53.19 54.86 55.56
SciERC 45.15 40.94 43.53 44.58 45.89
Semeval-RE 73.23 61.02 58.47 57.61 61.46
Avg 67.98 68.13 68.07 68.06 70.28
CMeIE - - 49.16 47.40 49.54
DuIE2.0 - 81.19 75.61 74.34 75.73

Table 7: Overall supervision results on Relation Extraction (RE) datasets. Within each row, shadow and shadow
represent the top 2 results.
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Dataset InstructUIE YAYI-UIE Baichuan2-IEPILE LLaMA-IEPILE OneKE

Trigger

ACE2005 77.13 65.00 72.46 70.63 71.17
CASIE 67.80 63.00 60.07 61.27 63.82
PHEE 70.14 63.00 66.22 68.52 68.60
Avg 71.69 63.67 66.25 66.81 67.86
DuEE1.0 - 85.00 86.73 84.01 85.75
DuEE-fin - 82.50 83.54 79.00 82.91

Argument

ACE2005 72.94 62.71 63.90 62.69 62.75
CASIE 63.53 64.23 56.07 56.78 57.16
PHEE 62.91 77.19 70.85 71.33 72.84
Avg 66.46 68.04 63.60 63.61 64.25
DuEE1.0 - 79.08 75.63 73.79 75.40
DuEE-fin - 70.02 79.34 73.08 78.98

Table 8: Overall supervision results on Event Extraction (EE) datasets. Within each row, shadow and shadow
represent the top 2 results.

Task Dataset Domain #Schemas #Train #Val #Test

NER-en

AnatEM (Pyysalo and Ananiadou, 2014) Biomedical 1 5667 2081 3758
BC2GM (Kocaman and Talby, 2020) Biomedical 1 12392 2483 4977
BC4CHEMD (Kocaman and Talby, 2020) Biomedical 1 30488 30468 26204
NCBI-Disease (Dogan et al., 2014) Biomedical 1 5432 923 940
BC5CDR (Zhang et al., 2023b) Biomedical 2 4545 4569 4788
HarveyNER (Chen et al., 2022a) Social Media 4 3553 1270 1260
CoNLL2003 (Sang and Meulder, 2003) News 4 12613 3070 3184
GENIA (Kim et al., 2003) Biomedical 5 14966 1657 1850
ACE2005 (Walker et al., 2006) News 7 7134 964 1050
MIT Restaurant (Liu et al., 2013) Social Media 8 7658 - 1520
MIT Movie (Liu et al., 2013) Social Media 12 9707 - 2441
FabNER (Kumar and Starly, 2022) Scientific 12 9421 2179 2064
MultiNERD (Tedeschi and Navigli, 2022) Wikipedia 16 130623 9994 9994
Ontonotes (Pradhan and Xue, 2009) General 18 54994 7997 7782
FindVehicle (Guan et al., 2023) Traffic 21 21547 - 20769
CrossNER_Politics† (Liu et al., 2021) Political 9 - - 650
CrossNER_Literature† (Liu et al., 2021) Literary 12 - - 416
CrossNER_Music† (Liu et al., 2021) Musical 13 - - 465
CrossNER_AI† (Liu et al., 2021) AI 14 - - 431
CrossNER_Science† (Liu et al., 2021) Scientific 17 - - 543

NER-zh

MSRA NER (Levow, 2006) News 3 40500 4500 3437
Resume NER (Zhang and Yang, 2018) Resume 8 3799 463 476
CLUE NER (Xu et al., 2020) News 10 9674 1074 1343
Weibo NER† (Peng and Dredze, 2015) News 4 - - 258
Boson† 5 News 6 - - 191

Table 9: Statistical data of Named Entity Recognition (NER) datasets, with an † indicating the zero-shot evaluation
set not included in the training. CrossNER (Liu et al., 2021) is divided into five subsets for our statistical analysis.
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Task Dataset Domain #Schemas #Train #Val #Test

RE-en

ADE Corpus (Gurulingappa et al., 2012) Biomedical 1 3416 427 428
GIDS (Jat et al., 2017) News 4 8525 1417 4307
CoNLL2004 (Carreras and Màrquez, 2004) News 5 922 231 288
SciERC (Luan et al., 2018) Scientific 7 1366 187 397
Semeval-RE (Hendrickx et al., 2010) Scientific 10 6478 1492 2714
NYT11-HRL (Takanobu et al., 2019) News 12 60765 146 362
KBP37 (Zhang and Wang, 2015) News 18 15911 1723 3405
NYT (Riedel et al., 2010) News 24 54412 4975 4985
Wiki-ZSL (Chen and Li, 2021) † Wikipedia 83 - - -
FewRel (Han et al., 2018) † Wikipedia 100 - - -

RE-zh
CMeIE (Guan et al., 2020) Biomedical 53 14339 3585 -
DuIE2.0 (Li et al., 2019) News 49 171126 20652 -
COAE2016† 6 General 9 - - 971
IPRE† (Wang et al., 2019) General 35 - - 3340
SKE2020† 7 News 49 - - 3601

Table 10: Statistical data of Relation Extraction (RE) datasets, with an † indicating the zero-shot evaluation set not
included in the training. The test sets for CMeIE and DuIE2.0 are not open-sourced, thus we use the validation sets
as our evaluation set. For the FewRel and Wiki-ZSL datasets, we follow Chia et al. (2022).

Task Dataset Domain #Schemas #Train #Val #Test

EE-en
ACE2005 (Walker et al., 2006) News 33(22) 3257 319 293
CASIE (Satyapanich et al., 2020) Cybersecurity 5(26) 3732 777 1492
PHEE (Sun et al., 2022) Biomedical 2(16) 2897 960 968
CrudeOilNews † (Lee et al., 2022b) Oil News 18(104) - - 356
RAMS † (Ebner et al., 2020) News 106(398) - - 887
WikiEvents † (Li et al., 2021) Wikipedia 31(81) - - 249

EE-zh
DuEE1.0 (Li et al., 2020b) News 65(217) 11908 1492 -
DuEE-Fin (Han et al., 2022) Finance 13(91) 7015 1171 -
FewFC † (Zhou et al., 2021) Finance 5(29) - - 2879
CCF law †8 Law 9(39) - - 971

Table 11: Statistical data of Event Extraction (EE) datasets, with an † indicating the zero-shot evaluation set not
included in the training. The test sets for DuEE1.0 and DuEE-Fin are not open-sourced, thus we use the validation
sets as our evaluation set.
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Task Instruction & Output

NER

1 {
2 "instruction ": "You are an expert in named entity recognition. Please

extract entities that match the schema definition from the input.
Return an empty list if the entity type does not exist. Please
respond in the format of a JSON string.",

3 "schema ": [" location", "else", "organization", "person"],
4 "input": "The objective of the Basic Course on War is to provide for

combatants of the EPR basic military knowledge for the armed
conflict against the police and military apparatus of the
bourgeoisie ."

5 }
6 output = {
7 "location ": [],
8 "else": [],
9 "organization ": ["EPR"],

10 "person ": []
11 }

RE

1 {
2 "instruction ": "You are an expert in relationship extraction. Please

extract relationship triples that match the schema definition from
the input. Return an empty list for relationships that do not exist.
Please respond in the format of a JSON string.",

3 "schema ": ["place of birth", "country capital", "country of
administrative divisions", "company"],

4 "input": "Born on May 1 , 1927 , in Brichevo , Bessarabia in the
present -day Republic of Moldova , Mr. Bertini emigrated to Palestine
with his family as a child and pursued musical studies there , in

Milan , and in Paris , where he worked with Nadia Boulanger and
Arthur Honegger ."

5 }
6 output = {
7 "place of birth": [{" head": "Mr. Bertini", "tail": "Paris"}],
8 "country capital ": [],
9 "country of administrative divisions ": [],

10 "company ": []
11 }

EE

1 {
2 "instruction ": "You are an expert in event extraction. Please extract

events from the input that conform to the schema definition. Return
an empty list for events that do not exist , and return NAN for
arguments that do not exist. If an argument has multiple values ,
please return a list. Respond in the format of a JSON string.",

3 "schema ": [{" event_type ": "pardon", "trigger ": true , "arguments ": ["
defendant "]}, {" event_type ": "extradite", "trigger ": true , "
arguments ": [" person", "agent", "destination", "origin "]}, {"
event_type ": "sue", "trigger ": true , "arguments ": ["place", "
plaintiff "]}, {" event_type ": "start position", "trigger ": true , "
arguments ": [" person", "entity", "place "]}],

4 "input": "Ethical and legal issues in hiring Marinello"
5 }
6 output = {
7 "pardon ": [],
8 "extradite ": [],
9 "sue": [],

10 "start position ": [{" trigger ": "hiring", "arguments ": {" person ": "
Marinello", "entity ": "NAN", "place": "NAN "}}]

11 }

Table 12: Instructions and outputs for 3 tasks: Named Entity Recognition (NER), Relation Extraction (RE), and
Event Extraction (EE). The instruction and output formats for IEPILE adopt a structure similar to JSON strings.
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