
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1576–1587
August 11-16, 2024 ©2024 Association for Computational Linguistics

Probing Language Models for Pre-training Data Detection

Zhenhua Liu1 Tong Zhu1 Chuanyuan Tan1 Haonan Lu2 Bing Liu2 Wenliang Chen1*

1Institute of Artificial Intelligence, School of Computer Science and Technology,
Soochow University, China

2OPPO AI Center, China
{zhliu0106, tzhu7, cytan17726}@stu.suda.edu.cn, wlchen@suda.edu.cn

{luhaonan, liubing2}@oppo.com

Abstract

Large Language Models (LLMs) have shown
their impressive capabilities, while also raising
concerns about the data contamination prob-
lems due to privacy issues and leakage of bench-
mark datasets in the pre-training phase. There-
fore, it is vital to detect the contamination by
checking whether an LLM has been pre-trained
on the target texts. Recent studies focus on
the generated texts and compute perplexities,
which are superficial features and not reliable.
In this study, we propose to utilize the prob-
ing technique for pre-training data detection
by examining the model’s internal activations.
Our method is simple yet effective and leads to
more trustworthy pre-training data detection.
Additionally, we propose ArxivMIA, a new
challenging benchmark comprising arxiv ab-
stracts from Computer Science and Mathemat-
ics categories. Our experiments demonstrate
that our method outperforms all the baselines,
and achieves state-of-the-art performance on
both WikiMIA and ArxivMIA, with additional
experiments confirming its efficacy1.

1 Introduction

Large language models (LLMs) trained on massive
corpora of texts demonstrate extraordinary abili-
ties to understand, reason, and generate following
natural language instructions (Brown et al., 2020;
Anil et al., 2023). Meanwhile, the open-source
of LLMs has significantly contributed to the ad-
vancement and collaborative development within
the LLM community (Zhang et al., 2022; Touvron
et al., 2023b; Biderman et al., 2023; Bai et al., 2023;
Team, 2023; LLaMA-MoE Team, 2023). Despite
this progress, the lack of transparency raises ethical
and legal questions, particularly about the use of po-
tentially private data sourced from the internet, and
threatens the reliability of benchmark evaluations

* Corresponding author
1Our code and dataset are available at https://github.

com/zhliu0106/probing-lm-data

due to the risk of leaking test data. Therefore, de-
termining if certain texts have been utilized during
the pre-training phase of the target LLM becomes
a critical task.

Recent efforts to detect pre-training data in
LLMs have attracted significant attention. Several
studies have been proposed to investigate dataset
contamination, including prompting LLMs to gen-
erate data-specific examples or using statistical
methods to detect contamination in test sets (Sainz
et al., 2023; Golchin and Surdeanu, 2023; Oren
et al., 2023). Concurrently, Membership Inference
Attacks (MIAs) in Natural Language Processing
have been extensively explored for their potential
to discern whether specific data was used in LLMs’
pre-training (Carlini et al., 2021; Mireshghallah
et al., 2022; Mattern et al., 2023; Shi et al., 2023).
The above solutions have achieved a certain suc-
cess. However, they all rely on the model’s superfi-
cial features, such as generated texts or loss metrics,
which may not always be reliable indicators of pre-
training data.

Different from these conventional approaches,
we propose a simple yet effective pre-training data
detection method that utilizes the probing tech-
nique to examine the model’s internal activations.
This approach is based on the assumption: Texts
that have been seen during the model’s pre-training
phase are represented differently in the model’s in-
ternal activations compared to texts that have not
been seen, so we could train a linear probe classi-
fier to distinguish them.

As illustrated in Figure 1, our method consists
of three main steps: (1) We initiate our process by
gathering a training dataset that the LLM has not
previously been trained on, splitting the data into
member and non-member subsets. We then inject
the member data into the target model through a
fine-tuning process on the member data alone. This
step enables us to create a proxy model that retains
the memory of the member data from the training

1576

https://github.com/zhliu0106/probing-lm-data
https://github.com/zhliu0106/probing-lm-data


Member Data
label = 1

Non-Member Data
label = 0

Target Model

layer 0

layer l

layer n

layer n-1

layer l+1
...

...
layer 1

Fine-tune

Training Dataset [text, label]

Training Dataset
[text, label]

Training

Training Dataset
[activation, label]

Probe
Classifier

Target Text

Proxy Model

layer 0

layer l

layer n

layer n-1

layer l+1
...

...
layer 1

Proxy Model

layer 0

layer l

layer n

layer n-1

layer l+1
...

...

activation 

layer 1

Target Model

layer 0

layer l

layer n

layer n-1

layer l+1
...

...

activation 

layer 1

Probe
Classifier

Member Non-Member

(1). Training proxy model (2). Training probe classifier (3). Pre-training data detection with probe classifier

✅ ❎

Figure 1: An overview of our method. Member data from the training dataset is first used to fine-tune the target
model into a proxy model, from which activations are derived for training the probe classifier. The probe classifier
then evaluates the target text to determine whether it was included in the model’s pre-training data.

dataset. (2) Subsequently, we input both member
and non-member subsets from the training dataset
into the proxy model and extract the model’s inter-
nal activations. These activations are employed to
train a probe classifier that can distinguish between
member and non-member data. (3) Finally, given
a target text, we can input it to the target model,
extract the internal activations, and let the probe
classifier infer whether the text is member data.
In other words, the probe classifier could assess
whether the target text has been seen during the
pre-training phase.

In order to evaluate various pre-training data de-
tection methods in a more challenging scenario,
we introduce ArxivMIA, a difficult benchmark in
the academic domain. In contrast to the existing
WikiMIA (Shi et al., 2023) benchmark, which pri-
marily utilizes event data from Wikipedia pages,
ArxivMIA presents a more challenging scenario.
The academic abstracts within ArxivMIA are rarer
on the internet compared to Wikipedia content, nat-
urally resulting in a lower duplication rate. Fur-
thermore, the inherent complexity of texts targeted
at researchers adds another layer of difficulty for
model memorization. This combination of rarity
and complexity makes it exceedingly challenging
for large models to memorize such content dur-
ing the pre-training process, making its detection
through conventional methods markedly tougher.
Therefore, ArxivMIA stands as an especially rig-
orous benchmark, highlighting the need for more
sophisticated pre-training data detection methods.

Our contributions can be summarized as follows:

• We propose a novel pre-training data detection
method that utilizes the probing technique. To
the best of our knowledge, this is the first
work to examine LLMs’ internal activations to
determine whether a given text was included
in the pre-training data.

• We propose ArxivMIA, a new benchmark in
the academic domain to assess pre-training
data detection methods. With a low duplica-
tion rate and the inherent complexity of texts,
ArxivMIA presents a more challenging sce-
nario and highlights the need for more sophis-
ticated pre-training data detection methods.

• We conduct extensive experiments on
WikiMIA and ArxivMIA benchmarks. In
addition, we also evaluate various detection
methods on a downstream task datasets
contamination challenge. Through compre-
hensive experimentation, we demonstrate
that our proposed method outperforms
all baselines, and achieves state-of-the-art
performance.

2 Related Work

Related work involves membership inference at-
tacks in NLP and dataset contamination.

Membership Inference Attacks in NLP. Mem-
bership Inference Attacks (MIAs) are designed to
identify if a particular data sample was included in
the training dataset of a machine learning model
(Shokri et al., 2017; Yeom et al., 2018; Hu et al.,

1577



2022b). Most MIAs take a black-box setting, as-
suming that the adversary only has access to the
model confidence or loss scores (Yeom et al., 2018;
Sablayrolles et al., 2019; Jayaraman et al., 2021;
Watson et al., 2021). Unlike it, similar to Leino
and Fredrikson (2020), we consider a white-box
setting where the adversary has access to the model
weights and activations. Specifically in NLP, a
lot of studies have been proposed (Carlini et al.,
2021; Mireshghallah et al., 2022; Mattern et al.,
2023; Shi et al., 2023). Carlini et al. (2021) and
Mireshghallah et al. (2022) separately investigated
Likelihood Ratio Attacks for causal language mod-
els and masked language models. Mattern et al.
(2023) proposed a neighbor attack that compares
model loss for a given sample to losses of synthet-
ically generated neighbor texts. Shi et al. (2023)
measured the likelihood of outlier words in a given
text, thereby assessing whether the text was likely
part of a model’s pre-training corpora. Similar to
Shi et al. (2023), we aim to detect pre-training data
in LLMs. However, different from existing attacks
that rely on the model’s superficial features, we
focus on the LLMs’ internal activations, and the
experiments show that our method outperforms ex-
isting attacks.

Dataset Contamination. The dataset contamina-
tion in LLMs has been widely studied since bench-
mark datasets are intentionally or unintentionally
included in pre-training corpora. The n-gram based
overlap comparison methods not only require ac-
cess to training corpora but take a long time to
compute (Gao et al., 2020; Brown et al., 2020;
Dodge et al., 2021; Chowdhery et al., 2023; Anil
et al., 2023; Touvron et al., 2023a,b). Without ac-
cess to pre-training corpora, there are also some
methods to detect dataset contamination. Sainz
et al. (2023) prompted LLMs to generate verba-
tim examples of a dataset split. Golchin and Sur-
deanu (2023) proposed the ’Data Contamination
Quiz’, which employs a multiple-choice format
to assess a model’s ability to recognize original
dataset instances among perturbed versions. Oren
et al. (2023) presented a statistical test to demon-
strate test set contamination in language models,
leveraging the concept of exchangeability in bench-
mark datasets and comparing model log probabili-
ties against shuffled dataset permutations.

3 Methodology

3.1 Overview

Different from conventional detection methods in
MIA that rely on the model’s superficial features,
we directly analyze the model’s internal activations,
providing a deeper insight into its pre-training his-
tory. Our method employs the probe technique
originally proposed by Alain and Bengio (2016).
This technique hypothesizes that the internal rep-
resentations of a model inherently contain specific
encoded properties, so we could train a linear probe
classifier with logistic regression for the detection
of these properties. In our context, we are inter-
ested in determining whether a text sample was
included in the model’s pre-training dataset. The
framework of our method is illustrated in Figure 1.

3.2 Task Definition

The task of pre-training data detection follows a
white-box setting of MIAs where the adversary has
access to the model M’s architecture and weights,
but not the pre-training data. The adversary aims to
determine whether a sample s was included in the
pre-training data of the model M with an attack
method A: AM(s) → {0, 1}, where 1 represents
member (seen) data, 0 denotes non-member (un-
seen) data. Usually, we have a scoring function
f , then can get the confidence score f(s) ∈ [0, 1],
which represents the probability of the sample be-
ing a part of the pre-training dataset. Then we can
classify the sample as a member or non-member
based on a threshold γ :

AM(s) = 1 [f(s) < γ]

3.3 Training Proxy Model

Training a probe classifier needs a dataset
{⟨xi, yi⟩}, where xi represents the sample’s activa-
tion, and yi is a binary label indicating whether the
sample is a member or non-member data. However,
the absence of pre-training data makes it impos-
sible to obtain the activations of the member or
non-member samples. Therefore, we first gather
a training dataset that the LLM has not previously
been trained on, splitting the data into member and
non-member subsets, and inject the member data
into the proxy model to simulate data contamina-
tion, as detailed in subsection 4.2. The training
dataset is D = {⟨si, yi⟩}, where si represents the
sample, and yi is a binary label indicating whether
the sample is a member or non-member.

1578



Prompt Template for Sample. To standardize
the input for consistency, each sample of D is pro-
cessed using a prompt template. In the subsequent
experiments, we use the following prompt template:
"Here is a statement: [SAMPLE] \n Is the above
statement correct? Answer:". Intuitively, we hope
the last token of the sample can capture the infor-
mation of it being member or non-member, and
we believe the prompt template can help the target
model to focus on this information. Further prompt
template selection will be discussed in Appendix B.

Training Proxy Model. Next we need
to inject the member samples Dmember =
{si | ⟨si, yi⟩ ∈ D, yi = 1} into the model M to
let it memorize the member data. This injection
is accomplished by fine-tuning the model on
Dmember. This step aims to make the model M
memorize the member data, and the fine-tuning
process is used to simulate the pre-training process.
After this, we can get the proxy model M′, which
retains the memory of Dmember. The proxy model
M′ is then used to generate the member and
non-member sample activations x for the dataset
D.

3.4 Training Probe Classifier

The probe classifier takes the form Pθ(x) =
σ(Wx), where σ denotes the sigmoid function and
W represents the trainable weights. After obtain-
ing the proxy model M′, we construct the training
dataset with D for the probe.

In the paper, we focus on causal language mod-
els, which are trained to predict the next word given
the previous words. In order to capture the repre-
sentation of the sample, for each sample ⟨si, yi⟩ in
D, we extract the activation xl from the final token
of the input in layer l of the model M′. Finally, we
get the dataset {⟨xli, yi⟩}, which is used to train the
probe Pθ with logistic regression.

3.5 Pre-training Data Detection with Probe
Classifier

Given a benchmark, we already trained a probe Pθ,
which can be used to detect whether a sample is
included in the pre-training data. For a sample s,
we preprocess it with the above prompt template,
then feed it into the model M to get the activation
xl. Finally, we can get the confidence score Pθ(x

l),
which represents the probability of the sample be-
ing a part of the pre-training dataset. This score is
then utilized to classify the sample as a member or

non-member based on a threshold γ :

AM(s) = 1
[
Pθ(x

l) < γ
]

4 Data Construction

4.1 ArxivMIA
To evaluate various pre-training data detection
methods in a more challenging scenario, we in-
troduce ArxivMIA, a new benchmark comprising
abstracts from the fields of Computer Science (CS)
and Mathematics (Math) sourced from Arxiv. In
contrast to the existing WikiMIA (Shi et al., 2023)
benchmark, which primarily utilizes event data
from Wikipedia pages—thus prone to higher du-
plication rates in pre-training datasets—ArxivMIA
presents a more challenging scenario.

For dataset construction, abstracts published
post-2024 are designated as non-member data,
while member data are derived from the Arxiv sub-
set of the RedPajama dataset (Computer, 2023).
The RedPajama dataset is the reproduction of the
LLaMA (Touvron et al., 2023a) training dataset
and is extensively utilized in pre-training LLMs
(Zhang et al., 2024; Geng and Liu, 2023). This
makes ArxivMIA particularly suited for testing
LLMs pre-trained on the RedPajama dataset. De-
tailed information about ArxivMIA is presented in
Table 1. In summary, ArxivMIA has three distinc-
tive features: Firstly, it is a larger dataset with a
total of 2000 samples. Secondly, it covers multiple
fields, including CS and Math. Lastly, it features
a longer average sentence length, with an average
of 143.1 tokens per sample. These characteristics
make ArxivMIA a more challenging benchmark
for evaluating pre-training data detection method-
ologies.

4.2 Training Dataset Collection
Our method needs to construct a training dataset
D = {⟨si, yi⟩} similar to the target benchmark,
where si represents the sample, and yi is a binary
label indicating whether the sample is a member
or non-member. This dataset is pivotal for training
the probe to accurately evaluate the likelihood of
a sample being included in the pre-training data.
However, the construction of a training dataset for
the probe is challenging due to the lack of access to
the pre-training data. To address this, we propose a
heuristic method:

Data Collection. Firstly, we need to collect a
dataset D = {si}, and make sure they are not

1579



Dataset Avg. Tokens Members Non-Members Total Real Synthetic

WikiMIA 32.0 387 289 676 100* 100
ArxivMIA 143.1 1,000 1,000 2,000 200 200
├ ArxivMIA-CS 181.8 400 400 800 80 80
└ ArxivMIA-Math 117.2 600 600 1,200 120 120

Table 1: Information of Datasets. Real denote the number of collected real training data, and Synthetic denote the
number of synthetic training data. * For convenience, we directly segregated a subset of 100 non-member data from
WikiMIA as real data

included in the pre-training data. There are two
ways to accomplish it: (1). Real data: We col-
lect the data published after the model release date.
(2). Synthetic data: We can also use ChatGPT
(Achiam et al., 2023) to synthesize similar data
according to the data to be detected. The detailed
process is described in Appendix A.

Dataset Split. Next, we randomly label half of
the data in D as non-member data, and the other
half as member data. Then we get the dataset D =
{⟨si, yi⟩}.

We constructed both real and synthetic train-
ing datasets for each benchmark respectively, with
specifics outlined in Table 1. Notably, for con-
venience, we directly segregated a subset of 100
non-member data from WikiMIA as real data, and
the remaining part will be used in subsequent ex-
periments.

5 Experiments

We evaluate the performance of our method and
other baselines against open-source language mod-
els trained to predict the next word, including
Pythia-2.8B (Biderman et al., 2023), OPT-6.7B
(Zhang et al., 2022), TinyLLaMA-1.1B (Zhang
et al., 2024) and OpenLLaMA-13B (Geng and Liu,
2023).

5.1 Datasets

WikiMIA proposed by Shi et al. (2023), a dy-
namic benchmark designed to periodically and
automatically evaluate detection methods on any
newly released pre-trained LLMs. We use the
WikiMIA-32 split in this work, which contains 776
samples with a max length of 32 tokens.

ArxivMIA proposed in this work, a more com-
plex benchmark comprising abstracts in the fields
of Computer Science and Mathematics from Arxiv.
The details refer to subsection 4.1.

We split each dataset into a validation set and a
test set in a ratio of 1:4. The validation set is used
to select the best hyperparameters, and the test set
is used to evaluate the performance of the detection
methods.

5.2 Evaluation Metrics

Following Shi et al. (2023); Carlini et al. (2022);
Mattern et al. (2023), we assess the effectiveness
of detection methods using these metrics:

Area Under the ROC Curve (AUC). The ROC
curve plots the true positive rate (power) against
the false positive rate (error) across various thresh-
olds γ, which captures the trade-off between power
and error. Therefore, the area under the ROC curve
(AUC) serves as a singular, threshold-independent
measure to evaluate the effectiveness of the detec-
tion method.

True Positive Rate (TPR) under low False Posi-
tive Rates (FPR). We report TPR under low FPR
by adjusting the threshold value γ. Concretely, we
set 5% as the target FPRs, and report the corre-
sponding TPRs.

5.3 Baselines

To compare the performance of Probe Attack, we
consider the following reference-free methods:

Loss Attack proposed by Yeom et al. (2018),
which assesses the membership of the target sample
based on the loss of the target model.

Neighbor Attack proposed by Mattern et al.
(2023), which compares model loss for the tar-
get sample to losses of synthetically generated
neighbor texts. We construct 100 neighbors for
each sample using one-word replacement with the
RoBERTa-base model (Liu et al., 2019).

Min-K% Prob proposed by Shi et al. (2023), be-
gins by calculating the probability of each token

1580



in the target sample, then selects the k% of tokens
with the lowest probabilities to compute their aver-
age log-likelihood. A high average log-likelihood
suggests that the text is likely part of the pretraining
data.

Following Carlini et al. (2021) and Shi et al.
(2023), we also consider reference-based methods,
which calibrate difficulty by quantifying the intrin-
sic complexity of a target sample:

Comparing to Zlib Compression. We compute
the zlib entropy of the sample, which is the entropy
in bits when the sequence is compressed using zlib2.
The detection score is then determined by the ratio
of the model’s perplexity to the zlib entropy.

Comparing to Lowercased Text. We compute
the ratio of the perplexity of the sample before and
after converting it to lowercase.

Comparing to Smaller Model. We compute the
sample perplexity ratio of the target model to a
smaller model pre-trained on the same data.

5.4 Implementation Details

For WikiMIA, we employ Pythia-2.8B (Biderman
et al., 2023) and OPT-6.7B (Zhang et al., 2022) as
the target model following Shi et al. (2023). For
ArxivMIA, we employ TinyLLaMA-1.1B (Zhang
et al., 2024) and OpenLLaMA-13B(Geng and Liu,
2023) pre-trained on RedPajama (Computer, 2023)
as the target model.

For comparing to smaller model baseline set-
ting, we take Pythia-70M for Pythia-2.8B, OPT-
350M for OPT-6.7B, and OpenLLaMA-3B for
OpenLLaMA-13B. Because there is no smaller
model for TinyLLaMA, we leave this baseline out
for TinyLLaMA.

For the training of the proxy model, we con-
ducted a grid search hyperparameters on a held-out
validation set in order to better inject member data
into the model. Based on the performance, the
best choice is to put all the data to be injected into
one batch and train for 2 epochs. For different
models and datasets, we set the best learning rate
and activation extraction model layer according to
the performance of the validation set. All experi-
ments are conducted with 2 NVIDIA A100 (40GB)
GPUs.

2https://github.com/madler/zlib

6 Results and Analyses

In this section, we report our main result and con-
duct ablation studies to analyze the impact of model
size and training data number for our method. We
also compare the performance of various detec-
tion methods on PubMedQA (Jin et al., 2019) and
CommonsenseQA (Talmor et al., 2019) in the con-
tamination detection challenge proposed by Oren
et al. (2023).

6.1 Main Results

We present the main results of our experiments in
Table 2 and Table 3, where the former shows AUC
values and the latter shows true positive rates at
5% false positive rates. The results show that our
method consistently outperforms all baselines on
both WikiMIA and ArxivMIA benchmarks, achiev-
ing state-of-the-art AUC values. We also achieve
the state-of-the-art average true positive rates at 5%
false positive rates across all detection methods on
both benchmarks. We can further observe that:

• The average performance across all detection
methods is notably lower on ArxivMIA com-
pared to WikiMIA. This disparity underscores
the increased complexity of ArxivMIA as a
benchmark. In addition to our method, the
Neighbor Attack method exhibits a relatively
competent AUC value.

• The performance gap between various de-
tection methods across the two fields of
ArxivMIA is notable. Specifically, in the
ArxivMIA-CS, the average AUC value is com-
paratively higher, with our method achieving
its best results above 60. In contrast, in the
ArxivMIA-Math, the values are only above 50,
differing by approximately 10 points. This
discrepancy may suggest that mathematical
content in academic papers is more challeng-
ing for Large Language Models (LLMs) to
memorize, and consequently, harder for our
method to detect.

• As shown in Table 2, we separately test
our method with real and synthetic data.
On WikiMIA, the utilization of real data
marginally outperforms synthetic data, while
the opposite is observed on ArxivMIA. De-
spite a slight difference, the performance of
our method is far superior to other baselines
with both real and synthetic data.

1581

https://github.com/madler/zlib


Method WikiMIA ArxivMIA ArxivMIA-CS ArxivMIA-Math
Pythia OPT TinyL. OpenL. TinyL. OpenL. TinyL. OpenL.

Reference-free Methods
Loss Attack 63.9 63.0 45.1 49.1 45.3 51.4 44.9 47.4
Neighbor Attack 62.1 58.5 54.8 55.4 59.3 59.3 53.4 54.1
Min-K% Prob 62.7 63.2 45.5 49.2 45.0 50.2 45.8 48.5

Reference-based Methods
Zlib Compression 63.8 62.9 42.9 43.8 38.0 40.4 44.0 44.7
Lowercased Text 64.7 61.6 46.8 50.2 43.8 47.8 48.4 50.8
Smaller Model 65.5 65.8 - 55.9 - 54.9 - 56.7

Our Method
Probe w. Real Data 69.8 68.1 57.1 60.0 63.7 67.2 56.1 56.9
Probe w. Synthetic Data 69.4 66.2 59.2 60.3 64.3 67.3 56.7 57.4

Table 2: AUC values of different methods on WikiMIA and ArxivMIA. TinyL. denotes TinyLLaMA, OpenL.
denotes OpenLLaMA. We highlight the best results in bold.

Method WikiMIA ArxivMIA Avg.
Pythia OPT TinyL. OpenL.

Reference-free Methods
Loss Attack 13.7 11.4 5.1 5.6 9.0
Neighbor Attack 14.0 13.4 6.5 7.3 10.3
Min-K% Prob 16.9 15.0 4.5 5.1 10.4

Reference-based Methods
Zlib Compression 17.3 14.4 2.5 3.5 9.4
Lowercased Text 10.1 9.1 4.3 6.3 7.5
Smaller Model 14.0 10.5 - 8.5 11.0

Our Method
Probe w. Real Data 16.7 15.4 7.5 7.4 11.8
Probe w. Synthetic Data 19.6 10.5 8.6 6.8 11.4

Table 3: True positive rates for different methods at 5% positive rates on WikiMIA and ArxivMIA datasets. TinyL.
denotes TinyLLaMA, OpenL. denotes OpenLLaMA. Best results are highlighted in bold.

6.2 Cross-Domain Evaluation

We conducted cross-domain evaluations with
TinyLLaMA. As shown in Table 6, we find that
in-domain performance is better than cross-domain
performance. Training on WikiMIA and then test-
ing on ArxivMIA, AUC values dropped by 5 points.
Conversely, training on ArxivMIA and then test-
ing on WikiMIA, AUC values only decreased by 1
point. This supports the finding that ArxivMIA is
relatively more challenging than WikiMIA.

6.3 Ablation Studies

We further investigate the impact of model size and
training data number for our method:

3 7 13
Model Size (Billion Parameters)

55

56

57

58

59

60

A
U

C
 V

al
ue

Detection Methods
Probe w. Real Probe w. Synthetic Neighbor

Figure 2: Comparison of AUC Values Across Different
Model Sizes (best viewed in color).

1582



50 100 200 500 1000
Number of Training Data for Our Method

44

46

48

50

52

54

56

58

60
A

U
C

 V
al

ue

Probe w. Synthetic
Loss
Neighbor
Min-K% Prob
Zlib Compression
Lowercased Text

Figure 3: Comparison of AUC Values with Different
Training Data Sizes (best viewed in color).

Model Size. We evaluate our method and neigh-
bor attack on ArxivMIA with different OpenL-
LaMA sizes (3B/7B/13B). As shown in Figure 2,
the AUC values of our method increase with the
model size, while the change of neighbor attack
is not significant. This result indicates that our
method benefits from larger models.

Number of Training Data. We also evaluate
our method with different synthetic training data
sizes (50, 100, 200, 500 and 1000). We conduct the
comparison experiment on ArxivMIA with TinyL-
LaMA. As illustrated in Figure 3, our method ex-
hibits optimal performance with 200 training data
samples. Increasing the number of training data be-
yond this point results in a slight decline in perfor-
mance, yet it remains superior to various baselines.
This indicates that our method is data efficient.

6.4 Downstream Task Datasets
Contamination Detection Challenge

To support the development of further work on de-
tecting pretraining data contamination, Oren et al.
(2023) pre-trained a 1.4 billion parameter GPT-2
model (Radford et al., 2019), Contam-1.4b, with
intentional downstream task datasets contamina-
tion 3. We evaluate various detection methods
on PubMedQA (Jin et al., 2019) and Common-
senseQA (Talmor et al., 2019) from this challenge.
PubMedQA and CommonsenseQA have different
duplication counts (how often the dataset was in-
jected into the pre-training data) with 1 and 2, and
detection at this low duplication level is extremely

3https://github.com/tatsu-lab/test_set_
contamination

Method PMQA CQA

Reference-free Methods
Loss Attack 48.0 49.9
Neighbor Attack 53.0 50.0
Min-K% Prob 47.5 49.6

Reference-based Methods
Zlib Compression 46.1 48.8
Lowercased Text 50.7 49.2
Smaller Model 49.5 49.5

Our Method
Probe w. Synthetic Data 54.0 51.9

Table 4: AUC values of various pre-training data detec-
tion methods on PubMedQA and CommonsenseQA in
contamination detection challenge. PMQA denotes Pub-
MedQA, CQA denotes CommonsenseQA. We highlight
the best results in bold.

Method TinyLLaMA

Reference-free Methods
Loss Attack 55.7
Neighbor Attack 48.8
Min-K% Prob 52.9

Reference-based Methods
Zlib Compression 56.7
Lowercased Text 49.8
Smaller Model -

Our Method
Probe w. Real Data 74.3
Probe w. Real Data (LoRA) 62.7

Table 5: AUC values of various methods on WikiMIA
in contamination detection challenge. We highlight the
best results in bold.

difficult (Oren et al., 2023).

Experimental Setup. We sampled 1000 exam-
ples from the contaminated training data as member
data for each task and then sampled 1000 examples
from their standard dataset as non-member data.
Similar to subsection 5.1, we split each dataset into
a validation set and a test set. The validation set
will be used to select the best hyperparameters, and
the test set for evaluation. For our method, we col-
lected 200 synthetic training data for each task. For
comparing to smaller model baseline setting, we
choose Contam-Small (124M Params) pre-trained
on the same dataset for Contam-1.4b.

1583

https://github.com/tatsu-lab/test_set_contamination
https://github.com/tatsu-lab/test_set_contamination


Results. The results are shown in Table 4. We ob-
serve that our method outperforms other baselines,
which demonstrate the effectiveness of our method.
Nonetheless, we acknowledge that the overall de-
tection efficacy is unsatisfactory at an extremely
low duplication count (1 and 2), corroborating the
findings of Oren et al. (2023).

Train/Eval WikiMIA ArxivMIA
WikiMIA 74.3 51.8
ArxivMIA 73.2 57.1

Table 6: AUC values of TinyLLaMA across different
domains.

7 Conclusion

In summary, this paper investigates the pre-training
data detection problem in large language models.
We propose a simple and effective approach that
determines whether a target text has been included
in a model’s pre-training dataset by analyzing the
internal activations using the probe technique. Ad-
ditionally, we introduce a more challenging bench-
mark, ArxivMIA. The experiments demonstrate
that our method outperforms all baselines across
various benchmarks, achieving SOTA performance.
We further analyze the impact of target model size
and the number of training data on our method.
Additionally, we validate the effectiveness of our
approach through a downstream task datasets con-
tamination detection challenge. Future work could
extend our methods to larger model scales or apply
them to multi-modal models.

Limitations

Generalization. One limitation of our study
stems from the generalizability of the probe clas-
sifier, which necessitates domain-specific training
data. This characteristic implies that the training
data are not universally applicable across different
domains/benchmarks. Consequently, to detect data
from varied fields, it becomes imperative to collect
distinct sets of training data for each domain.

Computational Resource Requirements.
While our method demonstrates superior per-
formance, it necessitates a certain amount of
computational resources due to the requirement to
train both a proxy model and a probe classifier. We
conduct experiments on WikiMIA with LoRA (Hu
et al., 2022a), a representative Parameter-Efficient

Fine-Tuning (PEFT) method. The results are
presented in Table 5. We observed that the
performance of LoRA is inferior to fine-tuning, but
it remains competitive with other baselines. For
our experimental settings, the training compute
consumption is not that high since the member
dataset is rather small. However, as the number of
data scales, PEFT may be a better choice.

Acknowledgments

This work is supported by the National Natural Sci-
ence Foundation of China (Grant No. 62036004,
62376177) and Provincial Key Laboratory for Com-
puter Information Processing Technology, Soo-
chow University. This work is also supported by
Collaborative Innovation Center of Novel Software
Technology and Industrialization, the Priority Aca-
demic Program Development of Jiangsu Higher
Education Institutions. We would also like to thank
the anonymous reviewers for their insightful and
valuable comments.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Guillaume Alain and Yoshua Bengio. 2016. Under-
standing intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.

1584



Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang
Song, Andreas Terzis, and Florian Tramer. 2022.
Membership inference attacks from first principles.
In 2022 IEEE Symposium on Security and Privacy
(SP), pages 1897–1914. IEEE.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633–2650.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Together Computer. 2023. Redpajama: an open dataset
for training large language models.

Jesse Dodge, Maarten Sap, Ana Marasović, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colos-
sal clean crawled corpus. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1286–1305, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Xinyang Geng and Hao Liu. 2023. Openllama: An open
reproduction of llama.

Shahriar Golchin and Mihai Surdeanu. 2023. Data con-
tamination quiz: A tool to detect and estimate con-
tamination in large language models. arXiv preprint
arXiv:2311.06233.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022a. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dob-
bie, Philip S Yu, and Xuyun Zhang. 2022b. Member-
ship inference attacks on machine learning: A survey.
ACM Computing Surveys (CSUR), 54(11s):1–37.

Bargav Jayaraman, Lingxiao Wang, Katherine Knip-
meyer, Quanquan Gu, and David Evans. 2021. Revis-
iting membership inference under realistic assump-
tions. Proceedings on Privacy Enhancing Technolo-
gies, 2021(2).

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. PubMedQA: A
dataset for biomedical research question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567–
2577, Hong Kong, China. Association for Computa-
tional Linguistics.

Klas Leino and Matt Fredrikson. 2020. Stolen mem-
ories: Leveraging model memorization for cali-
brated {White-Box} membership inference. In 29th
USENIX security symposium (USENIX Security 20),
pages 1605–1622.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

LLaMA-MoE Team. 2023. Llama-moe: Building
mixture-of-experts from llama with continual pre-
training.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing
Jin, Bernhard Schoelkopf, Mrinmaya Sachan, and
Taylor Berg-Kirkpatrick. 2023. Membership infer-
ence attacks against language models via neighbour-
hood comparison. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 11330–
11343, Toronto, Canada. Association for Computa-
tional Linguistics.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit
Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
2022. Quantifying privacy risks of masked language
models using membership inference attacks. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8332–
8347, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal
Ladhak, and Tatsunori B. Hashimoto. 2023. Proving
test set contamination in black box language models.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Alexandre Sablayrolles, Matthijs Douze, Cordelia
Schmid, Yann Ollivier, and Hervé Jégou. 2019.
White-box vs black-box: Bayes optimal strategies for

1585

https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://github.com/pjlab-sys4nlp/llama-moe
https://github.com/pjlab-sys4nlp/llama-moe
https://github.com/pjlab-sys4nlp/llama-moe
https://doi.org/10.18653/v1/2023.findings-acl.719
https://doi.org/10.18653/v1/2023.findings-acl.719
https://doi.org/10.18653/v1/2023.findings-acl.719
https://doi.org/10.18653/v1/2022.emnlp-main.570
https://doi.org/10.18653/v1/2022.emnlp-main.570
http://arxiv.org/abs/2310.17623
http://arxiv.org/abs/2310.17623


membership inference. In International Conference
on Machine Learning, pages 5558–5567. PMLR.

Oscar Sainz, Jon Ander Campos, Iker García-Ferrero,
Julen Etxaniz, Oier Lopez de Lacalle, and Eneko
Agirre. 2023. Nlp evaluation in trouble: On the
need to measure llm data contamination for each
benchmark. arXiv preprint arXiv:2310.18018.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. 2023. Detecting pretraining
data from large language models. arXiv preprint
arXiv:2310.16789.

Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. 2017. Membership inference attacks
against machine learning models. In 2017 IEEE sym-
posium on security and privacy (SP), pages 3–18.
IEEE.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

InternLM Team. 2023. Internlm: A multilingual lan-
guage model with progressively enhanced capabili-
ties. https://github.com/InternLM/InternLM.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open foundation
and fine-tuned chat models, 2023. URL https://arxiv.
org/abs/2307.09288.

Lauren Watson, Chuan Guo, Graham Cormode, and
Alexandre Sablayrolles. 2021. On the importance of
difficulty calibration in membership inference attacks.
In International Conference on Learning Representa-
tions.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. 2018. Privacy risk in machine learning:
Analyzing the connection to overfitting. In 2018
IEEE 31st computer security foundations symposium
(CSF), pages 268–282. IEEE.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

A Data Synthesis with ChatGPT

Given a target dataset D0, our goal is to uti-
lize ChatGPT to generate a new, similar, domain-
specific dataset D. To achieve this, we employ a
templated prompt to guide ChatGPT in generating
data points that are stylistically and structurally
similar to D0, yet unique in content. The prompt
template used is shown in Table 7.

To initiate this process, we randomly select 5
examples from D0 and insert them into the prompt.
This prompt is then provided to ChatGPT, which
generates a specified number of new data points.
By iterating through this procedure multiple rounds,
we can get a dataset D that is similar to and within
the same domain as D0.

B Prompt Template Selection

We experiment with different prompt templates
on ArxivMIA with TinyLLaMA to determine the
optimal one for our task. The results of the ablation
study on prompt templates are shown in Table 8.
The average AUC value for using a template is
57.9, which is higher than the AUC value of 54.3
for not using a template. This demonstrates the
importance of a prompt template.

1586

https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://github.com/InternLM/InternLM
http://arxiv.org/abs/2401.02385
http://arxiv.org/abs/2401.02385
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068


I am creating a dataset and need to generate data that is similar but not identical to the following
examples. Here are 5 examples from my dataset:
1. [Example 1]
2. [Example 2]
3. [Example 3]
4. [Example 4]
5. [Example 5]

Please generate [Specified Number] new data points that are similar in style and structure to
these examples but are unique in content. Format the responses as a numbered list, starting from
6 onwards. Each data point should start on a new line and be prefixed with its corresponding
number followed by a period and a space.
For example:
6. [New Data Point 1]
7. [New Data Point 2]
...

Table 7: Data Generation Template.

Prompt Template AUC

[SAMPLE] 54.3

Here is a statement: [SAMPLE] Is the above statement correct? Answer: 59.2

[SAMPLE] Is the above text real? Answer: 57.1

Here is a text: [SAMPLE] Is the above text real? Answer: 58.3

Here is a text: [SAMPLE] Is the above text correct? Answer: 57.3

Consider the following statement: [SAMPLE] Is the statement above true or false?
Your answer: 57.5

Consider the following text: [SAMPLE] Is the text above true or false?
Your answer: 59.1

[SAMPLE] Is the statement above true or false? Your answer: 57.8

[SAMPLE] Is this correct? Indicate ’Yes’ or ’No’: 57.0

Table 8: AUC values of different prompt templates on ArxivMIA with TinyLLaMA.

1587


