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Abstract

In long context scenarios, large language mod-
els (LLMs) face three main challenges: higher
computational cost, performance reduction,
and position bias. Research indicates that LLM
performance hinges on the density and posi-
tion of key information in the input prompt. In-
spired by these findings, we propose LongL.LM-
Lingua for prompt compression towards im-
proving LLMs’ perception of the key informa-
tion to simultaneously address the three chal-
lenges. Our extensive evaluation across vari-
ous long context scenarios demonstrates that
LongLLMLingua not only enhances perfor-
mance but also significantly reduces costs and
latency. For instance, in the NaturalQuestions
benchmark, LongLLMLingua boosts perfor-
mance by up to 21.4% with around 4x fewer
tokens in GPT-3.5-Turbo, leading to substantial
cost savings. It achieves a 94.0% cost reduction
in the LooGLE benchmark. Moreover, when
compressing prompts of about 10k tokens at ra-
tios of 2x-6x, LongLLMLingua can accelerate
end-to-end latency by 1.4x-2.6x. !

1 Introduction

Large language models (LLMs) have revolution-
ized user-oriented language technologies and are
serving as crucial components in more and more
applications. Carefully designing prompts is nec-
essary to achieve better performance in specific
downstream tasks. The commonly used technolo-
gies such as In-Context Learning (ICL) (Min et al.,
2022; Dong et al., 2023), Retrieval Augment Gener-
ation (RAG) (Lewis et al., 2020; Asai et al., 2024),
and Multi-turn Agent (Shen et al., 2024; Park et al.,
2023; Wu et al., 2023a) are driving prompts to be
increasingly longer, even reaching thousands of to-
kens. Scenarios such as multi-document question
answering, code completion, and document sum-
marization also necessitate the processing of long
contexts.

'Our code is available at https://aka.ms/LLMLingua.

There are three main challenges when LLMs are
used in long context scenarios: (1) Higher com-
putational costs, encompassing both financial and
latency expenses. (2) Longer prompts introduce
irrelevant and redundant information, which can
weaken LLMs’ performance (Shi et al., 2023), as
illustrated in Figure 1a. (3) LLMs exhibit position
bias (Kamradt, 2023), also known as the "lost in the
middle" issue (Liu et al., 2024), suggesting that the
placement of key information within the prompt
significantly affects LLMs’ performance. This is
demonstrated by the purple curve in Figure 1b.

Inspired by these observations, we propose
LongLLMLingua to address the three challenges.
Specifically, we use LLMLingua (Jiang et al.,
2023a) as the backbone for prompt compression
to address the first challenge, i.e., reduce cost and
latency. However, in the case of long contexts, the
distribution of question-relevant key information
in the prompt is generally dynamic and sparse. Ex-
isting prompt compression methods like LLMLin-
gua (Jiang et al., 2023a) and Selective-Context (Li
et al., 2023c) that often fail to consider question
during compression, resulting in retention of exces-
sive noise and decreased performance. LongLLM-
Lingua aims to improve LLMs’ perception of key
information pertinent to the question, thereby over-
coming the noise and position bias issues in long
contexts, shown in Figure 1b. The underlying prin-
ciple of LongLLMLingua is that small LM are
inherently capable of capturing the distribution of
key information relevant to a given question.

Our main contributions are five-fold: (1) We
propose a question-aware coarse-to-fine compres-
sion method to improve the key information den-
sity in the prompt (Sec. 4.1); (2) We introduce
a document reordering strategy to minimize po-
sition bias in LLMs. (Sec. 4.2); (3) We estab-
lish dynamic compression ratios for precise con-
trol between coarse and fine compression levels
(Sec. 4.3); (4) We propose a post-compression
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Figure 1: (a) LLMs’ performance in downstream tasks decreases with increased noise in prompts. In this case,
we keep k most relevant documents/paragraphs based on the ground-truth or LongLLMLingua r;. A larger k
implies more noise introduced into the prompt. To improve the key information density in the prompt, we present
question-aware coarse-to-fine compression. (b) LLMs’ ability to capture the relevant information depends on their
positions in the prompt. To reduce information loss in the middle, we introduce a document reordering mechanism.

subsequence recovery strategy to improve the in-
tegrity of the key information (4.4). (5) We evaluate
LongLLMLingua across five benchmarks, i.e., Nat-
uralQuestions (Liu et al., 2024), LongBench (Bai
et al., 2023), ZeroSCROLLS (Shaham et al., 2023),
MuSicQue (Trivedi et al., 2022), and LooGLE (Li
et al., 2023b), covering a variety of long con-
text scenarios. Experimental results reveal that
LongLLMLingua’s compressed prompts outper-
form original prompts in terms of performance,
cost efficiency, and system latency.

2 Problem Formulation

Following LLMLingua (Jiang et al., 2023a), we
use x = (xI®, x§oc ... xdo¢ %) to represent
a prompt, including the instruction x", K docu-
ments x?oc, and the question x9"¢. However, this
definition can be adjusted for specific scenarios.
The objective of a prompt compression system can

be formulated as:
min Dy (y,y) + All%[lo, (1)
X

where X represents the compressed prompt, a token-
level subsequence of x. y and y represent the
LLM-generated results from x and X, respectively.
D 4 measures the distance function, such as KL di-
vergence. A serves as a hyper-parameter balancing
the compression ratio. Additionally, this study ex-
plores a permutation operation space over the K
documents (x9°°, - - -, x9%) for joint optimization.

3 Preliminary: LLMLingua

LLMLingua (Jiang et al., 2023a) utilizes a small
language model M g to evaluate the perplexity of
each prompt token, removing those with lower per-
plexities. This method is premised on the idea
that tokens with lower perplexities have a negli-
gible effect on the language model’s overall en-
tropy gain, implying their removal slightly impacts
the LLMs’ contextual understanding. This process
is viewed as an application of "LM is Compres-
sion" (Delétang et al., 2023). LLMLingua include
three key components: budget controller, iterative
token-level prompt compression, and distribution
alignment, highlighted by italic text in Figure 2.
The budget controller assigns varying compres-
sion ratios to different parts of the prompt (i.e.,
instruction, demonstrations, question), implement-
ing coarse-level prompt compression. Subsequent
steps involve dividing intermediate results into seg-
ments and applying token-level compression iter-
atively, where each token’s perplexity based on
preceding compressed segments. To aware differ-
ent target LLMs, LLMLingua fine-tunes M g using
data from the target LLM.

4 LongLLMLingua

LongLLMLingua builds on LLMLingua to better
compress prompts in long context scenorias. It tack-
les three main issues in handling lengthy contexts,
as introduced in Sec. 1. This approach focuses on
making LLMs more effective at recognizing key
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Figure 2: Framework of LongLLMLingua. Gray Italic content: As in LLMLingua.

information related to the question in the prompt.
It encompasses three perspectives and further incor-
porates a subsequence recovery strategy, as shown
in Figure 2, to enhance the accuracy and reliability
of the information provided to users. In this section,
we detail how each part of LongLLMLingua works
to improve the LLMs deal with long context.

4.1 How to improve key information density
in the prompt?

Question-Aware Coarse-Grained Compression

In coarse-grained compression, we aim to figure

out a metric ry, to evaluate the importance of each

document x§*¢ = {zo¢ i\’:kl’ where Ny, is the

number of tokens in xg"c. We only keep X%OC

with higher 7, as the intermediate compressed re-
sults. One approach to improve key information
density in the compressed prompts is to calculate
document-level perplexity conditioned on the ques-
tion p(x$°¢|x9"). However, this method may not
be effective because documents often contain a sig-
nificant amount of irrelevant information. Even
when conditioned on x9"¢, the perplexity scores
computed for entire documents may not be suffi-
ciently distinct, rendering them an inadequate met-
ric for document-level compression.

We propose to use the perplexity of the ques-
tion x9"¢ conditioned on different contexts xg"c
p(x9°¢|x$°°) to represent the association between
them. We also append a restrictive statement”

xSt after x9U¢ to strengthen the interconnection

2Specifically, "We can get the answer to this question in
the given documents".

of x"¢ and X%OC. It can be regarded as a regulariza-

tion term that mitigates the impact of hallucinations.
This can be formulated as:

N,
1 ;
e = —— 2 : 1Ogp(aj;]ue,restnct|Xgo.g)7
N, £
7

k€{1>27"' 7K}7

(@)

trict . . .
where 2" is the i-th token in the concate-

nated sequence of x4 and x™*"t and NN, in the
number of tokens.

Figure 3a displays the recall distribution of dif-
ferent retrieval methods, including traditional rele-
vance methos (BM25, Gzip (Jiang et al., 2023b)),
embedding-based methods (OpenAl-embedding,
Voyageai®, BGE-large-en v1.5 (Xiao et al., 2023),
Sentence-BERT (Reimers and Gurevych, 2019),
Jina (Giinther et al., 2023)), and reranker methods
(Cohere-Rerank4, BGE-llmembeder, BGE-Ranker-
large), which demonstrates that our coarse-level
compression approach achieves the highest recall
with different numbers of retained documents, sug-
gesting that it preserves the most key information
from the contexts in the compressed results.

Question-Aware Fine-Grained Compression
In fine-grained compression, we assess the impor-
tance of each token in the instruction x™, the ques-
tion x4, and K’ documents {xJ°¢ fi’l retained af-

ter coarse-grained compression. We incorporate the

3https://www.voyageai.com/
*https://cohere.com/rerank
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Figure 3: (a) Comparison of recall on NaturalQuestions Multi-documemnt QA dataset, which increases from top to
bottom in terms of Recall@1. Different colors represent different types of methods. Among them, yellow represents
traditional relevance methods, green signifies embedding-based methods, and red denotes rerank-based methods.
(b) Comparison between perplexities and contrastive perplexities of tokens in the prompt from Multi-documemnt
QA dataset. The document containing the ground-truth information is located in the Sth position. More results on

position can be found in the Appendix C.1.

iterative compression mechanism following LLM-
Lingua and directly calculate token perplexities
to compress x™ and x9%. In this section, we in-
vestigate how to make the fine-grained token-level
compression over {X%"C}szll aware of the question
x4, so that the compressed results could contain
more question-relevant key information.

A straightforward solution for the awareness of
x9"¢ is to simply concatenate it at the beginning
of the whole context. However, this will result in
low perplexities of relevant tokens in the context
following the condition of question x9"¢, further
reducing their differentiation from other tokens.

In this paper, we propose contrastive perplexity,
i.e., the distribution shift caused by the condition of
the question, to represent the association between
the token and the question. The contrastive perplex-
ity based importance metric s; for each token x; in

doc K’ .
{x4°°},_; can be formulated as:

s; = perplexity(z;|z<;)—perplexity (z;| 29"

y L <i) :
3)
Additionally, we provide the derivation of its

mathematical significance in the Appendix A, con-

cluding that it is equivalent to conditional pointwise

mutual information (Church and Hanks, 1989).
Figure 3b illustrates the difference between per-

plexities and contrastive perplexities. The distri-

bution of perplexities appears random, making it
challenging to extract information related to the
question. However, tokens with high contrastive
perplexities tend to cluster near the ground-truth

document, which contains information relevant to
the question. This suggests that the proposed con-
trastive perplexity can better distinguish tokens
relevant to the question, thus improving the key
information density in the compressed results.

4.2 How to reduce information loss in the
middle?

As demonstrated in Figure 1b, LLM achieves the
highest performance when relevant information oc-
curs at the beginning and significantly degrades if
relevant information is located in the middle of long
contexts. After the coarse-grained compression, we
have obtained a set of documents {xgOC lel with
their corresponding importance scores {rk}szll in-
dicating their association with the question x9"°,
Therefore, we reorder documents using their impor-
tance scores to better leverage LLMs’ information

perception difference in positions:

(Xins’ thioc’ L. ,X(}?/cjxque) Tk @
(™ e, e, x)

4.3 How to achieve adaptive granular control
during compression?

In fine-grained compression, LLMLingua applies
the same compression ratio over all documents ob-
tained from budget controller. However, the key
information density of different documents is differ-
ent. The more relevant to the question a document
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Figure 4: The example of Subsequence Recovery, the red text represents the original text, and the blue text is the

result after using the LLaMA 2-7B tokenizer.

is, the more budget (i.e., lower compression ra-
tio) we should allocate to it. Therefore, we bridge
coarse-grained compression to fine-grained com-
pression and use the importance scores {rk}szll
obtained from coarse-grained compression to guide
the budget allocation in fine-grained compression.
In this way, we can achieve adaptive granular con-
trol on the whole.

Specifically, we first determine the initial budget
for the retained documents® 79°° using the bud-
get controller of LLMLingua. During fine-grained
compression, we follow the iterative token-level
compression algorithm in LLMLingua but dynam-
ically assign the compression budget T,SOC to each
document x%°° according to the ranking index I (ry,)
(e.g., 0, 1) of its importance score from the coarse-
grained compression. In this paper, we employ a
linear scheduler for the adaptive allocation. Budget
of each token x; can be formulated as:

T =T Wy € x90°,
21
73°¢ — max(min((1 — l((T’k) )61 + 79 1),0),

%)
where 7 and k is the index of token and document,
K’ denotes the number of documents, and &7 is
a hyper-parameter that controls the overall budget
for dynamic allocation.

4.4 How to improve the integrity of key
information?

During the generation process, LLMs tend to repli-
cate entities found in the prompt, such as names,
places, and organizations. Compressing these en-
tities at the token level doesn’t affect the LLMs’
understanding of semantic content but can lead to
errors in the generated content.

Therefore, we propose a subsequence recovery
method to restore the original content in LLMs’
responses. This method relies on the subse-
quence relationship among tokens in the original
prompt, compressed prompt, and LLMs’ response,
as shown in Figure 4.

>In LLMLingua, it is 7%°™ for demonstrations.

The overall procedure includes: i) Iterate
through tokens y; in LLMs’ response and select
the longest substring Yxey; = {1, Yit1s - Yr}
that appears in the compressed prompt z. ii)
Find the maximum common shortest subsequence
x;; = {®i, Tit1,...,x;} in the original prompt x,
corresponding to the representation ¥y in the
original prompt (accelerated using prefix trees or
sequence automata). iii) Replace the matched to-
kens Yiey,; in LLMs’ response with the correspond-
ing subsequence x; ; from the original prompt. For
more details, please refer to Algorithm 1.

Algorithm 1 Token-level Subsquence Recovery
Algorithm
Input: The original prompt x; the compressed prompt &; the
generation response of LLMs y.
1: Set the final response list Y. = ¢, the left token index of
subsquence [ to 0.

2: while! < y.len() do
3: if Substring y; € @ then

4: Find the longer substring ykeyy = {yi,¥i+1,
e Yr} € T

S: Find the maximum common shortest subsequence
x;; = {xi, Tit1, ..., T; } in the original prompt x.

6: Add the subsequence z;,; = {zi, Tit1,...,%;}
to the response Yrec-

7: Set the left index [ to r + 1.

8: else

9: Add the token y; to the response Yrec.

10: Set the left index [ to [ 4 1.

11: end if

12: end while
Output: The final response list Yrec.

S Experiments

Here, we investigate: (1) How effective is
LongLLLMLingua? (2) How efficient is LonglLLM-
Lingua?

Implementation details In this paper, we use
GPT-3.5-Turbo-0613° and LongChat-13B-16k as
the target LLMs, both accessible via OpenAl’ and
HuggingFace®. To ensure stable and reproducible

®For experiments with original prompts exceeding 4k to-
kens, we utilize GPT-3.5-Turbo-16k-0613.

"https://platform.openai.com

8https://huggingface.co/Imsys/longchat-13b-16k
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results, we employ greedy decoding and set the
temperature to 0 in all experiments. For the small
language models used for compression, we apply
LLaMA-2-7B-Chat’, which has been aligned by
supervised fine-tuning and RLHF. We implement
our approach with PyTorch 1.13.1 and Hugging-
Face Transformers. We set up hyperparameters
following LLMLingua except for the segment size
used in iterative token-level compression set to 200
here. More details are provided in Appendix B.

Dataset & evaluation metric We use Natu-
ralQuestions for the multi-document QA task, and
use LongBench and ZeroSCROLLS for general
long context scenarios. We also test on multi-
hop QA tasks using MuSiQue dataset (Trivedi
et al., 2022), and long dependency QA tasks us-
ing LooGLE benchmark (Li et al., 2023b). Please
refer to Appendix C for more details on datasets.

Baselines We include two sets of baselines in
following experiments:

(i) Retrieval-based Methods. We assess the
question-document association in the prompt using
five SOoTA retrieval methods: BM25, Gzip (Jiang
et al.,, 2023b), SentenceBERT (Reimers and
Gurevych, 2019), OpenAl Embedding, and the
LongLLMLingua ranker’s important metric r for
coarse-grained compression. Notably, embedding
model-based compression mirrors the method in
Xu et al. (2024). We remove low-relevance sen-
tences or paragraphs to meet compression limits,
maintaining the original document sequence.

(ii) Compression-based Methods. We compare
our approach with two state-of-art methods for
prompt compression, i.e., Selective Context (Li
et al., 2023c) and LLMLingua (Jiang et al., 2023a).
Both methods employ LLaMA-2-7B-Chat as the
small language model for compression. In LLM-
Lingua, a coarse-to-fine approach is used to han-
dle constraints of compression ratio: the original
prompt is first compressed to &k times the constraint
at a coarse level, where k is the granular control co-
efficient; token-level is then performed to reach the
overall constraint. Our method follows the same
coarse-to-fine logic to achieve the constraint.

Main results Table 1 and 2 present the perfor-
mance of various methods under different com-
pression constraints. There are multiple observa-

*https://ai.meta.com/llama/
*https://python.langchain.com/docs/modules/data_connecti
on/document_transformers/post_retrieval/long_context_reorder

tions and conclusions: (1) Our LongL.LLMLingua
achieves the best performance across different tasks
and constraints of compression ratios. Compared
to the original prompt, our compressed prompt
can derive higher performance with much lower
cost. For example, LongLLMLingua gains a per-
formance boost of 21.4% on NaturalQuestions with
the ground-truth document at the 10th position,
while the number of tokens input to GPT3.5-Turbo
is ~4x less. (2) Compression-based methods like
Selective Context (Li et al., 2023¢) and LLMLin-
gua (Jiang et al., 2023a) perform poorly on most
tasks, especially those with abundant irrelevant
information in the original prompt. This is due
to their pure information entropy based compres-
sion mechanism, which includes too much noise
in the compressed results and even leads to per-
formance worse than the zero-shot setting, e.g.,
on NaturalQuestions. (3) Retrieval-based meth-
ods work well with low compression ratios. How-
ever, their performance declines as the compres-
sion progresses, e.g., 2x — 4x; 3000 tokens —
2000 tokens. This may be caused by the decreased
recall. Figure 3a is the illustration of cases on
NaturalQuestions. (4) LongLLMLingua as well
as our coarse-grained compression metric 7 only
is much more robust than all other baselines un-
der different tasks and compression constraints.
With the increase of the compression ratio, e.g.,
2z — 4z, LongLLMLingua even achieves a lit-
tle performance gain. We mainly owe this to the
question-aware coarse-to-fine compression, which
can better figure out the key information and reach
a higher key information density with a higher
compression ratio. (5) The proposed reordering
method helps in not only our approach but also
other baselines, well demonstrating its effective-
ness. (6) Compared to the results with a 2,000
tokens constraint, overall performance of 3,000
tokens has improved. Longl.LMLingua sees an
increase of 1.2 points in average score and a 1.6x
speedup in end-to-end latency. In this scenario,
the recall rates of retrieval-based methods have in-
creased, leading to a significant improvement in
their accuracy. For example, BM25 achieves an
average score of 48.9.

In addition, we also present experimental results
on datasets such as MuSicQue, LooGLE, ZERO-
SCROLLS, etc., in Appendix C.

Ablation study To evaluate the contributions
of different components in Longl.LMLingua, we
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Methods

1st

GPT3.5-Turbo
S5th 10th 15th 20th Reorder\ Ist

LongChat-13b

Length

Latency
5th 10th 15th 20th Reorder | Tokens 1/7 |Latency Speedup

2x constraint

Retrieval-based Methods

BM25 53.7 493 479 499 469 503 |[509 449 44.1 429 432 460 | 1,545 109x 2.1 1.9x
Gzip 64.6 63.8 60.5 583 573 644 |61.9 557 527 50.8 509 59.3 1,567 19x| 2.1 1.9x
SBERT 72.5 679 633 650 662 68.7 [65.8 575 549 53.4 557 614 1,549 19x| 22 1.9x
OpenAl 73.0 65.6 66.5 654 655 699 |659 57.5 562 542 557 61.7 1,550 19x| 49 0.8x
LongLLMLingua ry | 73.9 67.7 68.7 66.0 656 743 |[68.5 59.1 56.8 553 569 652 1,548 19x| 23 1.8x
Compression-based Methods
Selective-Context 454 39.0 33.8 335 415 - 532 263 254 242 333 - 1,478 2.0x| 74 0.6x
LLMLingua 39.7 395 40.4 37.1 423 415 |[38.7 373 35.7 34.1 375 37.1 1,410 2.1x| 28 1.5x
LongLLMLingua |77.2 72.9 70.8 70.5 70.6 76.2 |68.7 59.4 57.3 559 584 66.1 | 1,429 2.1x| 29 1.4x
4x constraint
Retrieval-based Methods
BM25 40.6 38.6 38.2 374 36.6 363 [39.5 37.5 36.8 364 355 377 798  3.7x 1.5 2.7x
Gzip 63.1 61.0 59.8 61.1 60.1 623 |[57.6 529 51.0 50.1 504 572 824  3.6x 1.5 2.7x
SBERT 669 61.1 59.0 612 60.3 644 |62.6 56.6 55.1 539 55.0 59.1 808  3.6x 1.6 2.5x
OpenAl 63.8 64.6 654 64.1 637 63.7 [61.2 56.0 55.1 54.4 550 58.8 804 3.7x| 43 1.0x
LongLLMLingua r | 71.1 70.7 69.3 68.7 68.5 71.5 |67.8 59.4 57.7 57.7 58.6 64.0 807 3.7x 1.7 2.4x
Compression-based Methods
Selective-Context 314 195 247 24.1 438 - 382 172 159 16.0 273 - 791 3.7x| 6.8 0.6x
LLMLingua 255 27.5 235 26,5 300 27.0 |32.1 30.8 299 289 324 305 775  3.8x 1.8 2.2x
LongLLMLingua |75.0 71.8 71.2 71.2 747 755 |68.7 60.5 59.3 583 61.3 66.7 | 748 39x| 2.1 2.0x
Original Prompt |75.7 57.3 54.1 554 63.1 - |68.6 574 553 525 55.0 - 2946 - | 41 -
Zero-shot | 56.1 | 35.0 | 15 196x| 1.1 3.7x

Table 1: Performance of different methods with different compression ratios (raw size / compressed size = 1/7) on
NaturalQuestions (20 documents) (Liu et al., 2024). Reorder: we reorder the documents with relevance metrics of
different baselines as our document reordering strategy described in Sec. 4.2. In the case of OpenAl, it corresponds
to LongContextReorder” in the LangChain framework (Chase, 2022). For results reported under 1st to 20th, we do

not use the reordering strategy for all methods.

introduce following variants of it for ablation
study. (1) Variants about Question-aware Coarse-
grained Compression, include: ours w/o Question-
awareness, which calculates question-text rele-
vance rj using information entropy in LLMLin-
gua, ours w/ SBERT, which employs SBERT to
compute 7, ours w/ p(x4¢|z ") which re-
place p(x?ue,restrict|x(’ioc) with p(X(;iOC :L_?ue,restrict) in
Eq. (2), and ours w/o restrict, which only calcu-
lates the conditional probability corresponding to
29", (2) Ours w/o Question-aware Fine-grained,
which disregards Eq. (3) and only applies Iterative
Token-level Prompt Compression as LLMLingua.
(3) Ours w/o Dynamic Compression Ratio, where
all documents share the same compression ratio
in fine-grained compression. (4) Ours w/o and
(5) LLMLingua w/ Subsequence Recovery, which
either removes or adds the post-processing subse-
quence recovery strategy. (6) Ours w/ GPT2-small,
which uses the GPT2-small model as the Mg.

Table 3, 4, and 7 shows the results of the ablation
study in difference tasks. In summary, removing
any component proposed for LonglLLMLingua will

lead to a performance drop regardless of the posi-
tion of the ground-truth answer. This well validates
the necessity and effectiveness of the proposed
question-aware mechanism during coarse-to-fine
compression, the dynamic compression ratio, and
the subsequence recovery strategy. It also shows
that applying SBERT for coarse-grained compres-
sion will result in inferior performance, which im-
plies the superiority of our question-aware impor-
tance metric in Eq. (2) over SBERT. In addition, re-
placing p(l‘?ue,restrlcwxgoc) with p (X%OC xgue,restnct)
can greatly affect performance due to the large
noise in calculating p(x$°¢) since the perplexity
of document depends on many other information
besides the question. Removing the restrictive
statement can increase the hallucination of small
language models, leading to a decrease in perfor-
mance. Moreover, our subsequence recovery strat-
egy can also bring performance gains for LLMLin-
gua. However, without our question-aware mech-
anism, results from LLMLingua are still less sat-
isfactory. For more detailed cases, please go to
Appendix E.
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Methods

| SingleDoc MultiDoc Summ. FewShot Synth.

Code

AVG | Tokens 1/7 |Latency Speedup

3,000 tokens constraint

Retrieval-based Methods

BM25 323 343 25.3 57.9 45.1 489 40.6| 3,417 3x 7.5 2.1x
SBERT 35.3 374 26.7 63.4 51.0 345 414 3,399 3x 7.7 2.0x
OpenAl 34.5 38.6 26.8 63.4 49.6 37.6 41.7| 3,421 3x 13.3 1.2x
LongLLMLingua r 37.6 429 26.9 68.2 499 534 465 | 3424 3x 8.2 1.9x
Compression-based Methods
Selective-Context 23.3 39.2 25.0 23.8 27.5 53.1 3203328 3x | 506 0.3x
LLMLingua 31.8 37.5 26.2 67.2 83 532 3743421 3x 9.2 1.7x
LongLLMLingua \ 40.7 46.2 27.2 70.6 53.0 55.2 48.8 \ 3,283  3x \ 10.0 1.6x
2,000 tokens constraint
Retrieval-based Methods
BM25 30.1 294 21.2 19.5 124 291 236 1,985 5x 4.6 3.4x
SBERT 33.8 359 25.9 23.5 18.0 17.8 258 | 1,947 5x 4.8 3.4x
OpenAl 343 36.3 24.7 324 263 248 29.8| 1,991 5x 10.4 1.5x
LongLLMLingua r 37.8 41.7 26.9 66.3 53.0 524 463 | 1,960 5x 4.7 3.3x
Compression-based Methods
Selective-Context 16.2 34.8 244 15.7 84 492 248 | 1,925 5x | 47.1 0.3x
LLMLingua 224 32.1 24.5 61.2 104 56.8 34.6| 1,950 5x 59 2.6x
LongLLMLingua | 39.9 43.2 27.4 69.8 53.0 567 483 1,822 6x | 6.1 2.6x
Original Prompt | 397 38.7 26.5 67.0 37.8 542 440110295 - | 156 -
Zero-shot | 156 31.3 15.6 40.7 1.6 362 235| 214 48x| 1.6 9.8x

Table 2: Performance of different methods under different compression ratios on LongBench (Bai et al., 2023) using

GPT-3.5-Turbo in 2,000 tokens constraint.

Ist 5th 10th 15th 20th
77.272.9 70.8 70.5 70.6

LongLLMLingua
Question-aware Coarse-grained
- w/o Question-awareness

- w/ SBERT

doc | ..que,restrict
il )

42.140.3 39.7 40.1 40.3
73.2 68.5 65.7 66.1 66.7
- w/ p(x 56.0 52.6 53.4 51.6 51.1
- w/o restrict 75.172.270.3 70.3 70.2

- w/o Question-aware Fine-grained 75.8 71.0 68.9 68.4 69.3
- w/o Dynamic Compression Ratio 74.4 70.7 68.7 67.9 68.1
- w/o Subsequence Recovery 76.771.7 69.4 69.3 69.7
- w/ Document Reordering 76.276.276.276.2 76.2
- w/ GPT2-small 74.6 71.7 70.1 69.8 68.5

LLMLingua 39.739.540.4 37.1 42.3
- w/ Subsequence Recovery 43.844.143.543.3444

Table 3: Ablation study on NaturalQuestions with 2x
constraint using GPT-3.5-Turbo.

Latency evaluation We conducte end-to-end la-
tency testing on a V100-32G, using the prompts
from Multi-document QA, LongBench, and Zero-
SCROLLS in the API call, and results are shown
in Table 1, 2 and 6. The latency includes the time
cost for prompt compression and the request time
for LLMs, with multiple measurements taken and
averaged over. Results demonstrate that LongL.LLM-
Lingua does indeed speed up the overall inference

under different compression ratios and scenarios.
Moreover, with the compression ratio increasing,
the acceleration effect becomes more pronounced
up to 2.6x. However, the OpenAl embedding and
Selective-Context results in longer latency time,
due to repeated API calls and the sequential en-
tropy calculation of semantic units, respectively.

6 Related Works

Long context for LLMs. Recent research
has focused on expanding the window size of
LLMs. Main approaches include: (1) Staged
pre-training (Nijkamp et al., 2023) which grad-
ually increases the context window; (2) Modify-
ing (Press et al., 2022) or interpolating position em-
beddings (Chen et al., 2023; Peng et al., 2024); (3)
Using linear or sparse attention mechanisms (Ding
et al., 2023; Sun et al., 2023); (4) Utilizing exter-
nal memory modules for context storage (Bertsch
et al., 2023; Tworkowski et al., 2023). While these
methods address context window expansion, their
impact on downstream task performance has yet to
be discussed.

Information distribution in prompt. Recent
empirical experiments have shown that LLM per-
formance decreases with less effective information
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in a prompt (Bai et al., 2023; Li et al., 2023a; Shi
et al., 2023). Moreover, the position of relevant
information in a prompt has a significant impact on
performance (Wu et al., 2023b). Liu et al. (2024)
suggests that LLMs have more difficulty compre-
hending information located in the middle of a
prompt compared to those at the edges.

Retrieval methods can be categorized as dense
or sparse retrieval methods. Sparse retrieval meth-
ods, like BM25, determine the relevance between
queries and documents based on n-gram informa-
tion. Conversely, dense retrieval methods assess
the relevance between queries and documents in
latent space using embedding model (Reimers and
Gurevych, 2019; Xiao et al., 2023; Giinther et al.,
2023) and reranker model (Xiao et al., 2023). Re-
cently, Jiang et al. (2023b) proposed an unsuper-
vised dense retrieval method that leverages tradi-
tional compression algorithms, such as gzip, and
k-nearest neighbors.

Prompt compression methods can be grouped
into three main categories: (1) Token prun-
ing (Goyal et al., 2020; Kim and Cho, 2021; Modar-
ressi et al., 2022) and token merging (Bolya et al.,
2023), which need model fine-tuning or interme-
diate results during inference and have been used
with BERT-scale models. (2) Soft prompt tuning
methods like GIST (Mu et al., 2023), AutoCom-
pressor (Chevalier et al., 2023), and ICAE (Ge
et al., 2024), which require LLMs’ parameter fine-
tuning, making them suitable for specific domains
but not directly applicable to black-box LLMs. (3)
Information-entropy-based approaches such as Se-
lective Context (Li et al., 2023¢) and LLMLin-
gua (Jiang et al., 2023a), which use a small lan-
guage model to calculate the self-information or
perplexity of each token in the original prompt and
then remove tokens with lower perplexities.

7 Conclusion

We propose LongLLLMLingua to address the three
challenges, i.e., higher computational cost, perfor-
mance reduction, and position bias for LLMs in
long context scenarios. We develop LongL.LLMLin-
gua from the perspective of efficient prompt com-
pression, thus reducing computational cost. We
further design four components, i.e., a question-
aware coarse-to-fine compression method, a doc-
ument reordering mechanism, dynamic compres-
sion ratios, and a subsequence recovery strategy
to improve LLMs’ perception of the key informa-

tion, with which Longl.LLMLingua demonstrate
superior performance. Experiments on the multi-
document QA, multi-hop QA, and long context
benchmarks demonstrate that LonglLLMLingua
compressed prompt can derive higher performance
than original prompts while both API costs for
inference and the end-to-end system latency are
largely reduced.

Limitation

Although previous experiments demonstrate
LongLLMLingua’s effectiveness and efficiency
across a broad range of tasks, the method still has
the following limitations: 1) LongLLMLingua is
a question-aware approach, meaning it requires
re-compression for different questions, even
with the same context, preventing caching of the
context. Moreover, in terms of computational
cost, LonglL.LMLingua increases the computation
by twice as much as LLMLingua. This can lead
to greater overhead in real-world applications.
However, this issue can be mitigated by extending
the question-aware approach to a task-aware
approach, allowing for reuse and caching. 2)
While the effectiveness of LonglLLMLingua has
been tested on a wide range of tasks, especially
on the multi-hop QA dataset MuSicQue (Trivedi
et al., 2022), its effectiveness might be impacted
when the relationship between context and prompt
is more complex and subtle due to the coarse-level
question-aware approach.
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A Derivation Of Question-Aware
Fine-Grained Compression

Based on the definition of Eq. (3), we can derive
that,

s; = perplexity(z;|z<;) — perplexity (z; |z, z ;)

= q(x;) logp(ﬂfi\ﬂﬁque, r<;) — q(x;) log p(wi|r<;)

x|z, z ;)

= q(x;)lo
(zi) log = o)

(6)
In the actual calculation of perplexity, a log opera-
tion is performed to avoid overflow, and ¢(z;) rep-
resents the probability distribution of the ground-
truth.
At the same time, we can derive the following
expanded expression based on Bayes’ theorem.

p(xi|z®, x<)p(x9™)
p(ziz<i)

= p(xque)p($i |29, 1<)

p(zilz<i)

p(a|zi, v<;) =

(7N

The probability distribution p(z9"®) of the ques-
tion and the ground-truth distribution ¢(x;) of z;
are constants, hence s; can be considered as the
representation of Eq. (7).

si o< p(x9| 2y, x <) (8)

So we can utilize Eq. (3) to represent the proba-
bility distribution p(z9“¢|x;, z~;), which represents
the condition likelihood of generating 29" given
the token x;. Therefore, we can represent the token-
level sensitive distribution for the question z9"¢
using just a single inference. For tokens that are un-
related to 29", such as the tokens on the right side
of Figure 3b, their original amount of information
may be high, but the contrastive perplexity remains
at a relatively low level. Finally, we observe that
the form of contrastive perplexity is equivalent to
conditional pointwise mutual information (Church
and Hanks, 1989).

B Experiment Details

B.1 Dataset Details

We use NaturalQuestions (Liu et al., 2024) for the
multi-document QA task, MuSicQue (Trivedi et al.,

2022) for the multi-hop QA task, and use Long-
Bench (Bai et al., 2023), ZeroSCROLLS (Shaham
et al., 2023), LooGLE (Li et al., 2023b) for general
long context scenarios. The specific details of the
dataset are as follows:

NaturalQuestions multi-document QA A
multi-document  question-answering  dataset,
comprising 2,655 problems, was built by (Liu
et al.,, 2024) based on the NaturalQuestions
dataset (Kwiatkowski et al., 2019). This dataset
provides a realistic retrieval-augmented generation
setup that closely resembles commercial search
and question-answering applications (e.g., Bing
Chat). Each example in the dataset contains
a question and k related documents, utilizing
the Contriever retrieval system (Izacard et al.,
2022), one of which includes a document with
the correct answer. To perform this task, the
model must access the document containing the
answer within its input context and use it to answer
the question. The dataset’s data is sourced from
the NaturalQuestions dataset, which contains
historical queries issued to the Google search
engine and human-annotated answers extracted
from Wikipedia. The average prompt token length
in this benchmark is 2,946. For our experiments,
we used the version provided by (Liu et al.,
2024) that includes 20 documents'®. The dataset
comprises five different ground truth document
position settings in the prompt: 1st, 5th, 10th, 15th,
and 20th.

LongBench A multi-task long context bench-
mark consists of 3,750 problems in English and in-
cludes six categories with a total of 16 tasks. These
tasks encompass key long-text application scenar-
ios, such as single-document QA, multi-document
QA, summarization, few-shot learning, synthetic
tasks, and code completion. The average prompt
token length in this benchmark is 10,289. For our
experiments, we used the English dataset and eval-
uation scripts provided by (Bai et al., 2023) for this
benchmark!!.

ZeroSCROLLS The multi-task long context
benchmark consists of 4,378 problems, including
four categories with a total of 10 tasks. These tasks
cover summarization, question answering, aggre-
gated sentiment classification, and information re-
ordering. The average prompt token length in this

"https://github.com/nelson-liu/lost-in-the-middle
"https://github.com/THUDM/LongBench
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benchmark is 9,788. For our experiments, we used
the validation set and evaluation scripts provided
by (Shaham et al., 2023) for this dataset!?.

MuSiQue The multi-hop question-answer
dataset is composed of 39,876, 4,834, and 4,918
problems in the training, validation, and testing
datasets, respectively. This dataset requires the
language model to conduct multiple inferences
based on the content of several documents and
provide corresponding answers, thereby necessi-
tating a certain capability for global information
processing. The average token length for prompts
in this dataset is 2,477. For our experiments, we
utilized the validation set and evaluation scripts
provided by (Trivedi et al., 2022) for this dataset'3.

LooGLE The multi-task long context benchmark
comprises 6,448 problems, divided into three cat-
egories: summarization, short dependency ques-
tion answering, and long dependency question an-
swering. The average prompt token length in this
benchmark stands at 24,005. For our experiments,
we focused on the long dependency question an-
swering subset, which includes four types of tasks:
information retrieval, timeline reordering, compu-
tation, and comprehension. This subset contains
1,101 problems. We utilized the evaluation scripts
provided by (Li et al., 2023b) for this dataset!4.

B.2 Other Implementation Details

All experiments were conducted using a Tesla
V100 (32GB). We use tiktoken'> and GPT-3.5-
Turbo model to count all the tokens. We set the
granular control coefficient k£ to 2. We use the
pre-defined compression rates 7,3 = 0.85 and
Tque = 0.9 for instructions and questions. The
segment size used in the iterative token-level com-
pression is set to 200. The d7 used in dynamic
compression ratio is set to 0.3. For a fair compari-
son, we only used reordering in the NaturalQues-
tions Multi-document QA and noted this in Table 1.
We use “We can get the answer to this question in
the given documents." as the guideline sentence in
Eq. (3).

For the baselines experiment, we use the cur-
rently recommended strongest model, all-mpnet-
base-v2', as the dense representation model for

Zhttps://www.zero.scrolls-benchmark.com/
Bhttps://github.com/stonybrooknlp/musique
“https://github.com/bigai-nlco/LooGLE
"Shttps://github.com/openai/tiktoken
https://www.sbert.net/docs/pretrained_models.html

SentenceBERT. We use the recommended “text-
embedding-ada-002" as the embedding model for
OpenAl Embedding!’. We use the GPT2-dolly'®
as the small language model in w/ GPT2-small
ablation experiments.

C Additional Experimental Results

C.1 Empirical Study of Question-aware
Fine-grained Compression

Figure 5 shows the distribution of the document’s
average perplexity when the ground-truth is located
at more positions within the prompt. As can be
observed, as the context length increases, the orig-
inal perplexity curve remains relatively stable. In
unrelated documents, a higher perplexity is still re-
tained, making it easier to remove relevant tokens
from the related documents in the prompt compres-
sion process, thereby damaging the corresponding
semantic information. Contrarily, contrastive per-
plexity shows an increase in perplexity in docu-
ments related to the question. According to the
theoretical derivation in Appendix A, it’s known
that contrastive perplexity characterizes the condi-
tional probability of tokens corresponding to the
question. The higher the relevance, the higher the
contrastive perplexity, thereby retaining key infor-
mation in the prompt compression process.

C.2 Ablation in LongBench

Table 4 presents the results from the ablation experi-
ment in the LongBench long context benchmark. It
can be observed that in various long context tasks:
1) Removing the question-aware coarse-grained,
question-aware fine-grained, dynamic compression
ratio, document reordering, and subsequence re-
covery proposed by LongLLMLingua all result in
different degrees of performance drop. 2) Among
these, question-aware coarse-grained is particularly
important for document-based QA and synthetic
tasks, with the maximum drop being 35.8 points;
its impact on summarization and code tasks is rel-
atively smaller. 3) The design of the conditional
probability in the question-aware coarse-grained
module improves the results in all tasks, includ-
ing code completion, single-document question-
answer, and synthetic tasks. Changing the order
of conditional probabilities or removing the re-
strict prompt both lead to varying degrees of perfor-
mance decline. 4) Removing question-aware fine-

"https://platform.openai.com/docs/guides/embeddings/
Bhttps://huggingface.co/lgaalves/gpt2-dolly
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Figure 5: The distribution of document-level average perplexity when the ground-truth document is in different

positions.

Methods | SingleDoc MultiDoc Summ. FewShot Synth. Code AVG Tokens 1/7
LongLLMLingua | 399 43.2 27.4 69.8 53.0 56.7 483 1,822 6x
Question-aware Coarse-grained

- w/o Question-awareness 27.1 38.7 254 62.0 18.0 533 374 1945 5x
- w/ SBERT _ 34.0 38.7 24.1 57.9 325 311 364 1,790 6x
- W/ p(x§ec | duerestneny 22.5 28.9 232 53.0 225 333 306 1,794 6x
- w/o restrict 37.8 39.5 26.4 64.8 525 558 46.1 1,834 6x
- w/o Question-aware Fine-grained 35.7 41.1 26.4 62.9 445 548 442 1,807 6x
- w/o Dynamic Compression Ratio 36.1 40.6 26.9 67.2 48.0 55.8 457 1,851 6x
- w/o Subsequence Recovery 38.6 41.8 27.3 69.0 538 56.6 47.8 1,809 6x
- w/o Document Reordering 39.0 422 27.4 69.3 53.8 56.6 48.0 1,809 6x
- w/ GPT2-small 359 39.4 25.0 60.6 42.0 554 43.0 1,892 5x

Table 4: Ablation on LongBench (Bai et al., 2023) using GPT-3.5-Turbo in 2,000 tokens constraint.

grained, dynamic compression ratio has a more
significant impact on document-based QA and syn-
thetic tasks. 5) The subsequence recovery module
can enhance reference-based tasks, but its improve-
ment on tasks like summarization, code, synthetic,
etc., is relatively smaller. 6) Document reordering
is effective for all types of tasks. Reordering at
the document level does not affect LLMs’ under-
standing of context information, even for timeline-
related tasks (see timeline reorder in LooGLE, Ta-
ble 8). On the contrary, reordering can effectively
alleviate the "lost in the middle" issue, thereby im-
proving LLMs performance. 7) Using GPT2-small
reduces the capture of effective tokens, but it can
still achieve results close to or even slightly better
than the original prompt.

C.3 LongBench Using LongChat-13b-16k

Table 5 presents the experiment results in the Long-
Bench long context benchmark using LongChat-
13b-16k. It can be seen that the compressed prompt
can also achieve good results on other LLMs, such
as LongChat-13b-16k. Specifically, 1) there is a
maximum improvement of 15.5 points in synthetic
tasks. Except for a slight drop in few-shot Learn-
ing, there is an improvement of 3-5 points in other

tasks. 2) The performance trends of retrieval-based
and compressed-based baselines are similar to the
results in GPT-3.5-Turbo.

C.4 ZeroSCROLLS

Table 6 presents a detailed performance breakdown
on the ZeroSCROLLS benchmark. It can be ob-
served that in the four summarization tasks - GvRp,
SSFD, QMsm, SQAL, LongLLMLingua closely
matches or slightly surpasses the original results
under two compression constraints. Meanwhile, in
the four long context QA tasks - Qsqr, Nrtv, QALT,
MuSQ, there is a significant improvement. No-
tably, in the MuSiQue task, which is based on a
question-answering dataset from books and movie
scripts, there is a 2.1 point increase even under
a 2,000 tokens constraint. It’s worth mentioning
that MuSiQue is a multi-hop question-answering
dataset that requires LLMs to utilize global infor-
mation for long dependency QA. LongLLMLingua
can also improve by 3.5 points under a 6x com-
pression ratio. In the two ordering tasks, SpDg
and BkSS, Longl.LMLingua can better retain glob-
ally sensitive information, resulting in a 3.0 point
improvement in BkSS after prompt compression.
It’s important to note that although the Zero-
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Methods \SingleDoc MultiDoc Summ. FewShot Synth. Code AVG Tokens 1/7
Original Prompt | 274 30.3 20.3 49.9 125 425 305 10,295 -

Retrieval-based Methods

BM25 2.4 2.6 16.4 8.7 0.0 447 125 1985 5x
SBERT 11.6 13.7 21.1 16.2 7.5 30.0 16.7 1947 5x
LongLLMLingua r 30.3 32.4 24.5 41.0 275 38.1 323 1960 5x
Compression-based Methods

Selective-Context 16.1 23.5 21.8 214 2.5 359 202 1925 5x
LLMLingua 20.6 22.3 22.4 35.6 0.0 354 227 1950 5x
LongLLMLingua | 313 34.6 24.6 46.1 27.8 48.8 355 1,822 6x

Table 5: Performance of different methods under different compression ratios on LongBench (Bai et al., 2023) using

LongChat-13b in 2,000 tokens constraint.

Methods

|GvRp SSFD QMsm SQAL QALT Nrtv Qspr MuSQ SpDg BkSS AVG |Tokens 1/7 |Latency Speedup

3,000 tokens constraint

Retrieval-based Methods

BM25 9.7 34 11.7 143 571 59 257 112 296 29.6 19.8] 3,379 3x 55 2.2x
SBERT 16.5 938 123 152 60.0 14.6 234 121 394 364 240 3340 3x 59 2.1x
OpenAl 143 83 120 153 667 133 243 11.7 312 264 2243362 3x 11.7 1.0x
LongLLMLinguary | 19.5 11.6 147 155 66.7 205 27.6 13.0 60.8 434 293 3350 3x 6.2 2.0x
Compression-based Methods
Selective-Context 20.8 9.1 1.7 134 500 9.8 261 110 460 95 20.7]| 3460 3x 54.2 0.2x
LLMLingua 18.7 100 149 168 619 269 272 234 629 445 30.7| 3,366 3x 7.4 1.7x
LongLLMLingua | 22.1 128 159 171 670 27.8 313 239 658 465 33.0| 3431 3x | 82 1.5x
2,000 tokens constraint
Retrieval-based Methods
BM25 88 25 1.1 135 600 7.0 49 203 399 329 20.1] 1,799 5x 3.8 3.2x
SBERT 102 79 137 132 600 8.1 108 1.7 372 428 205 1,773 6x 4.1 3.0x
OpenAl 1.1 80 11.8 136 60.0 7.1 132 40 33.6 436 206 1,784 5x 9.9 1.2x
LongLLMLinguary | 182 9.8 123 159 571 101 178 73 577 423 249| 1,771 6x 4.7 2.6x
Compression-based Methods
Selective-Context 190 84 9.7 124 470 125 216 115 412 11.0 194 1,865 5x 475 0.3x
LLMLingua 194 119 131 160 62.1 237 240 224 339 449 272 1,862 5x 4.8 0.3x
LongLLMLingua | 20.1 124 149 165 651 27.7 307 23.6 685 472 327| 1826 6x | 52 2.3x
Original Prompt | 218 121 179 174 667 253 298 200 697 441 3259788 - | 122 -
Zero-shot | 94 30 8.6 114 429 106 124 55 42 00 128 32 306x| 1.0 12.2x

Table 6: Performance breakdown of different methods under different compression ratios on ZeroSCROLLS (Sha-

ham et al., 2023) using GPT-3.5-Turbo.

Scrolls validation dataset is relatively small, it still
demonstrates conclusions similar to previous ex-
perimental observations across various methods
and tasks. Furthermore, this study conducted an in-
depth analysis of the multi-hop QA task - MuSiQue,
and another long context benchmark - LooGLE.
The results can be found in Appendix C.5 and Ap-
pendix C.6.

C.5 MuSiQue

Table 7 presents the results from the MuSiQue
multi-hop question-answer dataset. From the table,
it can be observed that in the multi-hop QA task,
requiring global information: 1) LongL.LMLingua
can reduce noise in the prompt by eliminating irrel-
evant information and putting more related informa-

tion at the beginning or end of the prompt, thereby
improving performance by 5.4 points. 2) The per-
formance drop is more pronounced for retrieval-
based methods, particularly for n-gram-based meth-
ods like BM25. Due to long dependencies, direct
matching information is lost, resulting in less rel-
evant information being recalled. 3) The perfor-
mance of compression-based methods is slightly
different. Selective-Context does not distinguish
between different modules’ sensitivity, resulting in
a loss of question and instruction-related informa-
tion, thereby leading to poorer performance. How-
ever, LLMLingua can still retain relevant key in-
formation at around a 2x compression ratio. 4)
The ablation experiments show that every module
designed in LongLLMLingua plays a role in the
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Methods F1 Tokens 1/7
Original Prompt 45.8 2,427 -

BM25 28.5 1,295 1.9x
SBERT 36.2 1,288 1.9x
LongLLMLingua r 46.3 1,295 1.9x
Selective-Context 19.6 1,141 2.1x
LLMLingua 40.1 1,110 2.2x
LongLLMLingua 51.2 1,077 2.3x
Question-aware Coarse-grained

- w/o Question-awareness 432 1,076 2.3x
- w/ SBERT 473 1,070 2.3x
- Wi p(xoe|gduerestrict) 44.0 1,066 2.3x
- w/o restrict 49.2 1,078 2.3x

- w/o Question-aware Fine-grained 48.4 1,118 2.2x
- w/o Dynamic Compression Ratio 48.2 1,090 2.2x

- w/o Subsequence Recovery 50.7 1,077 2.3x
- w/o Document Reordering 49.2 1,077 2.3x
- w/ GPT2-small 48.4 1,095 2.2x

Table 7: Performance of different methods and ablation
study on MuSicQue (Trivedi et al., 2022) with 2x con-
straint using GPT-3.5-Turbo.

multi-hop task. The removal of the question-aware
coarse-grained and w/ p(x$°¢|z ") modules,
which have difficulty in perceiving the importance
distribution of corresponding questions, can cause
a drop of up to 8 points. Removing the restrict
prompt in the question-aware coarse module can
also cause a 2-point drop due to the hallucina-
tion issue of small LLM. In addition, removing
question-aware fine-grained, dynamic compression
ratio, and document reordering can all cause a drop
of 0.5-2.8 points. 5) Moreover, if the small lan-
guage model in Longl.LLMLingua is replaced with
GPT2-small, it can further improve the accelera-
tion ratio and still achieve a result that is 2.6 points
better than the original prompt.

C.6 LooGLE

Table 8 presents the experiment results in the
LooGLE long dependency benchmark, which fea-
tures longer prompts (~30k) and more global de-
pendencies. From the table, we can observe that:
1) LongLLMLingua can effectively improve the
performance of long context tasks by compress-
ing prompts, even for long dependency tasks. The
results show that LongLL.MLingua significantly im-
proves performance in tasks such as retrieval, time-
line reorder, and computation, with the maximum
improvement reaching 15.9 points. 2) The docu-
ment reorder in Longl.LMLingua is effective in all
types of tasks, even in tasks highly related to the

timeline, it can effectively improve performance
by alleviating the "lost in the middle" issue. 3)
Retrieval-based methods tend to lose performance
in tasks that have longer dependencies, such as
computation and reasoning. 4) For compression-
based methods, due to the difficulty in perceiving
question information, there tends to be a larger
performance loss in retrieval tasks within long con-
texts.

D Economic Cost

Table 9 presents the estimated per 1,000 samples
inference costs for various datasets, encompassing
input prompts and generated output text, based on
GPT-3.5-Turbo pricing!®. Our approach demon-
strates substantial savings in computational re-
sources and monetary expenses, particularly in long
context situations. Cost reductions of $3.3 (71.7%),
$28.5 (90.5%), $27.4 (89.5%), $2.0 (52.6%), and
$88.0 (94.0%) per 1,000 samples are observed
for Multi-document QA, LongBench, ZeroScrolls,
MuSiQue, and LooGLE, respectively.

E Ablation Analysis

Figure 6 illustrates the compressed prompts from
the Multi-document QA dataset, comparing the use
of contrastive perplexity at a high compression ra-
tio (30x). It shows that without question-aware
token-level prompt compression, Longl.LMLin-
gua tends to compress key information, a tendency
that becomes more pronounced at higher compres-
sion ratios. Conversely, employing contrastive per-
plexity allows for better detection of key informa-
tion related to the question within the context, thus
preserving key information within the compressed
prompt.

F Cases Study

Figures 7, 8, and 9 display the outcomes before
and after compression, as well as the LLMs’ re-
sponses in various scenarios.

Yhttps://openai.com/pricing
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Methods \Retrieval Timeline Reorder Computation Reasoning AVG Tokens 1/7
Retrieval-based Methods

BM25 20.4 21.7 8.2 26.3 19.2 3,185 10x
SBERT 28.9 21.1 10.7 27.2 22.0 3,169 10x
LongLLMLingua r, 38.6 322 16.2 26.3 28.3 3,158 10x
Compression-based Methods

Selective-Context 16.7 5.0 2.3 17.6 104 3,710 8x
LLMLingua 10.0 25.0 13.3 21.1 17.3 3,404 9x
LongLLMLingua 40.0 35.0 19.7 33.6 321 3,121 10x
LongLLMLingua w/o Reorder | 39.3 33.8 18.7 31.6 309 3,119 10x
Original Prompt | 241 20.9 13.5 32.1 22.6 30,546 -
Zero-shot | 87 6.3 1.2 14.5 7.7 43 710x

Table 8: Performance of different methods on LooGLE (Li et al., 2023b) long dependency QA.

Multi-document QA LongBench ZeroScolls MuSicQue LooGLE

Original 4.6 31.5 30.6 3.8 93.6
Ours 1.3 ({71.7%) 3.0(90.5%) 3.2(189.5%) 1.8(]52.6%) 5.6(194.0%)

Table 9: The inference costs $ (per 1,000 samples) for various datasets using GPT-3.5-Turbo.

Ours w/o Token-level Question-aware:

Compressed Prompt:

Write a high-quality answer for the given question using only the provided search results (some of
which might be irrelevant).

Document [1](: Physics)gen,, who received2K, which is ,73,0 in0. Johnen only to twice6. Mariaie
won, for.g was, untillestate he. Two:Mayer (1963). As of 2017, the prize has been awarded
Question: who got the first nobel prize in physics

Answer:

LLMs’ Response:

No answer found in the given search results.

Ours w/ Token-level Question-aware:

Compressed Prompt:

Write a high-quality answer for the given question using only the provided search results (some of
which might be irrelevant).

1Title: List of Nobelates in The first Nobel Prize wasl to , of who received 1582
which,70 in0 en the prize. Skska also won two Nobeles for physics3g01, theate he women
prize:ertMayer (1963). As of 2017, the prize has been awarded

Question: who got the first nobel prize in physics

Answer:

LLMs’ Response:

Wilhelmrad

LLMs’ Response after Subsquence Recovery:

Wilhelm Conrad Rontgen

Ground Truth:

Wilhelm Conrad Rontgen

Figure 6: Comparing the compressed prompt and LLMs’ response before and after using Question-aware Fine-
grained Compression and Subsequence Recovery(1/7 = 30x, high compression ratio setting) from NaturalQuestions
Multi-document QA (Liu et al., 2024) using GPT-3.5-Turbo.
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Original Prompt:

Document [1](Title: Dancing on Ice) It was confirmed on 25 January 2018, that Dancing on Ice
had been recommissioned for an eleventh series to air in | 2019 |.

Compressed Prompt:

Write a high-quality answer for the given question using only the provided search results (some of
which might be irrelevant).

1 Title: Dancing on was confirmed on 2 January 2018 that Dancing on had been recommissioned
for an eleventh series air in .

Document [2Title: Dan on) Dan on Ice Dancing on British presented by Phillip Schof alongside
Holly Willough from 26 to 2011, and Christine Bleakley from 2012 to 204 The show consists of
celebrit and professional partners figure skating in front of a panel of judges The, broadcast on
ITV, started on January 2006 and ended on 9 March 2014 after showcontract not renewed by ITV
On 4 September 2017, it was announced that rev series would on I 7 January 201 Sch and Willby
returning as a

5(: on (on () The third series of a from January tol68TV. The from Saturdays, with Holby present
Kar,y Sliner Robin Cins returned to Panel", with Ruth H joining the panel as replacement for
Natalia Bestova. The commission of the was confirmed by at the07 announcedova depart the series
Robinen Bar,ater and Jasoniner announced

7( on ()) Dan 2 second of Dan on a from January to1207 ITV It presented Phillip Sch Holly
Willough, and judged the "I P consisting Nicky Slater, Nataliaian Karenres Jason Gardiner Karen
Barber and Robin Cousins Jaynevill and Christopher Dean co and trained the contestants In this
series, cele to ten in first series. The series was won former Kyran Bracken, with Mel Lambert the
winner. It announced thatenresge

Document []( on Ice on 08 on TV edition started 8 TV2 The Russian version "anjy) being on
channel0, and renamed in8 to " Ice" (). Its counterpart called "Ice Age (, "Stars on Ice on Channel
Oneak IceHviezdyl'J. The Turkish version" is called Dans" ("ance on

Document1 on Ice its, all,é () and Sje Chris de In series.2 edition

](: on Ice world) Dan Ice is a made competition world format, and been subsequently Italy Chile
where titled after series There have a, the show was broadcast on Channel 13 as a

Document [17](Title: Dancing on Ice) the insight to the training of the celebrities over the last
week. It was presented by television presenter Ben Shephard and former contestant and "Loose
Women" star Coleen Nolan. The show was broadcast from 8 pm to 8.30 pm on Friday evenings on
ITV throughout the duration of the main shows season. STV who broadcast the main show did
not broadcast this on the Friday evening but after repeating the previous week§ main show on the
following Saturday afternoon. Due to poor ratings, "Dancing on Ice Friday" was axed prior to the
2011 series. The show was based in the

Question: when is dancing on ice on the tv

Answer:

LLMs’ Response:

209

LLMs’ Response after Subsquence Recovery:

2019

Ground Truth:

2019

Figure 7: Cases study on NaturalQuestions Multi-document QA dataset (Liu et al., 2024) in 4x constraint using
GPT-3.5-Turbo.
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Compressed Prompt:
Please complete the code given below.

public class MessageArchiveManagement
private static final long MILLISECONDS_IN_DAY = 24 x 00 *0;
public static final long_CUP = MCON_DAY

/...
.("", .getStart
add
ifget() >0
Node end("
end. ("
endNode.Value("", Util.getTimestamp(query.getEnd
addNode
} if (.withid null && contact null && !isference
Node with(" .with
.Value("valuewith
- (
// queryMessageive(connection, nextQuery

final(connectionProtocol(), query
synchronized (eries)
// queries.add(nextQuery } }
public boolean queryInProgress( contact, OnLoaded
moreMessageslLoadedListener)
ized (eries)
(Query query : queries)
if(query.getWith().equals(contact.getUserId()))
if (query.onMoreMessagesLoaded == null &&MessageslListener
null) query.setOnMoreMessageslLoaded(Listener}
return true;}} return false;}}
private void finalizeQuery(Protocol protocol, Query query) {
synchronized (queries) {
.remove(query); 3}
Contact contact = null;
if (query.getWith() !'= null) {
contact = protocol.getItemByUID(query.getWith()); }
if (contact != null) {

Next line of code:
LLMs’ Response:

contact.setlLastMessageTransmitted(query.getEnd());\n

Ground Truth:
if (contact.setLastMessageTransmitted(query.getEnd())) {

Zero-shot LLMs’ Response:

contact.removeQuery(query);\n

Figure 8: Cases study on Icc code completion task in LongBench benchmark (Bai et al., 2023) in 2,000 constraint
using GPT-3.5-Turbo. 1676



Compressed Prompt:

Please determine the Type of the question below. Here are some examples of questions.
Question: How is energy created ? Type Manner of an action

Question: What is chocolate ? Type: Definition of something

Question: What is a bone marrow transplant ? Type: Definition of something
Question: What is fear of odors , body , ? Type Disease and medicine

Question: What was the Vietnam War ? Type: Definition of something

Question: was education system in 16s ? Type: Other entity

Question: What is IP address ? Type: Definition of something

Question: are the differences in Catholic Methodist religions ? Type of something

Question: When was San fire ? : Date

Question: CNN began broadcasting in what year ? Type: Date

Type: Manner of an action

Question: What the | behind the ir in the eye called ? Type Equ term

Type: Date

Question: What the former name of Zimbabwe ? Type: termType something
Question: What is troilism ? Type: Definition of something

: What is origin of the word , Type: of something

: do you name to social security number ? Type Manner of an action

: that of an employee Universal and Export ? Type Individual

: anesthetic did Queen Victoria allow to be for the birth of her seventh , in 183 ? Type: Disease
and medicine

: Where isyer ’s rock ? Type location

Question: What isymnophobia ? Type: Definition of something

Type burns the most calories ?

Type Sport

: In what book I find story of Aladdin ? Type In, book and piece an have sex ?
Type: Manner of an action: What is the acron for rating forer ?

Type Abbreviation

: are the Baltic States ? Type: Definition of something

: What is appearance , that violates the standards of sexual mor ? Type
: Where did the May people live ? : location

: What population Kansas ? Type number

: was the hurr 7 Type: Event

: ’s a score aymnast exercise ? Type: number

: year become a state ? Type: Date

do go school ? Type Reason

Question: What is a fuel cell ?

Type:

LLMs’ Response:

Definition of something

LLMs’ Response after Subsquence Recovery:
Definition of something

Ground Truth:

Definition of something

Figure 9: Cases study on trec few-show learning in LongBench benchmark (Bai et al., 2023) in 2,000 constraint
using GPT-3.5-Turbo.
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