UltraSparseBERT: 99% Conditionally Sparse Language Modelling

Peter Belcak
NVIDIA
pbelcak@nvidia.com

Abstract

Language models only really need to use a tiny
fraction of their neurons for individual infer-
ences.

We present UltraSparseBERT, a BERT variant
that uses 0.3% of its neurons during inference
while performing on par with similar BERT
models. UltraSparseBERT selectively engages
just 12 out of 4095 neurons for each layer infer-
ence. This is achieved by reorganizing feedfor-
ward networks into fast feedforward networks
(FFFs).

To showcase but one benefit of high sparsity, we
provide an Intel MKL implementation achiev-
ing 78x speedup over the optimized feedfor-
ward baseline on CPUs, and an OpenAl Tri-
ton implementation performing forward passes
4.1x faster than the corresponding native GPU
implementation. The training and benchmark-
ing code is enclosed.

1 Introduction

Feedforward layers hold the majority of the param-
eters of language models (Brown et al., 2020; Anil
et al., 2023). However, not all of their neurons
need to be engaged in the computation of the feed-
forward layer output at inference time for every
input.

A growing body of work is taking advantage of
this fact in a top-down fashion, making use of a
method commonly referred to as “mixture of ex-
perts” (Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2022). This method consists of sub-
dividing a large feedforward network into blocks
(“experts”), designating some blocks to form a gat-
ing network, and jointly training both the experts
and the gating network to produce the layer’s out-
puts while using only a fraction of layer parameters,
conditionally on the input.

The covariant approach, dubbed “fast feedfor-
ward networks”, is to introduce conditional exe-

Roger Wattenhofer
ETH Ziirich
wattenhofer@ethz.ch

cution in a bottom-up fashion, utilizing individ-
ual neurons rather than blocks to perform gating
and be executed conditionally (Belcak and Wat-
tenhofer, 2023). We employ this approach and
produce UltraSparseBERT, a variant of the BERT
architecture (Devlin et al., 2018) that reorganizes
feedforward networks into simplified fast feedfor-
ward networks (FFFs). In terms of downstream
performance, UltraSparseBERT performs on par
with other BERT-like models that are similar in
size and undergo similar training procedures. The
intermediate layers of UltraSparseBERT are, how-
ever, effectively much sparser by design: given
a feedforward (FF) and a fast feedforward (FFF)
network, each with n neurons, the FFF uses the
parameters of only O (log, n) neurons instead of
O (n) as for FE. This is a consequence of the fact
that FFFs organize their neurons into a balanced
binary tree, and execute only one branch of the tree
conditionally on the input. In terms of output pro-
duced by the intermediate layers, such a method of
execution is equivalent to treating the weights of
all unused neurons as zeroes and manifests itself as
conditional sparsity, since the choice of effectively
non-zero neurons is conditional on the layer input.

Performing inference on an FFF amounts to per-
forming conditional matrix multiplication (CMM),
in which the rows of the input dot with the columns
of neural weights one at a time, and the weight
column to proceed with is chosen depending on
the output of the previous dot-product operation.
In this manner, all neurons are used only by some
inputs and no input needs more than just a handful
of neurons to be handled by the network. This is in
contrast with dense matrix multiplication (DMM),
which lies at the heart of the traditional feedforward
networks, and which computes the dot products of
all rows with all columns.

Recent advances in deep learning infrastructure
have made it possible to produce efficient imple-
mentations of conditional matrix multiplication

104

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 104—108
August 11-16, 2024 ©2024 Association for Computational Linguistics

based on both popular computational frameworks
as well as custom kernel code. We showcase and
provide three implementations of FFF forward pass
based on advanced PyTorch compilation, the Ope-
nAl Triton framework, and the Intel MKL routines.
In a later section, we give a comparison of each im-
plementation to the corresponding optimized base-
line and note that while there is already clear evi-
dence of significant acceleration, there is potential
for more.

Reproducibility. We share our training, finetun-
ing, and benchmarking code as well as the weights
of our best model. For a quick conceptual verifi-
cation, the fact that only 12 neurons are used in
the inference of UltraSparseBERT can be verified
simply by zeroing the output of all but the chosen
neurons, and we also give the code for this.

Contributions.

* We present UltraSparseBERT, a BERT-like
model that has 4095 neurons but selectively
uses only 12 (0.03%) for inference.

* We finetune UltraSparseBERT for standard
downstream tasks and find that it performs on
par with its BERT peers.

* We provide three implementation that make
use of the high level of sparsity in UltraSparse-
BERT to perform faster feedforward layer in-
ference.

* Through UltraSparseBERT and the already
considerable speedups by early FFF imple-
mentations, we demonstrate the potential of
bottom-up conditional neural execution in lan-
guage modelling.

2 Model

2.1 Architecture

Our architectural starting point is the crammed-
BERT architecture (Geiping and Goldstein, 2023),
which we implement to the letter in all but the
nature of intermediate layers. There, the feedfor-
ward networks contained in the intermediate layers
of the crammedBERT transformer encoder are re-
placed with fast feedforward networks (Belcak and
Wattenhofer, 2023).

We make the following simplifying changes to
the original fast feedforward networks:

1. Remove all differences between leaf and non-
leaf nodes. In particular, we use the same
(GeLU) activation function across all nodes,
equip all nodes with output weights, and re-
move all output biases.

2. Fix the leaf size to 1.

3. Allow multiple FFF trees in parallel. 'We
allow for multiple FFF trees to jointly com-
pute the intermediate layer outputs. This is
achieved by summing the outputs of the in-
dividual trees and presenting the sum as the
intermediate layer output.

We denote a model with K trees of depth D + 1
by appending a suffix to the model name, i.e.
UltraSparseBERT-KxD. Note that for consis-
tency, we consider a tree with no edges to have
depth 0. A BERT-base-sized model with the tra-
ditional feedforward layer of width 3072 is then
just a special case of UltraSparseBERT, namely
UltraSparseBERT-3072x0.

We train a full range of increasingly deeper and
narrower models, starting from UltraSparseBERT-
3072x0 and proceeding with UltraSparseBERT-
1536x1, UltraSparseBERT-512x2, etc..

2.2 Training

We follow the final training procedure of crammed-
BERT (Geiping and Goldstein, 2023), namely dis-
abling dropout in pretraining and making use of
the 1-cycle triangular learning rate schedule. By
default, we train every model for 1 day on a single
A6000 GPU, except for the final UltraSparseBERT-
1x11-long model, which we train 2 times longer us-
ing the same regime for slightly better downstream
performance.

2.3 Downstream Performance

2.3.1 Setup

We finetune all UltraSparseBERT models for the
RTE, MRPC, SST, STS-B, MNLI, QQP, QNLI, and
CoLA tasks of the GLUE benchmark (Wang et al.,
2018) and report evaluation scores as in Geiping
and Goldstein (2023) for consistency. In short, this
approach amounts to finetuning for 5 epochs with
learning rate 4 x 107 across all tasks.

We find that UltraSparseBERT models finetuned
in this manner for CoLA end up being undertrained
if only 5 training epochs are used. Therefore, we
extend the number of CoLA finetuning epochs to
15. This leads to little to no improvement for the

105

Model Ny Ni/Nr | RTE MRPC STSB SST-2 MNLI QNLI QQP | Avg | CoLA | Avg
Baselines

crammedBERT-3072 4095 100.0% | 58.8 87.6 852 91.9 828 904 89.0 | 83.6 | 450 | 793
crammedBERT-4095 3072 100.0% | 57.6 89.1 859 919 813 909 87.6 | 832 | 479 | 793
UltraSparseBERTs

UltraSparseBERT-3072x0 3072 100.0% | 56.7 889 863 923 829 923 88.0 | 83.8 | 484 | 799
UltraSparseBERT-1536x 1 4608 66.6% | 552 894 850 91.9 822 90.1 89.0 | 83.1 | 47.5 | 79.2
UltraSparseBERT-512x2 3584 429% | 592 877 860 899 819 903 89.3 | 833 | 462 | 79.2
UltraSparseBERT-256x3 3840 267% | 542 874 859 916 81.6 90.0 89.1 | 82.7 | 48.0 | 788
UltraSparseBERT-128x4 3968 16.1% | 584 875 872 923 812 899 90.0 | 83.5| 459 | 79.3
UltraSparseBERT-64x5 4032 95% | 557 890 872 914 816 902 894 | 833 | 46.1 | 79.1
UltraSparseBERT-32x6 4064 55% | 576 882 861 912 810 892 883 | 82.8 | 40.6 | 78.1
UltraSparseBERT-16x7 4080 3.1% | 555 89.0 867 889 80.1 894 869 | 82.1 | 415 | 776
UltraSparseBERT-8x8 4088 1.8% | 56.2 884 854 887 806 893 864 | 819 | 327 |765
UltraSparseBERT-4x9 4092 1.0% | 53.8 859 857 89.6 819 893 88.0 | 82.0 | 31.8 | 76.4
UltraSparseBERT-2x 10 4094 05% | 599 888 853 874 799 892 86.1 | 820 | 354 | 769
UltraSparseBERT-1x11 4095 03% | 57.8 881 861 897 802 893 87.1 | 823 | 37.1 | 773
Final Model

UltraSparseBERT-1x11-long | 4095 0.3% | 60.7 875 864 89.9 813 897 876 |83.0| 351 | 777
External Baselines

OpenAI GPT 3072 100% | 560 823 80.0 913 814 874 703 | 78.8 | 454 |75.1
DistilBERT 3072 100% | 59.9 875 869 913 822 892 713|812 | 521 | 776
BERT-base 3072 100% | 66.4 889 858 935 834 905 712 |83.0| 513 | 796

Table 1: The results of various language models on the GLUE-dev test sets. Nt denotes the number of neurons
available for training, N1/ Nt the proportion of neurons that are used for a single inference. “Avg” denotes the average
score of all the task results to the left of the column. Emphasis marks the best crammed 1-day UltraSparseBERT
performance for the given column. OpenAl GPT, DistilBERT, and BERT-base refer to models reported in Radford
et al. (2018); Sanh et al. (2019); Devlin et al. (2018). Experimentation conducted according to the instructions in
Wang et al. (2018) and the precedent of Geiping and Goldstein (2023).

baseline crammedBERT models but has a signif-
icant impact on the CoLA performance of Ultra-
SparseBERTS.

2.3.2 Results

The results of our finetuning are listed in Table 1.

We see that UltraSparseBERT variants trained
for 1 day on a single A6000 GPU all retain at least
96.0% of the GLUE downstream predictive perfor-
mance of the original BERT-base model (Devlin
et al., 2018). We also observe that the performance
decreases with the increasing depth of the FFFs.
Note, however, that the majority of the performance
decrease due to the increasing depth is caused by
only a single task — CoLA. This behaviour has
previously been observed in the literature and is
in line with other work trying to compress BERT
behaviour into smaller models (Sun et al., 2019;
Turc et al., 2019; Mukherjee et al., 2021). If we
disregard CoLA, at least 98.6% of the predictive
performance is preserved by all UltraSparseBERT
model.

Furthermore, we see that save from CoL A, our
best model — UltraSparseBERT-1x11-long — per-

forms on par with the original BERT-base model
while using only 0.3% of its own neurons, which
amounts to a mere 0.4% of BERT-base neurons.
We share the weights of this model.

3 Inference

FFFs as a part of large language models have a
considerable acceleration potential. At the center
of their promise sits the operation of conditional
matrix multiplication.

3.1 Algorithm

Belcak and Wattenhofer (2023) gives recursive
pseudocode for FFF inference. We list the pseu-
docode for CMM and the consecutive inference
for FFFs, with modifications as per Section 2.1.
In Algorithm 1, B denotes the batch size, H the
layer input width (transformer hidden dimension),
2D _ 1 is the number of neurons, and M, g, My
denote the k-th column and [-th row of M, respec-
tively. The result of the >-comparison in CMM is
assumed to be an integer € {0, 1}.

106

‘ CPU Implementation ‘

GPU Implementation

‘ Limit ‘ Level 1 Level2 Level3 ‘ Native fused BMM Triton

Model
BERT-base-4095 1.0x 1.0x
UltraSparseBERT-1x11 | 341.2x | 130.7x

255.1x - -

1.0x 1.0x 1.0x 1.0x

1.3x

1.0x
5.5x

Table 2: The results of the feedforward inference acceleration evaluation. Emphasis highlights the better “fair

comparison” performance.

Algorithm 1: FFF inference forward pass.

Input: B x H input matrix I,
(2P — 1) x H weight matrix ",
(2P — 1) x H weight matrix W%
Intermediate : B x D logit matrix L,
B x D node index matrix N
Output: B x H matrix O

Function CMM(Z, W"):
forde {1,...,D—1}do

T
L*,d —1 (WE?V*,dl]7*>

Nyag < 2Nyqg1+1+ (L*’d > 0)
end
return L, N

Function FFF; (I, W™ WUy,

L, N < CMM(I, W™y

L + Activation(L)

ford € {0,...,D—1} do
‘ Osd < Lya - W](\’}f’d,*

end

return O

3.2 Inference Performance

Implementations. For CPU inference, we use
the Math Kernel Library available as a part of the
Intel oneAPI. Level 1-3 implementations are im-
plementations that use Level 1-3 BLAS routines,
respectively.

The native fused implementation uses the native
fused feedforward layer kernel. Note that this is
the fastest GPU implementation for FF layers but
no such kernel currently exists for FFFs due to the
nature of CMM. The BMM implementation uses
the batched matrix multiplication and activation
kernels for both FFs and FFFs. The support for
this implementation without copying is currently
only available on PyTorch nightly builds. Triton
implementation is our custom OpenAl Triton ker-

nel code for both FFs and FFFs, performing fused
DMM/CMM and activation on the level of vec-
tor/matrix elements.

Methodology. For CPU inference, we perform
250 forward passes per entry on Intel(R) Core(TM)
17-6700HQ CPUs under Intel MKL v2023.2.0, us-
ing 64-bit variants of all routines. We report the
mean time taken by single inference, noting that
the value of the standard deviation always lay well
under 2% of the mean. For GPU inference, we
perform 1000 forward passes per entry on NVIDIA
RTX A6000 GPUs under CUDA v12.1 and Py-
Torch 2.1.1-nightly. We measure the GPU time and
report the mean time taken, with the standard devi-
ation again well under 2% of the mean in all cases.
We take batch size B = 128 x 128 (equivalent to
the BERT pretraining context token batch size) and
hidden dimension H = 768.

Results. Table 2 lists the performance compar-
ison of feedforward and fast feedforward layers
as they appear in BERT-base and UltraFastBERT-
1x11. Each column of the table lists the relative
inference FFF-over-FF implementation speedups
when using the same linear-algebraic routine prim-
itives. The two entries missing Table 2 are for the
unavailable BLAS Level 3 and Native fused imple-
mentations of FFFs.

The speedups reported in Table 2 give “fair com-
parisons”, meaning that in each case, both the FF
and FFF implementation used exactly the same
primitive linear-algebraic operations. One may
also be interested in knowing how the best imple-
mentations of FFF currently fare against the best
implementations of FF, even though the ones for
FF use primitives unavailable for FFF. On CPU, the
Level 2 implementation of FFF performs inference
78x faster than the fastest implementation of FF.
On GPU, the Triton implementation of FFF deliv-
ers a 4.1x speedup over the fastest (native fused)
implementation of FF. In sum, there are attractive
benefits to high-levels of conditional sparsity.

107

4 Limitations

A limitation of our training work is that for most
FFF configurations, we only perform one training
run. It is possible that the downstream performance
of the individual configurations would vary across
multiple training runs. This is partially mitigated
by the use of multiple fine-tuning runs to find the
downstream task score as per the precedent for
BERT models on the GLUE benchmark.

A major weakness of inference speed measure-
ments is that they depend heavily on the hardware
used as well as the low-level optimization provided
as the interface to the hardware. To illustrate how
fast the landscape is changing: in October 2023,
neither the non-copying BMM nor the Triton im-
plementation leveraging local conditionality would
have been possible. Our sparsity argument, how-
ever, remains intact, and is easily verifiable through
the (default provided) implementation that zeroes
out the contributions of all unused neurons.

Our work focuses on efficiency of existing mod-
els and inherits the risks of the models used, if
any.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Peter Belcak and Roger Wattenhofer. 2023. Fast feed-
forward networks. arXiv preprint arXiv:2308.14711.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parame-
ter models with simple and efficient sparsity. The
Journal of Machine Learning Research, 23(1):5232-
5270.

Jonas Geiping and Tom Goldstein. 2023. Cramming:
Training a language model on a single gpu in one day.
In International Conference on Machine Learning,
pages 11117-11143. PMLR.

108

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Subhabrata Mukherjee, Ahmed Hassan Awadallah, and
Jianfeng Gao. 2021. Xtremedistiltransformers: Task
transfer for task-agnostic distillation. arXiv preprint
arXiv:2106.04563.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

