
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 16410–16430
August 11-16, 2024 ©2024 Association for Computational Linguistics

Word Embeddings Are Steers for Language Models

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun,
Nan Jiang, Tarek Abdelzaher, Heng Ji
University of Illinois Urbana-Champaign

{chihan3, jx17, manling2, yifung2, chenkai5
nanjiang, zaher, hengji}@illinois.edu

Abstract

Language models (LMs) automatically learn
word embeddings during pre-training on lan-
guage corpora. Although word embeddings
are usually interpreted as feature vectors for
individual words, their roles in language model
generation remain underexplored. In this work,
we theoretically and empirically revisit out-
put word embeddings and find that their lin-
ear transformations are equivalent to steering
language model generation styles. We name
such steers LM-Steers and find them existing
in LMs of all sizes. It requires learning param-
eters equal to 0.2% of the original LMs’ size
for steering each style. On tasks such as lan-
guage model detoxification and sentiment con-
trol, LM-Steers can achieve comparable or su-
perior performance compared with state-of-the-
art controlled generation methods while main-
taining a better balance with generation qual-
ity. The learned LM-Steer serves as a lens in
text styles: it reveals that word embeddings are
interpretable when associated with language
model generations and can highlight text spans
that most indicate the style differences. An
LM-Steer is transferrable between different lan-
guage models by an explicit-form calculation.
One can also continuously steer LMs simply
by scaling the LM-Steer or compose multi-
ple LM-Steers by adding their transformations.
Our codes are publicly available at https:
//github.com/Glaciohound/LM-Steer. 1

1 Introduction

In recent years, language models (LMs) have sig-
nificantly advanced various natural language pro-
cessing (NLP) tasks such as machine translation,
sentiment analysis, schema induction, summariza-
tion, and sociocultural understanding (Brown et al.,
2020; Kojima et al.; Li et al., 2023b; Radford et al.,

1Please be advised that this paper contains potentially
controversial results and examples to some readers, included
solely for research purposes to explore model capabilities.

Language Model
Hidden Layers

Language Model
Hidden Layers

steering on output word embeddings

Original LM P0

Language Model
Hidden Layers

Positively steered LM PϵWNegatively steered LM P−ϵW

e′ v ← (I − ϵW)ev e′ v ← ev e′ v ← (I + ϵW)ev

“My life is brilliant”“My life is boring” “My life is okay”

Figure 1: We find hidden steers in output word em-
beddings. By linearly transforming word embeddings,
language model generations are “steered” toward differ-
ent style polarity and levels.

2018; OpenAI, 2023; Fung et al., 2023, 2024).
Their output word embeddings are learned au-
tomatically to calculate word output likelihoods
during pre-training on language corpora. Typically,
the dot product c⊤ev between a computed context
vector and a learnable output word embedding ev
for token v is usually used as the word logit. The
word output probability is defined as the softmax
over all word logits:

P (v|c) = exp(c⊤ev)∑
u∈V exp(c⊤eu)

, (1)

where V is the whole vocabulary. While being
a fundamental topic in natural language process-
ing, previous work on interpreting them is usually
focused at the word level, such as their semantic
information (Şenel et al., 2018), word senses (He-
witt et al., 2023), and analogical relations (Mikolov
et al., 2013; Park et al., 2017). However, as the
word embeddings are optimized for generation loss
during pre-training, the learned embedding space
should be closely associated with LMs’ generation
distributions. In this work, we propose to study the
roles that word embeddings play in LM generation,
which remains an underexplored topic, and ana-
lyze a simple while effective LM steering method
LM-Steer.

16410

https://github.com/Glaciohound/LM-Steer
https://github.com/Glaciohound/LM-Steer

Language Model
Hidden Layers

output word
embeddings eo

adapted output word
embeddings e′ o+ = ϵWeo

original LM P0 “Steered” LM PϵW

Language Model
Hidden Layers

(a) LM-Steer overview (b) Training (c) Generation

PϵW

P−ϵW

objective:
maximize likelihood

objective:
maximize likelihood

positive
labelled texts

negative
labelled texts

step 1:
setting a “steer” value

ϵ = 3e − 3

step 2:
Plugging in and generate
my life is ____

brilliant

Figure 2: An overview of LM-Steer. (a): LM-Steer applies a linear factor ϵWev to each word embedding for
language model conditioning. (b): During training, we use a positively steered model PϵW to maximize likelihood
on positively labeled texts, and vice versa. (c): For generation, one only needs to specify a steering value ϵ, and then
proceed with normal decoding.

We start by examining the theoretical relation
between word embeddings and LM generation dis-
tributions. We find that linear transformations in
output word embeddings are equivalent to LM gen-
eration style changes. This motivates our empirical
investigation on a lightweight and simple steering
method, LM-Steer, to steer LM generation distribu-
tion flexibly and transparently. LM-Steer deploys a
d×d learnable linear transformation W on the out-
put word embeddings, where d is the embedding
dimension. Specifically, the embeddings ev are re-
placed with ev + ϵWev. Here, ϵ acts as a “steering
value” to provide a simple control on steering po-
larity and intensity. Inherently, LM-Steer discovers
hidden dimensions in word embeddings that are
associated with text styles. By transforming these
dimensions, LM-Steer affects LMs’ interpretation
of words and, consequently, generation distribu-
tions.

Empirically, we find such LM-Steers exist preva-
lently in LMs thanks to its general formulation and
ignorance of model architectures. It can efficiently
steer LMs of all sizes, ranging from smaller GPT-
2 family (Radford et al., 2019) to modern large
language models, including GPT-J (Wang and Ko-
matsuzaki, 2021) and Llama-2-7B (Touvron et al.,
2023). On tasks such as language model detoxifica-
tion and sentiment control, it achieves comparable
or superior performance compared to the state-of-
the-art controlled generation baselines. We also
find multiple merits of LM-Steer both as a steering
tool and lens for inspecting the relation between
word embeddings and language model generation.

An LM-Steer can highlight text spans that best indi-
cate a style in the full text. A learned LM-Steer also
makes word embedding dimensions interpretable
by pointing out the dimensions closest related to a
style, revealing what kinds of words contribute to or
contradict a style. LM-Steer is both parameter ef-
ficient and data-efficient: on GPT2-large, it learns
only parameters only 0.2% the size of the original
model (9% of the size of LoRA (Hu et al., 2021a), a
parameter-efficient fine-tuning method) and able to
text sentiments on dozens of sentences. A learned
LM-Steer is transferable to other LMs with dif-
ferent sizes by explicit-form calculation without
additional training. Moreover, LM-Steer theoreti-
cally enables both continuous and compositional
control. This allows for dealing with diverse and
nuanced situations, such as fine-grained personal-
ized or customized generation, without re-training
for each scenario.

2 Related Work

Understanding Word Embeddings Language
models learn word embeddings for individual
words automatically after pre-training. To un-
derstand them, (Mikolov et al., 2013; Allen and
Hospedales, 2019) discover linear translational re-
lations among embeddings, while (Park et al., 2017;
Rothe and Schütze, 2016; Ethayarajh, 2019) exam-
ine their rotational relations. Some other work
examines the semantic information (Şenel et al.,
2018; Lund and Burgess, 1996; Jang and Myaeng,
2017; Şenel et al., 2022; Murphy et al., 2012;
Faruqui et al., 2014) or word senses (Panigrahi

16411

et al., 2019; Hewitt et al., 2023) of individual words
in their embeddings. These efforts, however, have
mostly focused on and evaluated word-level inter-
pretations of word embeddings (Chang et al., 2009)
while we first investigate their relations with lan-
guage model generations.
Control of Language Models has been of growing
interest in recent years, motivated by the increasing
capabilities of LMs (Li et al., 2023a). This area
originates from the need to leverage the genera-
tion capabilities of large language models while
avoiding the need for time-consuming and costly
retraining or fine-tuning. Attempts include apply-
ing attribute classifiers or heuristic constraints at
decoding time (Kumar et al., 2022; Dathathri et al.;
Liu et al., 2021; Yang and Klein, 2021), treating
the generation process as an optimization prob-
lem over the embedding or token sequences (Ku-
mar et al., 2021), or post-editing the output (Li
et al., 2018). These techniques are often compu-
tationally expensive and rely on suitable external
classifiers. More recently, prompting-based con-
trol for large language models has received much
attention, which, however, relies on the quality
and availability of large language models (Brown
et al., 2020; OpenAI, 2023), and may also neces-
sitate the deliberate training (Raffel et al., 2020;
Zhou et al., 2023). It can also be challenging to
design effective prompts for complex or nuanced
control goals. Parameter-efficient fine-tuning such
as LoRA (Hu et al., 2021a) focuses on learning low-
rank approximations of model parameters. How-
ever, this cannot achieve flexible and transferrable
language model steering like ours. Probably most
closely related to our work are attempts to discover
“steering” vectors or tokens (Subramani et al., 2022;
Li and Liang, 2021), and also similar work in im-
age generation (Jahanian et al.; Hu et al., 2021b).
Different from our model, these efforts focus on
other applications such as multi-task learning and
sentence recovery, and the learned vectors are not
shown to be transferrable or interpretable nor en-
able flexible control.
Language Model Detoxification Motivated by the
goal to address the systematic biases embedded
in language models, there are efforts in conduct-
ing language model de-biasing or de-toxification
(Meade et al., 2022; Kaneko et al., 2022). Ap-
proaches span all aspects of the language model
pipeline. A line of work focuses on automatically
obtaining cleaner data (Barikeri et al., 2021; Web-
ster et al., 2021; Dinan et al., 2020). Another line

of work modifies the model workflow design to
explicitly accommodate the bias factors (Webster
et al., 2021; Schick et al., 2021; Yu et al., 2023;
Omrani et al., 2023; Yang et al., 2023). The most
related line of work to the herein proposed method
involves manipulating embedding space such as
Principle Component Analysis and Nullspace Pro-
jection (Liang et al., 2020; Bolukbasi et al., 2016;
Ravfogel et al., 2020). The evaluation in these
settings (Kaneko and Bollegala, 2021; Nadeem
et al., 2021; Nangia et al., 2020) mostly consists of
quiz-question checking for stereotypical misbeliefs.
More related to our method are those mentioned
in language model control (Kumar et al., 2022;
Dathathri et al.; Liu et al., 2021; Yang and Klein,
2021; Kumar et al., 2021), which constrains or
guides text generation according to a classifier. A
unique contribution in our work is that the learned
LM-Steer can be transferred to detoxify other off-
the-shelf language models without a costly training
process.

3 LM-Steer: Revealing Hidden Steers in
Word Embeddings

As a theoretical motivation, we first show an infor-
mal theorem relating output word embeddings with
generation styles. We leave the formal statement as
well as the proof to Appendix C and only present
an intuitive interpretation.

Theorem 1. (Informal) With certain assumptions,
shifting styles in language models is equivalent to
a linear transformation in word embedding space.

Inspired by this discovery, we propose LM-Steer
to apply a linear transform in the output word em-
bedding space. LM-Steer is conceptually simple
and straightforward to implement. An illustration
of LM-Steer is presented in Figure 2(a). Specif-
ically, we assume a language model with fixed
parameters. We replace its each output word em-
beddings ev with

e′v = ev + ϵWev = (I + ϵW)ev, (2)

and call the resulting language model PϵW a “LM-
Steered model”. Here, the “steer matrix” W is the
only learnable parameter in LM-Steer, and ϵ is an
adjustable scalar indicating the polarity and inten-
sity of the “steering value”. Without loss of gener-
ality, we arbitrarily pick a small value ϵ0 = 1e− 3
as the default steering value.2 We use PϵW to

2Using an arbitrary ϵ0 possess the same representation

16412

denote the steered language model. Figure 2(b,
c) shows the training and generation process of
LM-Steer. During training, we use the positively
steered model PϵW to fit the positively labeled texts,
with maximal likelihood as the training objective.
When negative texts are available, we also fit them
with P−ϵW . When generating with LM-Steer, the
user only needs to specify a steering value ϵ and
then decode the language model. More details are
in Appendix D. Intuitively explaining, LM-Steer
matrix W learns to identify word embedding di-
mensions that are best associated with a target style
and manipulate among those dimensions to achieve
language rewording. In Section 5.1, we show this
enables an interpretation of word embeddings by
analyzing the learned W .

We also theoretically and empirically compare
LM-Steer against a simplified version, a (soft)
word blacklist (SWB): learning a global logit off-
set is applied to each token candidate after the orig-
inal logits are computed. As we demonstrate in
Appendix I, adding a (learnable) vector to context
vectors c achieves a similar effect with SWB. We
also further prove that LM-Steer is theoretically
expressive of any distribution shift, while a SWB
is unable to do so. In 4, we show that SWB indeed
yields inferior performance than LM-Steer.

4 Steering Language Model Generation

4.1 Language Detoxification

It is known that large pre-trained LMs might gener-
ate toxic content that appears in the pre-training dis-
tribution (Sheng et al., 2019; Gehman et al., 2020),
such as inaccurate information, harmful stereo-
types, and unethical content. Language model
detoxification is the task of mitigating or avoiding
these generations in order to enable the safe usage
of language models. We experiment on the GPT2
family, Pythia family (Biderman et al., 2023), GPT-
J-6B, and Llama-2-7B as the backbone language
models.

Setting: Following (Liu et al., 2021), we use
Jigsaw Unintended Bias in Toxicity Classification
Kaggle challenge3 as the training dataset. For eval-
uation, we use 10K nontoxic prompts from the Re-
alToxicityPrompts dataset (Gehman et al., 2020).
We randomly generate 25 sentences of up to 20
tokens using nucleus sampling (Holtzman et al.)

power as any other ϵ, as there always exists W ′ = ϵ
ϵ0
W so

that ϵ0W ′ = ϵW holds.
3https://bit.ly/3cvG5py

Base Model Parameters ()× 109

M
ax

im
um

 to
xi

ci
ty

Baselines
LM-Steered⊕

DAPT

DExperts

GPT2⊕

GPT-J-6B⊕SWB

GeDi

PPLM

PromptT5

MuCoLa

LoRA

Llama-2-7B⊕
Pythia⊕

0.15

0.25

0.35

0.45

0.55

0 1.75 3.5 5.25 7

Figure 3: Across base model sizes, LM-Steered GPT2
family, Pythia family, GPT-J and Llama-2-7B models
(+) consistently outperform other baselines ((□)) on
detoxification. X⊕ means an LM-Steered language
model X.

with p = 0.9. Then the toxicity scores (in range
[0, 1]) of generations are evaluated using Perspec-
tive API 4. Two metrics are reported: the maximal
toxicity of generations on each prompt averaged
across prompts (“Avg. max. toxicity”) and the
averaged probability of generating > 0.5 toxicity
(“Toxicity prob.”). We also evaluate generation
quality in terms of fluency (perplexity score mea-
sured by a GPT2-large) and diversity (Dist-{1, 2,
3}: the portion of distinct {1, 2, 3}-grams). When
decoding, we use a steering value of 5ϵ0 for gener-
ation, selected based on the balance between gener-
ation fluency and task performance on the dev set
in Appendix E.

Baselines: DExperts (Liu et al., 2021) trains
positive and negative label classifiers and uses the
difference in two classifiers’ scores to offset the
LM’s original logits. DAPT (Gururangan et al.,
2020) simply further pretrains the language model
on the non-toxic subset (filtered by Perspective
API) of OpenWebText Corpus (OWT) (Gokaslan
et al., 2019). PPLM (Dathathri et al.) learns to use
the gradients of the label classifier to update the
LM’s hidden representations. GeDi (Krause et al.,

4https://perspectiveapi.com

16413

https://bit.ly/3cvG5py
https://perspectiveapi.com

Model Backbone Toxicity↓ Fluency Diversity↑
Size Max. toxicity Toxicity prob. Output ppl.↓ Dist-1 Dist-2 Dist-3

GPT-2 (original) 117M 0.527 0.520 25.45 0.58 0.85 0.85

PPLM (10%) 345M 0.520 0.518 32.58 0.58 0.86 0.86
DAPT 117M 0.428 0.360 31.21 0.57 0.84 0.84
GeDi 1.5B 0.363 0.217 60.03 0.62 0.84 0.83
DExpertsbase 117M 0.302 0.118 38.20 0.56 0.82 0.83
DExpertsmedium 345M 0.307 0.125 32.51 0.57 0.84 0.84
DExpertslarge 762M 0.314 0.128 32.41 0.58 0.84 0.84
PromptT5 780M 0.320 0.172 55.1 0.58 0.76 0.70
MuCoLa 762M 0.308 0.088 29.92 0.55 0.82 0.83
LoRA 762M 0.365 0.210 21.11 0.53 0.85 0.86
Soft-Blacklist 762M 0.270 0.154 18.28 0.53 0.81 0.83

LM-Steerbase 117M 0.296±0.018 0.129±0.012 36.87 0.54 0.86 0.86
LM-Steermedium 345M 0.215±0.015 0.059±0.029 43.56 0.56 0.83 0.84
LM-Steerlarge 762M 0.249±0.007 0.089±0.009 28.26 0.55 0.84 0.84

Table 1: On language model detoxification, LM-Steer achieves best performance. ± denotes standard deviation on
3 random seeds.

LM-Steer Tie LoRA LM-Steer Tie GPT-2 LM-Steer Tie DExperts

Detoxified 19.0 69.5 11.5 24.5 56.5 19.0 24.0 56.5 19.5
Fluent 21.0 69.0 10.0 21.0 57.5 21.5 25.0 52.0 23.0
Topical 18.0 69.5 12.5 32.0 47.0 21.0 32.0 56.5 11.5

Table 2: Human evaluation results by comparing with LoRA, GPT-2 and DExperts. LM-Steer wins out on most
metrics while being comparable to GPT-2 on fluency.

2021) is a model that uses the Bayesian rule for
class-conditioned LM generation. MuCoLa (Ku-
mar et al., 2022) models the text generation as
an optimization problem regarding the classifier
scores. PromptT5 (Raffel et al., 2020) T5 is a
pre-trained LM optimized for prompt-based task
solving, and we use “Complete this sentence so
that it embodies a {positive/negative} sentiment:”
to prompt T5. LoRA (Hu et al., 2021a) trains
low-rank approximations of parameter matrices to
achieve parameter-efficient fine-tuning. Finally, we
compare with the soft blacklist baseline discussed
in Section 3.

Results and Analysis: We present the results
in Table 1. Despite the simple design, LM-Steer
achieves the best detoxification scores on both met-
rics, reducing Avg. max. toxicity by > 6% abso-
lute percentages. It is also noteworthy that LM-
Steer also demonstrates reasonable balance on flu-
ency (2nd lowest perplexity score) and diversity
(same-level Dist-k scores with baselines). Figure 3
further shows the detoxification versus baseline
size, where LM-Steer+{GPT2 family, Pythia fam-

ily, GPT-J and Llama-2} uniformly outperforms
baselines where of all sizes, where more numer-
ical results can be found in Appendix J and M.
Incorporation of LM-Steer with LoRA, instruction
following, and full embedding tuning are explored
in Appendix L, N and O, respectively.

Human Evaluation We compare LM-steer with
LoRA, DExperts, and GPT-2 in a pairwise manner
with human annotators. Specifically, we follow the
practice in DExperts and ask four student human
annotators to compare 50 generations from LM-
steer and the baseline from 3 perspectives: detoxi-
fication, fluency, and being topical to the prompt.
The results are as follows. We can see that LM-
steer is ranked significantly less toxic and more
topical than the baseline. It performs similarly to
DExperts and GPT-2 but better than LoRA in terms
of fluency.

4.2 Sentiment Control

We also evaluate LM-Steer’s performance on an ex-
tensively studied generation task controlled by sen-
timent. This ability can be found useful when tailor-

16414

Target Model
Sentiment Positivity / % Fluency Diversity↑

Positive Neutral Negative
Output ppl.↓ Dist-1 Dist-2 Dist-3

prompts prompts prompts

Positive↑

LM-Steerlarge 90.70 41.23 41.20 0.46 0.78 0.83
LM-Steermedium 95.36 56.98 67.68 0.46 0.77 0.80

LM-Steerbase 90.46 57.26 54.38 0.47 0.78 0.81

Soft-Blacklist 86.40 25.64 99.46 0.42 0.76 0.81
LoRA 26.88 7.20 158.56 0.57 0.82 0.83

DExpertslarge 94.46 36.42 45.83 0.56 0.83 0.83
DExpertsmedium 94.31 33.20 43.19 0.56 0.83 0.83
DExpertssmall 94.57 31.64 42.08 0.56 0.83 0.84

DExperts (pos) 79.83 43.80 64.32 0.59 0.86 0.85
GeDi 86.01 26.80 58.41 0.57 0.80 0.79
DAPT 77.24 14.17 30.52 0.56 0.83 0.84

PPLM (10%) 52.68 8.72 142.11 0.62 0.86 0.85
PromptT5 68.12 15.41 37.3 0.58 0.78 0.72

GPT-2 (original) 99.08 50.02 0.00 29.28 0.58 0.84 0.84

Negative↓

PromptT5 69.93 25.78 48.6 0.60 0.78 0.70
PPLM (10%) 89.74 39.05 181.78 0.63 0.87 0.86

DAPT 87.43 33.28 32.86 0.58 0.85 0.84
GeDi 39.57 8.73 84.11 0.63 0.84 0.82

DExperts (neg) 61.67 24.32 65.11 0.60 0.86 0.85
DExpertssmall 45.25 3.85 39.92 0.59 0.85 0.84

DExpertsmedium 40.21 3.79 43.47 0.59 0.85 0.84
DExpertslarge 35.99 3.77 45.91 0.60 0.84 0.83

LoRA 57.71 20.08 192.13 0.55 0.78 0.79
Soft-Blacklist 73.72 14.28 50.95 0.38 0.70 0.76

LM-Steerbase 57.26 10.12 51.37 0.49 0.77 0.79
LM-Steermedium 52.32 7.10 71.48 0.47 0.77 0.79
LM-Steerlarge 54.84 8.02 57.74 0.48 0.78 0.80

Table 3: Results on sentiment control task. The upper half displays a positive control task and requires a higher
positivity score and vice versa for the lower half. LM-Steer gets the best metrics on the positive side and 2nd to 3rd
places on the negative side despite being simpler and smaller. For backbone model sizes, please refer to Table 1.

ing persuasive and emotionally appealing messages
to specific target audiences in marketing or adver-
tising or to create personalized and engaging user
experiences in chatbot systems.

Setting: We follow the setting in (Liu et al.,
2021) and use Stanford Sentiment Treebank (SST-
5) (Socher et al., 2013) as training data, where we
use texts with labels 1∼2 as negative samples, and
those with 4∼5 labels as positive samples. For eval-
uation, we use the HuggingFace’s sentiment classi-
fier (Wolf et al., 2020). The generation prompts are
a subset of the OpenWebText Corpus filtered by the
sentiment analysis classifier. Models are applied on
these prompts 25 times to generate up to 20 tokens.
We then measure the average percentage of posi-

tive generations for each prompt as the “Positivity”
score. Similar to the detoxification task, we use
5ϵ0 for positive sentiment and −5ϵ0 for negative
sentiment control.

Baselines: In addition to the baselines used in
detoxification, two variants of DExperts, DExperts
(pos) and DExperts (neg), which only use one of
the two classifiers for guiding generation, are also
listed.

Results: Table 3 presents the full results. LM-
Steer, despite a much simpler and smaller model,
takes 1st place on the positive side and 2nd or 3rd
place on the negative side and achieves a reasonable
balance on fluency and diversity.

16415

(a) Continuous control on sentiment with ϵ in −5ϵ0 ∼ 5ϵ0
results in a sentiment distribution shift. Color indicates
sentiment and height indicates frequency/density.

(b) Compositional control sentiment ranging in −5ϵ0 ∼
5ϵ0 and toxicity in 0 ∼ 5ϵ0. Color means sentiment and
height is toxicity.

Figure 4: Continuous and compositional control using LM-Steer.

LM-Steer DAPT GeDi CTRL PPLM DExpert MuCoLa LoRA

Parameters 1.6M 355M 355M 355M 124M 355M 898M 18M
Speed Ratio 1.24 1.00 2.94 3.79 270.11 1.98 24.03 1.00

Table 4: Decoding time and learnable parameter efficiency. Time efficiency is measured by relative decoding time
compared to the base language model. The best numbers are bolded.

4.3 Continuous and Compositional Control

The conceptually simple design of LM-Steer makes
it an architecture-agnostic plug-in to diverse lan-
guage models. We demonstrate that LM-Steer
maintains a linearity guarantee, which enables con-
tinuous and compositional control. More specifi-
cally, our model allows for interpolation and extrap-
olation on the steering spectrum by simply interpo-
lating and extrapolating the steering value. More-
over, if two LM-Steers ϵ1W1, ϵ2W2 are learned on
potentially different tasks, their effect can be com-
bined by decoding with Pϵ1W1+ϵ2W2 .

In Figure 4a, we plot the distribution shift when
adjusting sentiment steer ϵ. We also curve the max-
imal likelihood estimated Beta distribution. In Fig-
ure 4b, we observe that LM-Steer can composition-
ally control sentiment and toxicity, even though
there exists a mutual influence between these two
factors (e.g., a negative sentiment might also lead
to more toxic comments). Table 5 also provides an
example of how the generated sentence is continu-
ously steered from toxic to non-toxic, demonstrat-
ing a simple fine-grained control on the toxicity
level. When the steering value increases from neg-
ative to positive, both the number and the intensity

of toxic words (bolded in the table) decrease.

4.4 Efficiency

Thanks to its simple design, LM-Steer enjoys effi-
ciency in multiple perspectives. We vary the detox-
ification dataset size from 30 to 10k and measure
LM-Steer’s performance in Figure 5(b). We see
that as few as 30 data points still enable LM-Steer
to achieve high detoxification scores (0.322). When
dataset size exceeds 3k LM-Steer acquires a good
balance between detoxification and generation qual-
ity. We also show decoding time and parameter
efficiency in Table 4, where our model only uses
1% of the baseline’s learnable parameter size and
uses a low computation overhead during decoding.

5 LM-Steers Connect Word Embeddings
with the Text Distribution

In previous sections, LM-Steer revealed the hidden
biases encoded in the automatically learned word
embeddings of LMs. This section provides an alter-
native perspective, where these hidden biases serve
as a lens for interpreting the connection between
word embeddings and the generation distribution
of LMs. Section 5.1 demonstrates how LM-Steer

16416

0.2

0.275

0.35

0.425

0.5

gpt2 gpt2-medium gpt2-xl gpt-j-6b

Transferred

Avg. Max. Toxicity ()↓
Original
Trained

(124M) (355M) (1.5B) (2.7B)

(a) Transferring an LM-Steer to other LMs with explicit-form
calculation. The transferred LM-Steer maintains the detoxifi-
cation ability partially.

30 100 300 1k 3k 10k full
0.1

1

10

100

1000

0.2

0.28

0.36

Perplexity Toxicity

0.44

0.52

(b) LM-Steer is capable of learning from only dozens of data
samples to achieve decent detoxification. More data are bene-
ficial for fluency.

Figure 5: Measuring the transferability and data efficiency of LM-Steer.

Steer Generation

-5e-3 What moron said that stupid comment.

-3e-3 What’s stupid is stupid, right?

-1e-3 What’s this? You think that your reli-
gion, your culture, your country are not
good enough?

0 What’s more, it makes for a fun, cheap,
and efficient way to improve the perfor-
mance of your car engine and to make
your driving that much safer.

1e-3 What’s more, it makes for a fun, cheap,
and efficient way to improve the perfor-
mance of your car engine and motor.

3e-3 What’s on your mind? What’s on your
mind?

5e-3 What’s on Netflix? If you can’t figure
out what’s being watched on Netflix,
you need to figure out what are people
watching!

Table 5: LM-Steer continuously steers GPT2-Large
generation from toxic to non-toxic when interpolating
and extrapolating the steering value. Both the number
and intensity of toxic words decrease with increased
steering value.

decomposes word embeddings into interpretable
dimensions closely related to word selection in
a particular distribution. Section 5.2 shows that
LM-Steer can highlight indicative words. Finally,
in light of the hypothesis that different LMs have
correlated word embedding spaces, Section 5.3 il-
lustrates how LM-Steer can be transferred between
LMs with an explicit expression.

5.1 Interpreting Word Embeddings
LM-Steer provides a lens on how word embeddings
correlate with LM word embeddings: what word
dimensions contribute to or contrast to a specific
style. In the detoxification experiment, we conduct
an SVD decomposition of the learned W . Among
S, V,D, the D component can be interpreted as a
ranked list of the most “magnified” row dimensions
in the transformation W . We then take its first 9
rows and list the most influenced words in Table 6.
Dimensions 2, 4, and 6 are filtered out as they only
match non-English tokens. Although offensive to
read, this table helps us understand what kind of
words are most related to toxicity and thus sup-
pressed by LM-Steer in a generation. More details
are explained in Appendix G.

5.2 Highlighting Keywords in Styled Texts
LM-Steer also enables automatically pointing out
what specific words are most indicative of the
style in a given sentence. We conjecture that
these distinctive words contribute most to the
likelihood difference between a task-specific LM
and a domain-general LM. In Table 7, we list a
few toxic sentences and the most indicative text
spans highlighted by LM-Steer. To acquire such
text spans, we calculate logPϵW (vi| · · · vi−1) −
logP0(vi| · · · vi−1) which is the difference of log-
likelihoods of each token under steered (PϵW) and
the original language model (P0). Then, we deploy
a dynamic programming algorithm to obtain the
continuous sub-sequence under length 5 with the
highest cumulative difference. We list highlighted
words in toxic prompts in the RealToxicityPrompts
dataset in Table 7, which shows insulting, cursing,
controversial, and sexually explicit words in each
sentence.

16417

Dim. Matched Words

0 mor, bigot, Stupid, retarded, coward, stupid, loser, clown, dumb, Dumb, losers, stupidity,
garbage , idiots, fools, idiot, lame

1 stupid, idiot, Stupid, idiots, jerk, pathetic, suck, buff, stupidity, mor, damn, ignorant, fools,
dumb , disgusting , damned, narcissistic, troll

3 idiot, godd, damn,

5 Balk, lur, looms, hides, shadows, Whites, slippery, winds

7 bullshit, fiat, shit, lies, injust, manipulation

8 disabled, inactive, whip, emo, partisan, spew, bombed, disconnected, gun, failing, Republi-
cans , defeated, Jeb, blowing , bombard, ineffective, reload, destructive, flo, blown

9 winners, upside

Table 6: Word embedding dimensions that are most influenced by LM-Steer on detoxification task.

There’s another controversial Hollywood racial
decision that Stacey Dash is sinking her teeth into.

The UFC champ then suggested Justino is a
longtime PED user with her most d**ning com-
ments.

But I really have a question for you: Why would
I go on a game show and play into the bulls**t
allowing myself to be ranked by some fake com-
petition?

I think sexism prevents this from being a real
win for fat people.

If they want to be fair and non
hypocritical idiots they should.

Table 7: Toxic sentences with toxic keywords high-
lighted by LM-Steer after training detoxification on
GPT2-Large.

5.3 Transfering LM-Steer Between Models

A much-desired property of LM-Steer, because of
its theoretical soundness, is its transferability to
other language models. Details and derivations of
LM-Steer transfer are in Appendix F. Intuitively
speaking, the original logit c⊤ev can be understood
as a similarity or matching metric between context
vector c and word embedding ev. In LM-Steer,
the logit is offset by ϵ times c⊤Wev, which is
also a bilinear similarity. To transform this LM-
Steer to another language model, we need to map
the context vectors and word embeddings between
word embedding spaces ev = He′v

c⊤Wev = (Hc′)⊤W (He′v) = c′⊤(H⊤WH)e′v
(3)

We work by first identifying a linear mapping H
from target LM word embeddings to source LM
word embeddings. Then, the matrix H⊤WH can
be inserted into the target LM as LM-Steer. This is
motivated by prior work on the linear mapping be-
tween word embeddings from different models (Li
et al., 2021). Finally, the calculated steering matrix
is directly applied to the target LM. Figure 5(a)
shows the performance after we transfer the LM-
Steer learned on GPT2-large to LMs of other sizes,
ranging from gpt2 (124M) to GPT-J-6B (6B). We
can see a uniform improvement in transferred LM-
Steers, with GPT2 and GPT2-medium getting sim-
ilar scores (0.307 and 0.308) to the best baseline
(DExperts).

6 Conclusions

In this work, we discover the prevalent phe-
nomenon of word embeddings containing steers for
language model generation. We demonstrate the
promise and efficacy of LM-Steer, a theoretically
grounded, simple, and lightweight approach for the
steering of generative language models. LM-Steer
can model various styles and achieve comparable
or superior performance to baselines in language
model detoxification and generation control. LM-
Steer also allows for continuous and compositional
control and can be transferred to other language
models. More importantly, it provides an inter-
pretation of how word embeddings interplay with
language model generation. So far, we have only
studied output word embeddings, so it is intriguing
to ask whether similar phenomena apply to other
components, such as input word embeddings and
hidden layers.

16418

Limitations

One limitation of LM-Steer is that it works on word
embeddings and focuses on conditions related to
wording. This restricts its capability to deal with
more complex tasks, such as syntactic trees or per-
suasive techniques that involve logical reasoning.
Additionally, our model is dependent on word em-
beddings, so the model cannot work with language
model APIs that do not provide direct access to
these embeddings.

Acknowledgement

This research is partially supported by U.S.
DARPA KAIROS Program No. FA8750-
19-2-1004, DARPA INCAS Program No.
HR001121C0165, U.S. DARPA SemaFor Pro-
gram No. HR001120C0123, DARPA MIPs
Program No. HR00112290105, and DARPA ITM
Program No. FA8650-23-C-7316. The views
and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, of DARPA or the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes,
notwithstanding any copyright annotation therein.

References
Carl Allen and Timothy Hospedales. 2019. Analogies

explained: Towards understanding word embeddings.
In International Conference on Machine Learning,
pages 223–231. PMLR.

Soumya Barikeri, Anne Lauscher, Ivan Vulić, and Goran
Glavaš. 2021. RedditBias: A real-world resource for
bias evaluation and debiasing of conversational lan-
guage models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1941–1955, Online. Association for
Computational Linguistics.

Leonard E Baum, Ted Petrie, George Soules, and Nor-
man Weiss. 1970. A maximization technique occur-
ring in the statistical analysis of probabilistic func-
tions of markov chains. The annals of mathematical
statistics, 41(1):164–171.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar van der Wal. 2023. Pythia:
A suite for analyzing large language models across
training and scaling.

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016. Man is
to computer programmer as woman is to homemaker?
debiasing word embeddings.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan
Boyd-Graber, and David Blei. 2009. Reading tea
leaves: How humans interpret topic models. Ad-
vances in neural information processing systems, 22.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. Plug and play language models: A
simple approach to controlled text generation. In In-
ternational Conference on Learning Representations.

Emily Dinan, Angela Fan, Adina Williams, Jack Ur-
banek, Douwe Kiela, and Jason Weston. 2020.
Queens are powerful too: Mitigating gender bias in
dialogue generation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8173–8188, Online. As-
sociation for Computational Linguistics.

Kawin Ethayarajh. 2019. Rotate king to get queen:
Word relationships as orthogonal transformations in
embedding space. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3503–3508.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris
Dyer, Eduard Hovy, and Noah A Smith. 2014.
Retrofitting word vectors to semantic lexicons. arXiv
preprint arXiv:1411.4166.

Yi Fung, Tuhin Chakrabarty, Hao Guo, Owen Rambow,
Smaranda Muresan, and Heng Ji. 2023. NORM-
SAGE: Multi-lingual multi-cultural norm discovery
from conversations on-the-fly. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 15217–15230, Singa-
pore. Association for Computational Linguistics.

Yi Fung, Ruining Zhao, Jae Doo, Chenkai Sun, and
Heng Ji. 2024. Massively multi-cultural knowledge
acquisition & lm benchmarking.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. 2020. Realtoxici-
typrompts: Evaluating neural toxic degeneration in
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick,
and Stefanie Tellex. 2019. Openwebtext cor-
pus (2019). URL http://Skylion007. github.
io/OpenWebTextCorpus.

16419

https://doi.org/10.18653/v1/2021.acl-long.151
https://doi.org/10.18653/v1/2021.acl-long.151
https://doi.org/10.18653/v1/2021.acl-long.151
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/2023.emnlp-main.941
https://doi.org/10.18653/v1/2023.emnlp-main.941
https://doi.org/10.18653/v1/2023.emnlp-main.941
http://arxiv.org/abs/2402.09369
http://arxiv.org/abs/2402.09369

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

John Hewitt, John Thickstun, Christopher Manning, and
Percy Liang. 2023. Backpack language models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9103–9125, Toronto, Canada.
Association for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. The curious case of neural text degen-
eration. In International Conference on Learning
Representations.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021a. Lora: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Xiaodan Hu, Pengfei Yu, Kevin Knight, Heng Ji, Bo Li,
and Honghui Shi. 2021b. Muse: Textual attributes
guided portrait painting generation. In Prof. The
3rd IEEE Workshop on Artificial Intelligence for Art
Creation.

Ali Jahanian, Lucy Chai, and Phillip Isola. On the"
steerability" of generative adversarial networks. In
International Conference on Learning Representa-
tions.

Kyoung-Rok Jang and Sung-Hyon Myaeng. 2017. Elu-
cidating conceptual properties from word embed-
dings. In Proceedings of the 1st Workshop on Sense,
Concept and Entity Representations and their Appli-
cations, pages 91–95.

Masahiro Kaneko and Danushka Bollegala. 2021. De-
biasing pre-trained contextualised embeddings. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1256–1266, Online.
Association for Computational Linguistics.

Masahiro Kaneko, Danushka Bollegala, and Naoaki
Okazaki. 2022. Debiasing isn’t enough! – on the
effectiveness of debiasing MLMs and their social
biases in downstream tasks. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 1299–1310, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. In Advances in Neu-
ral Information Processing Systems.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. Gedi: Genera-
tive discriminator guided sequence generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929–4952.

Sachin Kumar, Eric Malmi, Aliaksei Severyn, and Yu-
lia Tsvetkov. 2021. Controlled text generation as
continuous optimization with multiple constraints.
Advances in Neural Information Processing Systems,
34:14542–14554.

Sachin Kumar, Biswajit Paria, and Yulia Tsvetkov. 2022.
Gradient-based constrained sampling from language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 2251–2277.

Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. 2023.
Platypus: Quick, cheap, and powerful refinement of
llms. arXiv preprint arXiv:2308.07317.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to senti-
ment and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874.

Sha Li, Chi Han, Pengfei Yu, Carl Edwards, Manling Li,
Xingyao Wang, Yi Fung, Charles Yu, Joel Tetreault,
Eduard Hovy, and Heng Ji. 2023a. Defining a new
NLP playground. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
11932–11951, Singapore. Association for Computa-
tional Linguistics.

Sha Li, Ruining Zhao, Manling Li, Heng Ji, Chris
Callison-Burch, and Jiawei Han. 2023b. Open-
domain hierarchical event schema induction by incre-
mental prompting and verification. In Proc. The 61st
Annual Meeting of the Association for Computational
Linguistics (ACL2023).

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Yuling Li, Kui Yu, and Yuhong Zhang. 2021. Learn-
ing cross-lingual mappings in imperfectly isomor-
phic embedding spaces. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:2630–
2642.

Paul Pu Liang, Irene Mengze Li, Emily Zheng,
Yao Chong Lim, Ruslan Salakhutdinov, and Louis-
Philippe Morency. 2020. Towards debiasing sentence
representations. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5502–5515, Online. Association for
Computational Linguistics.

16420

https://doi.org/10.18653/v1/2023.acl-long.506
https://doi.org/10.18653/v1/2021.eacl-main.107
https://doi.org/10.18653/v1/2021.eacl-main.107
https://aclanthology.org/2022.coling-1.111
https://aclanthology.org/2022.coling-1.111
https://aclanthology.org/2022.coling-1.111
https://doi.org/10.18653/v1/2023.findings-emnlp.799
https://doi.org/10.18653/v1/2023.findings-emnlp.799
https://doi.org/10.18653/v1/2020.acl-main.488
https://doi.org/10.18653/v1/2020.acl-main.488

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021. Dexperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6691–6706.

Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior research methods, instruments,
& computers, 28(2):203–208.

Nicholas Meade, Elinor Poole-Dayan, and Siva Reddy.
2022. An Empirical Survey of the Effectiveness of
Debiasing Techniques for Pre-trained Language Mod-
els. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1878–1898, Dublin, Ireland.
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Brian Murphy, Partha Talukdar, and Tom Mitchell. 2012.
Learning effective and interpretable semantic models
using non-negative sparse embedding. In Proceed-
ings of COLING 2012, pages 1933–1950.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for
Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R. Bowman. 2020. CrowS-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1953–1967, Online. As-
sociation for Computational Linguistics.

Ali Omrani, Alireza Salkhordeh Ziabari, Charles Yu,
Preni Golazizian, Brendan Kennedy, Mohammad
Atari, Heng Ji, and Morteza Dehghani. 2023. Social-
group-agnostic bias mitigation via the stereotype
content model. In Proc. The 61st Annual Meet-
ing of the Association for Computational Linguistics
(ACL2023).

OpenAI. 2023. Gpt-4 technical report.

Abhishek Panigrahi, Harsha Vardhan Simhadri, and Chi-
ranjib Bhattacharyya. 2019. Word2Sense: Sparse
interpretable word embeddings. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5692–5705, Florence,
Italy. Association for Computational Linguistics.

Sungjoon Park, JinYeong Bak, and Alice Oh. 2017.
Rotated word vector representations and their inter-
pretability. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 401–411, Copenhagen, Denmark. Associ-
ation for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237–7256, Online. Association for Computational
Linguistics.

Sascha Rothe and Hinrich Schütze. 2016. Word em-
bedding calculus in meaningful ultradense subspaces.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 512–517.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-Diagnosis and Self-Debiasing: A Proposal for
Reducing Corpus-Based Bias in NLP. Transactions
of the Association for Computational Linguistics,
9:1408–1424.

Lütfi Kerem Şenel, Furkan Şahinuç, Veysel Yücesoy,
Hinrich Schütze, Tolga Çukur, and Aykut Koç. 2022.
Learning interpretable word embeddings via bidi-
rectional alignment of dimensions with semantic
concepts. Information Processing & Management,
59(3):102925.

Lütfi Kerem Şenel, Ihsan Utlu, Veysel Yücesoy, Aykut
Koc, and Tolga Cukur. 2018. Semantic structure
and interpretability of word embeddings. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 26(10):1769–1779.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and
Nanyun Peng. 2019. The woman worked as a babysit-
ter: On biases in language generation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3407–3412.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and

16421

https://doi.org/10.18653/v1/2022.acl-long.132
https://doi.org/10.18653/v1/2022.acl-long.132
https://doi.org/10.18653/v1/2022.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/P19-1570
https://doi.org/10.18653/v1/P19-1570
https://doi.org/10.18653/v1/D17-1041
https://doi.org/10.18653/v1/D17-1041
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434

Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Nishant Subramani, Nivedita Suresh, and Matthew E
Peters. 2022. Extracting latent steering vectors from
pretrained language models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 566–581.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beutel,
Emily Pitler, Ellie Pavlick, Jilin Chen, Ed Chi, and
Slav Petrov. 2021. Measuring and reducing gendered
correlations in pre-trained models.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Ke Yang, Charles Yu, Yi Fung, Manling Li, and Heng
Ji. 2023. Adept: A debiasing prompt framework. In
Proc. Thirty-Seventh AAAI Conference on Artificial
Intelligence (AAAI2023).

Kevin Yang and Dan Klein. 2021. Fudge: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535.

Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu,
and Heng Ji. 2023. Unlearning bias in language
models by partitioning gradients. In Proc. The 61st
Annual Meeting of the Association for Computational
Linguistics (ACL2023) Findings.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan
Wilcox, Ryan Cotterell, and Mrinmaya Sachan. 2023.
Controlled text generation with natural language in-
structions. arXiv preprint arXiv:2304.14293.

A Broader Impacts

The intended use of this work is to contribute to ad-
vancements in fine-grained and efficient control of
language generation in AI, with experiments shown
on sentiment modulation, political stance adjust-
ment, and language detoxification. We do not aim
to create a tool for manipulating public opinion or
promoting specific political ideologies, but instead
to provide methods for enhancing the reasoning
interpretability, and safety of AI language models.
Our techniques offer the potential for fine-tuned
sentiment adjustment and toxic content mitigation,
thereby contributing to more reliable, unbiased, and
respectful language generation systems. We would
like to emphasize that on the problem of language
model toxicity, we limit our model to modeling
detoxification only. This encourages positive and
socially beneficial usage of our model as well as
general language models.

B Formal Statement of Theorem 1

Hidden Markov Models (HMMs) (Baum et al.,
1970) is a widely used framework for analyzing dis-
crete stochastic processes. Because of its general-
ity (modeling arbitrary distributions), intuitiveness,
and interpretability (containing a structured state
space), it has long been used as a primary choice
when modeling language distribution. is a discrete
stochastic process with a set of n states S and a set
of m observations or emissions O, with arbitrary
indexing of S and O. The time step t = 0 dis-
tribution is determined by initial state distribution
s0 ∼ π. For each later time step t ≥ 1, the state
transition probabilities are represented by a matrix
T, where T (s, s′) = P (st+1 = s′|st = s) denotes
the probability of transitioning from state s to state
s′. At each time step one observation ot is emit-
ted, with the emission probabilities represented by
a matrix B, with B(s, o) = P (ot = o|st = s).
A sequence of observations can be denoted as
o = {o1, o2, . . . , oT }. The probability distribution
over sequences o then follows formula:

P (o1, · · · , oT ;π)

= π⊤
(

T−1∏

t=0

diag(p(ot))T

)
p(oT), (4)

where p(o) is a |S|-dim vector indicating P (o | s)
for all states s ∈ S.

16422

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
http://arxiv.org/abs/2010.06032
http://arxiv.org/abs/2010.06032

Language Models In generative language mod-
els, the sequence is generated word-by-word by
a conditional probability P (ot | o1, · · · , ot−1).
The common technique to model this probability
is to first calculate the inner product between a
contextual vector c(o1, · · · , ot−1) and word em-
beddings E = (eo, · · ·) ∈ Rd×|O|, namely, l =
c(o1, · · · , ot−1)

⊤E. Here, l is known as the word
logits, which then usually passes through a soft-
max operator to get a distribution over words. For
simplicity of analysis, in this work, we assume a
linear formulation and let conditional probability
P (ot|o1, · · · , ot−1) = c(o1, · · · , ot−1)

⊤eot . By
the chain rule, multiplying the conditional probabil-
ities will give us the full probability:

∏T
t=1 P (ot |

o1, · · · , ot−1) = P (o1, · · · , oT). We are then in-
terested in the situation where a language model is
good enough to represent an equivalent distribution
with HMM.

In this study, we aim to model the influence
of conditions in text generation. This section de-
scribes how we incorporate conditions in HMMs.
Conventionally, people assume a d-dimensional
state representation ϕs for every state s, and d-
dimensional ψo for each observation o, so that they
can compute the probabilities T (s, s′) = ϕ⊤s Aϕ

′
s,

B(s, o) = ϕ⊤s ψo and π(s) = ϕ⊤π ϕs for some ϕπ.
We also use matrices Φ,Ψ to denote the stacked
representations Φ = (ϕs|s ∈ S),Ψ = (ψo|o ∈ O).
Here we introduce an additional condition compo-
nent in state representations, so that ϕs can be par-

titioned into two sub-vectors: ϕs =
(
ϕs,semantic
ϕs,condition

)
.

Here ϕs,semantic ∈ Rds represents the ds-dim se-
mantic information, and ϕs,condition ∈ Rdc the dc-
dim condition information related to state s. Then
we assume that the transition probability T (s, s′)
comes from both semantic relations and condi-
tional similarities between s′ and s: T (s, s′) =
ϕ⊤s,semanticA

′ϕs′,semantic + ϕ⊤s,conditionϕs′,condition.
We also make the following assumptions regard-

ing the state representations:

Assumption 1. State representations ϕ also satisfy
the following properties:

1. Values for each dimension are uniformly nor-
malized to a constant: ∀i ∈ [1..d],

∑
s∈S ϕ

2
s,i =

C.
2. Dimensions are linearly independent: ∀i, j ∈

[1..d] and i ̸= j,
∑

h∈H ϕh,iϕh,j = 0.
3. Dimensions are also conditionally indepen-

dent: if i, j ∈ [1..d], k ∈ [ds + 1..d] are not all the

same,
∑

s∈S ϕs,iϕs,jϕs,k = 0.

The validity of the assumption is discussed in
Appendix H. Then, we present the result below,
revealing that shifting between conditions is equiv-
alent to a linear transformation in word embedding
space.

Theorem 2. Assume assumption 1 holds. Suppose
there are two initial distributions π = ϕ⊤πΦ, π

′ =
ϕ⊤π′Φ, so that ϕπ and ϕπ′ only differ in their
condition-parts: ϕπ,semantic = ϕπ′,semantic. Also,
suppose the elements in ϕπ,condition are non-zero.
Then there exists a matrix W so that, by trans-
forming word embeddings from E to WE, the
LM which originally simulates the text distribu-
tion starting with π will now turn to be equivalent
to a distribution initiating from π′.

C Formal Statement and Proof of
Theorem 2

To prove Theorem 2, we start by claiming a con-
struction of matrix W . Then we prove that when
assumptions 1 hold, W can change each condi-
tional likelihood function from p(vi | o1, ·, oi−1, π)
to p(vi | o1, ·, oi−1, π

′) up to a constant factor. Fi-
nally, by chaining the conditional likelihoods, we
see that W can change the sentence-level probabil-
ity distribution of the HMM from π-initialization
to π′-initialization.

Assuming full column-rank for E and p(o), we
have the following connection between LM and
HMM:

Proposition 1. There exist projection matrices R1

and R2 so that R⊤
1 R2 = In and

c(o1, · · · , ot−1)
⊤

=


 π⊤

∏t−1
t′=1 diag(p(o′t))T

π⊤
(∏t−2

t′=1 diag(p(o′t))T
)
p(ot−1)


R⊤

1 ,

eo = R2p(o).

We first construct a helper matrix W ′ =(
Ids 0
0 Λ

)
so that Λ is diagonal and W ′ϕinit =

ϕ′init. Such a solution exists as we assume
ϕinit,condition contains only non-zero values. Then,
we can construct the matrix W as W =
R+

1 Φ
⊤W ′ΦR+

2
⊤, where R+

1 , R
+
2 are pseudo-

inverse matrices of R1, R2, respectively.

Lemma 3. TΦ⊤W ′Φ = Φ⊤W ′ΦT .

16423

Proof. First, it is easy to see that, by Assump-
tion 1.1 and Assumption 1.2, the representation
matrix Φ is row-orthonormal to constant C2:

ΦΦT = C2Id

.

Then we have the following proof:

TΦ⊤W ′Φ =Φ⊤
(
Ts 0
0 Idc

)
ΦΦ⊤W ′Φ

=C2Φ
⊤
(
Ts 0
0 Idc

)(
Ids 0
0 Λ

)
Φ

=C2Φ
⊤
(
Ts 0
0 Λ

)
Φ

=C2Φ
⊤
(
Ids 0
0 Λ

)(
Ts 0
0 Idc

)
Φ

=Φ⊤W ′ΦΦ⊤
(
Ts 0
0 Idc

)
Φ

=W ′T

Lemma 4. ∀v ∈ V , we have that,
Φdiag(p(o))Φ⊤W ′Φ =W ′Φdiag(p(o)).

Proof. To prove this, we first prove that

Φdiag(p(o))Φ⊤ has the form
(
A 0
0 Λ′

)
, where

Λ′ is also diagonal. This is equivalent to say-
ing that, for any two one-hot vectors e(i), e(j),
if i ∈ [ds + 1..d] or j ∈ [ds + 1..d], then

e⊤i Φ diag(p(o))Φe⊤j

=
∑

h∈H
ϕh,iϕh,jp(v | h) = fv(i, j)1(i = j). (5)

For any i ̸= j,
∑

h∈H
ϕh,iϕh,jp(v | h)

=
∑

h∈H
ϕh,iϕh,j

∑

k∈[1..d]
ϕh,kθv, k

=
∑

k∈[1..d]
θv, k

∑

h∈H
ϕh,iϕh,jϕh,k

=
∑

k ̸∈{i,j}
θv,k

∑

h∈H
ϕh,iϕh,jϕh,k

+ θv,i
∑

h∈H
ϕ2h,iϕh,j

+ θv,j
∑

h∈H
ϕh,iϕ

2
h,j

(Asm. 1.3) =0 + θv,i
∑

h∈H
ϕh,iϕh,j

(Asm. 1.2) =0 + 0

=0

We then have the following:

Φdiag(p(o))Φ⊤W ′Φ

=

(
A 0
0 Λ′

)
W ′Φ

=

(
A 0
0 Λ′Λ

)
Φ

=W ′
(
A 0
0 Λ′

)
Φ

=W ′ΦΦ⊤
(
A 0
0 Λ′

)
Φ

=W ′Φdiag(p(o))

By combining Lemma 3 and 4, we have the
following lemma:
Lemma 5.

Tdiag(p(o))Φ⊤W ′Φ = Φ⊤W ′ΦTdiag(p(o))

Proof.

Tdiag(p(o))Φ⊤W ′Φ

=Φ⊤
(
Ts 0
0 Idc

)
Φdiag(p(o))Φ⊤W ′Φ

=Φ⊤
(
Ts 0
0 Idc

)
W ′Φdiag(p(o))

=Φ⊤W ′ΦTdiag(p(o))

16424

Finally, when we apply Lemma 3 and 5 to the
language model formulation, we can see that the
conditional likelihood function has been steered to:

pW (vi | o1, · · · , oi−1;π)

=c(o1, · · · , oi−1;π)WE

=
π⊤Tdiag(o1)T · · ·Tdiag(oi−1)TR

⊤
1

π⊤Tdiag(o1)T · · ·Tp(oi−1)
WR2PO

=
π⊤Tdiag(o1)T · · ·Tdiag(oi−1)TΦ

⊤W ′Φ
π⊤Tdiag(o1)T · · ·Tp(oi−1)

PO

(Lemma 3)

=
π⊤Tdiag(o1)T · · ·Tdiag(oi−1)Φ

⊤W ′ΦT
π⊤Tdiag(o1)T · · ·Tp(oi−1)

PO

(by Lemma 5)

=
πΦ⊤W ′Φ⊤Tdiag(o1)T · · ·Tdiag(oi−1)T

π⊤Tdiag(o1)T · · ·Tp(oi−1)
PO

=
ϕinitW

′ΦTdiag(o1)T · · ·Tdiag(oi−1)T

π⊤Tdiag(o1)T · · ·Tp(oi−1)
PO

=
ϕ′initΦTdiag(o1)T · · ·Tdiag(oi−1)T

π⊤Tdiag(o1)T · · ·Tp(oi−1)
PO

(by definition)

=
π′Tdiag(o1)T · · ·Tdiag(oi−1)T

π⊤Tdiag(o1)T · · ·Tp(oi−1)
PO

∝ c(o1, · · · , oi−1;π
′)E

=p(oi | o1, · · · , oi−1;π
′)

Therefore, the steered conditional likelihood is
equivalent to an HMM initiating from π′ (up to
a normalization constant over vocabulary O). By
chaining the conditional likelihood functions, it is
easy to see that the actual output sequence distribu-
tion is now:

pW,normalized(o1, · · · , oL;π)

=
L∏

i=1

normalizeO(pW (vi | o1, · · · , oi−1;π))

=
L∏

i=1

p(oi | o1, · · · , oi−1;π
′)

=p(o1, · · · , oL;π′)

This concludes our proof to Theorem 2.

D Implementation Details

In this paper, we leverage the HuggingFace pack-
age5 and its model checkpoints. To implement LM-
Steer, we simply wrap the self.forward func-
tion of language model transformer’s lm_head,
and inject the computation formula of LM-Steer.
In specific, the token logits are replaced w ith
c⊤(I + ϵW)eo, we change the computation order
and first compute c′ = c + ϵWc), then compute
c′⊤eo. We find that this increases computational ef-
ficiency in practice and avoids the problem caused
by many Transformers sharing input and output
word embedding parameters in storage. Another
trick we applied in experiments is that, as there is a
systematical distribution shift between pre-training
corpus and domain-specific dataset (such as detoxi-
fication dataset and reviews), we add one “dummy”
steer Wdummy to fill this overall distribution gap.
Therefore, for positive label training, we use model
Pϵ0(W+Wdummy), and for negative label training, we
use model Pϵ0(−W+Wdummy). This is where the 3M
parameters come from in Table 4.

For optimization, we use Adam opti-
mizer (Kingma and Ba, 2014) with a 1e-2
learning rate and train for 1k steps. The steer ma-
trix W is initialized with a Gaussian distribution of
0 mean and 1e-3 variance. Across all experiments,
we run three initial seeds of 0, 1, and 2 for training.
When required to generate 25 sentences on each
prompt, we use random seeds 0, 1, 2, ..., 24. Our
hardware is one single Tesla V-100 GPU with
16GB CUDA memory.

E Hyperparameter Selection

We select the decoding hyper-parameter based on a
balance of task performance and generation quality
on the detoxification task’s dev set. The scores are
listed in the table below.

When gradually increasing the steering value,
the detoxification success rate increases while gen-
eration fluency decreases. To better balance the two
ends, we select 5ϵ0 for downstream evaluation, as
it does not compromise perplexity too much while
achieving decent task performance.

F Details of Transferring LM-Steer to
Other Language Models

To transfer an LM-Steer from one LM M1 to an-
other LM M2, we notice that LM-Steer essentially

5https://huggingface.co

16425

https://huggingface.co

steering value ϵ Toxicity↓ Fluency↓ Diversity↑
Avg. max. toxicity Toxicity prob. Output ppl. Dist-1 Dist-2 Dist-3

GPT-2 (original) 0.527 0.520 25.45 0.58 0.85 0.85
MuCoLa 0.308 0.088 29.92 0.55 0.82 0.83

LM-Steer (ϵ0) 0.542 0.560 24.20 0.54 0.85 0.86
LM-Steer (2ϵ0) 0.473 0.388 24.54 0.54 0.84 0.85
LM-Steer (3ϵ0) 0.419 0.278 24.83 0.54 0.84 0.85
LM-Steer (4ϵ0) 0.393 0.232 25.43 0.54 0.83 0.84
LM-Steer (5ϵ0) 0.370 0.198 26.37 0.54 0.83 0.84
LM-Steer (6ϵ0) 0.343 0.172 27.53 0.54 0.82 0.83
LM-Steer (7ϵ0) 0.320 0.138 29.12 0.54 0.81 0.82
LM-Steer (8ϵ0) 0.306 0.118 31.32 0.54 0.80 0.81

Table 8: Results on language model detoxification task dev set by selecting different steering value ϵ.

adds one term c⊤Weo to the logits, where both c
and eo can be viewed as residing in word embed-
ding space. Therefore, W can be considered as a
similarity matrix in M1’s word embedding space.
To use W in M2, we propose to map M2’s word
embedding space to that of M1 before using W as
usual. The process works in 2 steps.

First, we identify a linear mapping from W2 to
W1’s word embedding space. We start with build-
ing a list of anchor words. Specifically, we select
the top 4k words shared by both vocabularies. We
denote the token embedding matrices as E′

1, E
′
2

respectively. Then, we initialize a mapping H with
a Gaussian distribution of 1e-3 initial variance, and
we apply Adam optimizer 0.01 learning rate for
5k steps. Secondly, After acquiring the mapping
matrix H , we map both the context and embedding
vectors to Hc and Heo, respectively. So the addi-
tive term for LM M2 is now c⊤H⊤WHeo, which
is equivalent to using a steer matrix H⊤WH for
the LM M2.

This mapping process is not precise, as word
embeddings between LMS are not linearly asso-
ciated. So we observe an increased instability in
generation if we use large ϵ. Therefore, we reduce
the steering value to 0.1 of its original scale, 0.5ϵ0
for generation. This is the setting for getting results
in Figure 5a.

G Details of Investigating Interpretability

In Section 5.1, we interpret the weights learned in
LM-Steer and list discovered keywords in Table 6.
A detailed description of getting these results is as
follows. First, we conduct SVD decomposition of
steer matrix W . The resulting D matrix can then

be interpreted as a ranked list of significant row
vectors. We take the first 9 rows and compute their
dot products with word embeddings. As the row
vector does not tell us which of the 2 directions indi-
cates an increased probability, we select 20 tokens
with top dot product and 20 tokens with bottom dot
product as two candidate groups. Each group is
concatenated to a text sequence and passed to Per-
spective API, and the group with a larger toxicity
value is considered true “keywords”. If, however,
Perspective API recognizes the language as not En-
glish, which happened to rows No. 2, 4, and 6, then
we discard this row as they contain mostly symbols
and non-English words. Finally, we filter out suffix
tokens, and the remaining keywords are listed in
Table 6.

H Validity of Assumptions

To verify the validity of the assumptions, we did
an experiment for searching for valid HMMs while
satisfying the assumption 1. It is trivial to con-
struct valid Ψ as long as a valid Φ can be found.
So specifically, we set ds = 20 and dc = 1 to rep-
resent a one-conditional HMM. We let n = 200
and randomly initialized Φ with Gaussian distri-
bution with variance 1e-3. Then we construct the
following objective function

L = Lnorm + Ldist + Lindependence + Lconditional,

16426

where

Lnorm =
∑

i

(
∑

s∈S
ϕ2s,i −

1

dn

∑

s∈S,i′
ϕ2s,i′)

2

Ldist =
∑

s,s′
max(−T (s, s′), 0)

+
∑

s

(
∑

s′
T (s, s′)− 1)2

Lindependence =
∑

i ̸=j

(
∑

s

ϕs,iϕs,j)
2

Lconditional =
∑

i,j,knot one value,k∈[dc+1,d]

+ (
∑

s

ϕs,iϕs,jϕs,k)
2

Generally, this objection characterizes the deriva-
tion of Φ from the assumptions. We use Adam
optimizer with learning rate 1e-3, and ReduceL-
ROnPlateau 6 with patience 100 and reduce factor
0.5. The optimization process lasts 500k steps,
starting from random seeds 0, 1, 2, and 3. On all
random seeds, the objective function reduces from
greater than 1 to less than 1e-5. This indicates that
valid HMM solutions satisfy the assumption.

I Comparison with A (Soft) Word
Blacklist

First, we explain that a control vector is equivalent
to a SWB. This is because by adding a vector to
context c′ = c + ϵw, we are equivalently adding
a logit bias to each word: c′⊤E = c⊤E + ϵw⊤E,
where w⊤E is the static logit bias vector for each
word. Then we point out that theoretically, LM-
Steer is more expressive in representing sequence
distributions than them, since LM-Steer’s formu-
lation c⊤(I + ϵW)E can let different words be
preferred in different contexts c. Theoretically,
there exists a LM-Steer for steering between any
two finite-length distributions (with proof below).
SWB cannot achieve this (a counterexample be-
low). Intuitively speaking, a blacklist or whitelist
uniformly applied at all positions cannot possibly
achieve flexible control over the complex language
distribution without hurting the generation quality.

I.1 Formal statement of the universality of
LM-Steer

Let D1 and D2 be two finite-length finite-
vocabulary sequence distributions, there exists a

6https://pytorch.org/docs/stable/generated/
torch.optim.lr_scheduler.ReduceLROnPlateau.html

context vector function c(o1, o2, · · · , oi), a word
embedding E and a matrix W so that an LM-Steer
with −W and +W represents distribution D1 and
D2 respectively.

Proof. We prove the existence by construction.
Let I(o1, o2, · · · , oi) ∈ N be an arbitrary indexing
function for all subsequences. With bounded
subsequence length, I values are also bounded
by a number d. We let c(o1, · · · , oi) =∑

o onehot(I(o1, o2, · · · , oi, o)) ∈ Rd.
For each token o, the word embeddings
is eo such that, for any subsequence
(o1, o2, · · · , oi), eo[I(o1, o2, · · · , oi, o))] =
(D1+D2)(o|o1,o2,··· ,oi)

2 . Then W is as fol-
lows: for any (o1, o2, · · · , oi) and token o,
W [I(o1, o2, · · · , oi, o), I(o1, o2, · · · , oi, o)] =
(D2−D1)(o|o1,o2,··· ,oi)
(D1+D2)(o|o1,o2,··· ,oi) . It is diagonal. We omit
verification due to space limits.

I.2 3.2 Construction of a counterexample for
SWB

Let D1 be a one-point distribution on sequence
“AB”, and D2 be a uniform distribution on se-
quences “BA”, “AB”. For any language model rep-
resenting D1, there does not exist an SWB that can
convert the language model into D2. Verification
of this counterexample is trivial, and we omit it due
to space limits.

J Results of LM-Steer on Pythia Family

Pythia 7 is a family of causal language models de-
veloped by EleutherAI. Raining in size from 14M
to 2.8B, these models provide an excellent testbed
for evaluating the effect of language model sizes.
The table below shows the performance of LM-
Steer applied to the Pythia language models. We
can see a trend of better fluency but decreasing
detoxification when the model size increases, in-
dicating a greater controlling difficulty and better
base quality of larger language models.

K LoRA Configuration

Thanks for suggesting a more comprehensive eval-
uation. We use the Huggingface Transformers’ de-
fault implementation of LoRA on GPT-2-large to
align with standard practices in the field and com-
pare with our method. To test the effect of config-
urations, we iterate the LoRA rank over 8, 16, 32,
and 64. Following the practice of (Lee et al., 2023),

7https://github.com/EleutherAI/pythia

16427

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://github.com/EleutherAI/pythia

Model Toxicity↓ Fluency Diversity↑
Max. toxicity Toxicity prob. Output ppl.↓ Dist-1 Dist-2 Dist-3

Pythia-14M 0.208 0.04 85.67 0.50 0.84 0.86
Pythia-70M 0.213 0.06 54.84 0.55 0.86 0.87
Pythia-160M 0.223 0.07 35.24 0.54 0.86 0.87
Pythia-410M 0.255 0.13 36.71 0.58 0.86 0.86
Pythia-1B 0.286 0.17 31.34 0.56 0.85 0.86
Pythia-1.4B 0.289 0.15 31.63 0.58 0.86 0.86
Pythia-2.8B 0.328 0.17 32.90 0.51 0.81 0.85

Table 9: Language model detoxification results of LM-Steer with Pythia

we set the alpha scalar equal to the rank. We report
LoRA’s performance below.

L Incorporating in LoRA

Thanks to its theoretical foundations, LM-Steer
is orthogonal to other methods and is intuitively
compostable with other control methods. As an
example study, we select LoRA to combine with
LM-Steer on detoxification with GPT2-large as the
backbone. The result is as follows. Combining
LoRA with LM-Steer produces a better detoxifica-
tion score than LoRA alone (although not as good
as LM-Steer alone), at the cost of a degraded qual-
ity score.

M Results on GPT-J-6B

We go on and evaluate LM-Steer on GPT-J-6B
model. We use the same evaluation setup as in the
main body. The results are shown in Table 12. We
observe that LM-Steer is able to reduce the toxicity
of the generations while maintaining the perplexity
and the fluency of the generations. We also observe
that the diversity of the generations is not affected
by LM-Steer.

N Effect of LM-Steer on Instruction
Following

We study the effect of LM-Steer on the LMs’ per-
formance under prompts. For prompts, we let Chat-
GPT write 10 strongly positively biased prompts in
Table 13. Then, we let GPT-J generate 25 tokens
under instructions (i.e., prompting) and compare
its generation with and without LM-Steer.

We see that LM-Steer can still steer generation
even under a positive prompt while maintaining
generation fluency. Without LM-Steer, the sen-
timent is 94.00. With a positive LM-Steer, the

average sentiment increases to 97.20. With nega-
tive LM-Steer steering, the average sentiment de-
creases significantly to 82.80. Example generation
are listed in Table 14 and 15.

O Embedding Tuning

We also consider the possibility of tuning the word
embeddings of the backbone model. We use the
same training procedure as LM-Steer, but instead
of tuning the last layer, we tune the word embed-
dings. We use the same hyperparameters as LM-
Steer. The results are shown in Table 16. We
observe that the performance is comparable to Soft-
Blacklist, but is still inferior to LM-Steer. We be-
lieve that this is because the word embeddings are
shared across all the layers, and tuning the word
embeddings may cause the model to forget the
knowledge learned from the pre-training. We will
leave the investigation of this direction for future
work. Embedding-tuning is also more expensive
than LM-Steer, as it requires tuning the word em-
beddings for the entire vocabulary, while LM-Steer
only requires tuning the last layer.

16428

LoRA rank Max. Toxicity Toxicity prob. ppl. Dist-1 Dist-2 Dist-3

8 0.362 0.257 23.83 0.532 0.839 0.852
16 0.365 0.210 21.11 0.534 0.845 0.855
32 0.351 0.229 26.13 0.529 0.840 0.853
64 0.354 0.257 23.78 0.531 0.840 0.853

Table 10: The performance of LoRA with different ranks on the detoxification dataset.

Method Max Toxicity Toxicity prob ppl Dist-1 Dist-2 Dist-3
LoRA 0.365 0.210 21.11 0.53 0.85 0.86

LM-Steer 0.238 0.078 28.26 0.55 0.84 0.84
LoRA + LM-Steer 0.258 0.086 41.78 0.54 0.82 0.83

Table 11: Results on incorporating LM-Steer with LoRA.

Method Max Toxicity Toxicity prob ppl Dist-1 Dist-2 Dist-3

GPT-J-6B 0.364 0.229 18.70 0.55 0.84 0.85
GPT-J-6B + LM-Steer 0.265 0.124 18.26 0.54 0.84 0.85

Table 12: Results of LM-Steer on GPT-J-6B model on language model detoxification.

“Compose a critique of the novel ’Pride and Prejudice’, emphasizing its flaws while maintain-
ing an overall appreciative tone.“
“Write a review of the restaurant ’Le Gourmet’ focusing on areas for improvement, yet with
an underlying tone of admiration for its cuisine.“
“Pen a critique about the summer season, pointing out its drawbacks but in a way that overall
celebrates its beauty and warmth.“
“Draft a review for the TV show ’Breaking Bad’, highlighting its weaker aspects but still
expressing overall enthusiasm for the series.“
“Create a review of the coffee shop ’Bean There’, discussing its shortcomings while still
conveying a sense of enjoyment of its atmosphere.“
“Write an appraisal of the classic album ’Abbey Road’ by The Beatles, noting any perceived
faults but with a tone that remains reverent of its musical genius.“
“Offer a critique of the play ’Hamilton’, focusing on its less successful elements while still
acknowledging its groundbreaking impact.“
“Compose a review of the city of Paris in winter, pointing out the challenges of the season
while still capturing the magic of the city during this time.“
“Draft a review of the novel ’1984’ by George Orwell, discussing its more controversial or
challenging aspects but in a context of overall admiration.“
“Write an evaluation of the gaming console PlayStation 5, noting its limitations or flaws
while still expressing enthusiasm for its technological advancements.“

Table 13: Instructions proposed by ChatGPT.

“Focus of your critique on its plot and characterization rather than its historical accuracy and
literary style.”
“(For example: not enough bread, or service was bad, or the bathrooms are dirty, or ...”
“In the early weeks of the season, most of the country was in the grip of an intense summer.”
“This is a good show for all the time it spends on drug dealing but the characters are”

Table 14: Example generations (one each for the first 4 prompts) without LM-Steer

16429

“ the novel ‘ fails to persuade the reader that the characters’in every sense of the verb ...”
“The rest of the review is up to you. you should probably mention how long you’ve...”
“Tt’s difficult to redeem the negative factors of summers, except for its unpredictability.”
“Dull. It’s a cheap improv comedy that’s almost utterly incoherent in an...”

Table 15: Example generations (one each for the first 4 prompts) with negative LM-Steer

Method Max Toxicity Toxicity prob ppl Dist-1 Dist-2 Dist-3

Embedding Tuning 0.289 0.0952 20.41 0.53 0.84 0.85

Table 16: Results on embedding tuning.

16430

