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Abstract

Recent LLMs have demonstrated remarkable
performance in solving exam-like math word
problems. However, the degree to which these
numerical reasoning skills are effective in real-
world scenarios, particularly in expert domains,
is still largely unexplored. This paper in-
troduces DOCMATH-EVAL, a comprehensive
benchmark specifically designed to evaluate
the numerical reasoning capabilities of LLMs
in the context of understanding and analyzing
financial documents containing both text and ta-
bles. We evaluate a wide spectrum of 27 LLMs,
including those specialized in math, coding and
finance, with Chain-of-Thought and Program-
of-Thought prompting methods. We found that
even the current best-performing system (i.e.,
GPT-4) still significantly lags behind human
experts in solving complex numerical reason-
ing problems grounded in long contexts. We
believe DOCMATH-EVAL can be used as a valu-
able benchmark to evaluate LLMs’ capabilities
to solve challenging numerical reasoning prob-
lems in expert domains.

§ github.com/yale-nlp/DocMath-Eval

1 Introduction

Recent advancements in Large Language Models
(LLMs) have attracted significant attention due
to their capabilities in solving a broad range of
tasks (OpenAI, 2022, 2023; Touvron et al., 2023),
including math word problems (MWPs) commonly
found in academic exams (Wang et al., 2017; Miao
et al., 2020; Amini et al., 2019; Cobbe et al., 2021;
Hendrycks et al., 2021a; Cobbe et al., 2021; Lu
et al., 2023b; Chen et al., 2023b). These MWPs
vary from basic arithmetic to advanced algebra,
showcasing LLMs’ proficiency in numerical rea-
soning — a crucial skill for interpreting and ma-
nipulating numerical data across various contexts.
Despite this progress, there is still a significant gap

∗Equal Contributions.

First, we know from the table that  the values of debt in 2021 
and 2022 are xxx and xxx, respectively. We then calculate the 

(...abbreviate…) 
Therefore, the final answer is 17.3% 

Model Output with Chain-of-Thought Prompting:

def solution():
debt_2021 = 125

    debt_2022 = 278
 (…abbreviate)

 return answer

Model Output with Program-of-Thought Prompting:

….

What is the rate of increase in debt 
from 2021 to 2022? 

Figure 1: The overview of DOCMATH-EVAL and the
prompting methods adopted. DOCMATH-EVAL eval-
uates the LLMs’ performance in the context of under-
standing and analyzing financial documents containing
both text and tables. The models are required to first
locate question-relevant data points within lengthy doc-
uments, and then apply numerical reasoning and spe-
cialized financial knowledge to answer the question.

in understanding the practicality of LLMs’ numeri-
cal reasoning in real-world scenarios, particularly
in specialized fields such as finance, medicine, and
science. As illustrated in Figure 1, these expert
domains necessitate LLMs to interpret complex,
domain-specific documents, applying numerical
reasoning to complex problem-solving (Chen et al.,
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2021; Zhu et al., 2021; Zhao et al., 2022; Li et al.,
2022). Recognizing this gap, our research focuses
on the finance domain (Wu et al., 2023a; Yang et al.,
2023b; Callanan et al., 2023). The finance industry
often deals with lengthy and data-intensive docu-
ments that demand advanced numerical reasoning
skills for accurate analysis and decision-making.

We introduce DOCMATH-EVAL, a comprehen-
sive and standardized benchmark that systemati-
cally evaluates the numerical reasoning capabilities
of LLMs in understanding and interpreting finan-
cial documents containing both textual and tabular
data. DOCMATH-EVAL encompasses four eval-
uation sets, each with varying levels of difficulty
in numerical reasoning and document understand-
ing. Specifically, We construct a new evaluation
set, DMCompLong, from scratch, to examine the
LLM’s capabilities in performing complex numeri-
cal reasoning over extreme long documents contain-
ing multiple tables. We also adapt and re-annotate
four existing finance QA benchmarks to develop
three additional, less challenging evaluation sets: 1)
DMSimpShort based on TAT-QA (Zhu et al., 2021)
and FinQA (Chen et al., 2021), necessitates simple
numerical reasoning over short document with one
table; 2) DMSimpLong based on MultiHiertt (Zhao
et al., 2022), necessitates simple numerical rea-
soning over long document with multiple tables;
and 3) DMCompShort based on TAT-HQA (Li et al.,
2022), necessitates complex numerical reasoning
over short document with one table.

We evaluate a wide spectrum of open- and
closed-source LLMs, specifically, 27 models from
17 organizations. This notably includes code-based
LLMs (Xu et al., 2023; Luo et al., 2023b; Li
et al., 2023a; Tunstall et al., 2023) for enhanced
reasoning and programming abilities, as well as
LLMs specialized in the finance domain (Xie et al.,
2023). Two prompting methods, Chain-of-Thought
(CoT) (Wei et al., 2022) and Program-of-Thought
(PoT) (Chen et al., 2023a), are adopted for experi-
ments. Our experimental results indicate that while
the existing best-performing LLM (i.e., GPT-4) can
achieve high performance in a simple setting (i.e.,
DMSimpShort), it still falls short of human experts
in more challenging ones. Specifically, GPT-4 sig-
nificantly outperforms other open-source LLMs,
achieving an accuracy of 41.2% on the most chal-
lenging evaluation set (i.e., DMCompLong) when ap-
plying PoT prompting. However, it still lags far
behind human expert performance, which stands at
76%. This significant gap between LLMs and hu-

man experts underscores the challenges presented
by DOCMATH-EVAL. It highlights the need for
further advancements in adapting LLMs’ numeri-
cal reasoning capabilities for practical application
in real-world expert domains.

We conclude our main contributions as follows:

• We introduce DOCMATH-EVAL, a comprehen-
sive benchmark designed to systematically eval-
uate LLMs’ numerical reasoning ability to un-
derstand and interpret financial documents. This
includes a newly developed, challenging evalu-
ation set and three adapted evaluation sets for
varying difficulty levels.

• We conduct an extensive evaluation encompass-
ing a wide range of LLMs, including those spe-
cialized in coding and finance. We also incorpo-
rate different prompting methods (e.g., CoT and
PoT) to comprehensively assess the capabilities
and limitations of existing LLMs in our task.

• Our experimental results reveal a noticeable per-
formance gap compared to human experts in
more complex scenarios (e.g., problems requir-
ing complex numerical reasoning over long docu-
ments). This highlights the limitations of current
LLMs in complex real-world applications and
the need for continued advancements.

2 Related Work

2.1 Math Word Problems

The research community has shown significant in-
terest in the vital role of numerical reasoning skills
in LLMs. These skills are vital for models to effec-
tively engage in complex problem-solving. To this
end, a wide variety of MWP datasets have been pro-
posed in recent years (Hosseini et al., 2014; Koncel-
Kedziorski et al., 2016; Wang et al., 2017; Ling
et al., 2017; Cobbe et al., 2021). More challenging
datasets have recently been introduced to enhance
diversity (Miao et al., 2020), difficulty (Chen et al.,
2023c; Hendrycks et al., 2021b), and adversarial
robustness (Patel et al., 2021). However, existing
MWP datasets predominantly focus on problems
akin to academic exams, with a limited empha-
sis on real-world scenarios. Addressing this gap,
our paper introduces a novel and comprehensive
benchmark designed to evaluate LLMs’ abilities
in understanding and interpreting mixed-content
financial documents through numerical reasoning.
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Property (Median/Avg) DMSimpShort DMSimpLong DMCompShort DMCompLong (new)

Data Source
TAT-QA (Zhu et al., 2021) MultiHiertt TAT-HQA expert annotated
FinQA (Chen et al., 2021) (Zhao et al., 2022) (Li et al., 2022) from scratch

Question Length 19 / 20.1 23 / 24.0 30 / 30.2 35 / 38.3

# Sentences in Text 14 / 16.7 64 / 66.9 6 / 7.8 746 / 1,035.6
# Words in Text 500 / 505.1 2,247 / 2,352.6 253 / 310.8 24,736 / 35,065.6

# Table 1 / 1.0 4 / 4.0 1 / 1.0 48 / 78.2
# Rows per Table 7 / 8.0 9 / 11.6 8 / 9.3 4 / 7.9
# Columns per Table 4 / 4.0 4 / 4.4 4 / 4.0 3 / 3.7

# Text Evidence 1 / 1.3 1 / 1.0 2 / 2.3 2 / 1.9
# Table Evidence 1 / 1.0 1 / 1.0 1 / 1.0 1.3 / 1.2
% Questions w. Table Evidence 92.9% 86.4% 97.8% 76.3%

# Math Operations in Python Solution 2 / 2.1 2 / 2.4 2 / 2.2 4 / 4.9
# Code Lines in Python Solution 5 / 5.3 6 / 6.0 5 / 5.3 8 / 8.3
# Comment Lines in Python Solution 2 / 2.0 2 / 2.0 2 / 2.0 5 / 5.5

Dataset Size 1,459 793 1,621 2,101

Table 1: Basic statistics of DOCMATH-EVAL dataset. Our newly constructed evaluation set, DMCompLong, poses
unique challenges in both numerical reasoning and financial document understanding.

2.2 Numerical Reasoning over Documents

Numerical reasoning over documents requires mod-
els to have a deep understanding of context and the
ability to derive answers through numerical rea-
soning (Dua et al., 2019). Applying these models
in the finance domain (Xie et al., 2023; Wu et al.,
2023a; Yang et al., 2023b) presents additional chal-
lenges in terms of interpreting hybrid data (Zhu
et al., 2021) and utilizing domain-specific exper-
tise (Chen et al., 2021; Zhao et al., 2023a). Nu-
merous datasets focusing on numerical reasoning
within the financial domain have been proposed re-
cently. Two notable benchmarks are TAT-QA (Zhu
et al., 2021) and FinQA (Chen et al., 2021), which
represent pioneering efforts in studying numeri-
cal reasoning in finance, particularly requiring the
fusion of tabular and textual content. Building
upon TAT-QA, a more challenging dataset named
TAT-HQA (Li et al., 2022) was developed, focus-
ing on counterfactual questions in relation to the
provided context. Additionally, MultiHiertt (Zhao
et al., 2022) focuses on numerical reasoning over
longer financial documents, containing multiple
tables and longer texts. However, as illustrated
in Table 1, these four datasets focus on less chal-
lenging scenarios, where either simple numerical
reasoning (e.g., calculating average or increasing
rate of two metrics) is sufficient, or the input con-
text is short (i.e., one-page document segment with
only one table). Furthermore, there is a lack of a
standardized benchmark for systematically evaluat-
ing models’ performance across varying difficulty

levels in terms of numerical reasoning and docu-
ment understanding, which is crucial in the era of
LLMs.

3 DOCMATH-EVAL

In this section, we first offer a formal definition
of the DOCMATH-EVAL task. We then explain
the rationale and methodology for adopting Python
program as the standardized solution format for
DOCMATH-EVAL. Subsequently, we detail the
data annotation process used to construct the chal-
lenging DMCompLong evaluation set, as well as
the data re-annotation process for compiling the
other three evaluation sets. Finally, we present
human-level performance on each evaluation set
in DOCMATH-EVAL. Table 1 describes the ba-
sic statistics of four developed evaluation sets.
DOCMATH-EVAL contains a total of 5,974 ques-
tions with high-quality annotations, featuring vary-
ing difficulty levels in numerical reasoning and
document understanding.

3.1 Task Formulation

We formally define the task of DOCMATH-EVAL in
the context of LLMs as follows: Presented with a
numerical reasoning question q and a financial doc-
ument consisting of textual contents E and struc-
tured tables T , the task is to generate the numeric-
value answer a:

â = argmax
a

PLM(a | q, E, T ) (1)
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To obtain the best candidate answer â, we use
greedy decoding in all our LLM evaluations.

In the subtasks of DMSimpLong and DMCompLong,
due to the length of the document exceeding the
maximum input length of LLMs, we first apply re-
trievers to retrieve the top-n most relevant textual
and tabular evidence to form a partial document,
while maintaining the original relative order of the
evidence within the partial document. This textual
content and structured tables in the partial docu-
ment are then input into the LLMs.

3.2 Solution Format Standardization
We observe that existing finance QA datasets fea-
ture solutions in various formats. Specifically, TAT-
QA (Zhu et al., 2021) and TAT-HQA (Li et al.,
2022) utilize text, while MultiHiertt (Zhao et al.,
2022) employs mathematical expressions, such as
100/3, and FinQA (Chen et al., 2021) uses math
programs, such as divide(100,3), for solution an-
notations. This diversity in annotation formats hin-
ders the development of a unified evaluation frame-
work to assess LLM performance across different
benchmarks. Additionally, solutions in text format
often lack the precision and unambiguity necessary
for computational problem-solving; and solutions
in mathematical equations or math programs are
less descriptive, with the semantic meaning of each
numeric value in the equations sometimes being
unclear.

To overcome the aforementioned limitations, in
DOCMATH-EVAL, we represent solutions using
Python programs, as this format combines the ex-
plicitness of code execution with the descriptive
power of annotated explanation (in the format of
Python comments). Such a unified Python program
format supports a standardized and effective evalu-
ation framework for LLM assessment. Specifically,
annotators are required to first define variables at
the beginning of the Python function, starting with
“def solution():”. These variables correspond
to the key elements or quantities mentioned in the
question or question-relevant content in the docu-
ments. Annotators are instructed to assign mean-
ingful names that clearly represent each element.
They then write a sequence of Python statements
that logically solve the problem, step by step. Ad-
ditionally, annotators receive a bonus for writing
detailed comments, thereby enhancing the code’s
readability and understandability. To ensure the ac-
curacy and functionality of the solutions, our anno-
tation interface automatically executes the Python

function. This execution checks that the return type
of the answer is either a float or an int and verifies
that there are no execution errors.

3.3 Data Re-Annotation From Public Datasets

We re-annotate four existing datasets and incor-
porate them into DOCMATH-EVAL. Specifically,
we re-annotate TAT-QA (Zhu et al., 2021) and
FinQA (Chen et al., 2021) for DMSimpShort, Mul-
tiHiertt (Zhao et al., 2022) for DMSimpLong, and
TAT-HQA (Li et al., 2022) for DMCompShort.

Question Validation and Re-annotation We in-
struct the annotators to identify and remove ques-
tions with incorrect annotations or those whose
answers are not numerical. Annotators are then
asked to enhance each question by adding a scale
descriptor to ensure clarity and specificity. For ex-
ample, "Question: What is the average payment
volume per transaction for American Express? (in
billions)". They were also asked to correct any
identified errors in the original questions.

Solution Validation and Re-annotation As out-
lined in Section 3.2, we require annotators to
rewrite the original solutions into a unified Python
format, standardizing variable names and adding
comments to enhance the readability of the solu-
tions. Regarding the supporting evidence anno-
tation, we initially convert the original evidence
annotations to our format. We then highlight these
evidences in the annotation interface, and direct
annotators to verify their correctness.

3.4 Data Annotation From Scratch

In real-world scenarios, financial professionals typ-
ically need to handle documents spanning tens of
pages, along with problems that require more com-
plex numerical reasoning combined with financial
knowledge. However, existing finance-relevant QA
benchmarks (Zhu et al., 2021; Chen et al., 2021;
Zhao et al., 2022; Li et al., 2022) focus on less
challenging scenarios, where either simple numer-
ical reasoning is sufficient, or the input context
is short. To bridge this gap, we have developed
a new, challenging evaluation set, DMCompLong,
from scratch. This set focuses on settings that more
closely align with real-world problem-solving sce-
narios, where models are required to perform com-
plex numerical reasoning over long financial docu-
ments for problem solving. The annotation process
for DMCompLong is as follows.
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Source Document Collection Following previ-
ous work (Zhu et al., 2021; Chen et al., 2021; Zhao
et al., 2022), we use the quarterly (i.e., Form 10-Q)
and annual reports (i.e., Form 10-K) of companies
as our source documents, which are publicly avail-
able at the open-source database1 of U.S. Securi-
ties and Exchange Commission. After collecting
all the source documents, we utilize a commercial
API2 to extract their textual and tabular content.
Subsequently, we apply a heuristic-based method
to preprocess these two formats of content. The
preprocessed documents are then passed to expert
annotators for question annotation.

Data Annotation Given a financial document,
annotators are first required to briefly read its con-
tent and determine the data points to be used in the
question. They must then compose the question and
highlight the selected paragraphs or tables as evi-
dence supporting it. Following Chen et al. (2021),
we use the paragraph index pi to mark question-
relevant textual evidence in the pith paragraph; and
(ti, rj) to mark relevant tabular evidence in the rj th
row of the tith column. The same method is applied
in the dataset re-annotation process, as detailed in
Section 3.3. Finally, the annotators are required to
write down the solution to the question in Python
program format, as discussed in Section 3.2. We
set up a bonus payment system for complex an-
notations that involve difficult document compre-
hension and numerical reasoning. Specifically, to
increase the difficulty of document understanding,
we award bonuses to annotators for questions that
necessitate information from: 1) multiple tables, 2)
multiple sections, or 3) a combination of tables and
textual content. To enhance the challenge in numer-
ical reasoning, we provide bonuses for questions
requiring financial expertise or involving complex
mathematical operations. If such complex anno-
tations are validated during the quality validation
stage, a bonus payment will be added.

Quality Validation We implement a compre-
hensive quality validation protocol to ensure that
each annotated example meets the required stan-
dards. For every question annotation, we as-
sign it to another annotator, recognized for their
high performance in annotation, to verify its ac-
curacy. This process involves manually locating
the question-relevant evidence in the documents

1https://www.sec.gov/edgar/search/
2https://sec-api.io/

Annotation Quality %S ≥ 4

Question Fluency 97.4
Question Correctness 96.0

Evidence Relevance 88.5
Evidence Completeness 91.3

Final Answer Correctness 97.9
Python Solution Correctness 97.6
Variable Value Correctness 98.5
Python Solution Conciseness 89.1
Variable Name Meaningfulness 95.4
Comment Comprehensiveness 87.4

Table 2: Human evaluation over 200 samples of
DOCMATH-EVAL. Three internal evaluators were asked
to rate the samples on a scale of 1 to 5. We report 1)
percent of samples that have an average score ≥ 4 to
indicate the annotation quality of DOCMATH-EVAL

using our retrieval-based search toolkits. They then
compare this evidence with the original annotations
and correct any errors found. Additionally, valida-
tors are tasked with confirming the accuracy of the
annotated solutions. We offer bonus payments to
annotators for identifying erroneous annotations.
Ultimately, 232 of the annotated questions are
flagged as erroneous and are subsequently revised.
We present the human evaluation scores and inter-
evaluator agreements for a subset of 200 sampled
examples. Table 2 demonstrate that DOCMATH-
EVAL exhibits superior annotation quality and a
high degree of inter-annotator agreement.

3.5 Expert-level Performance Evaluation

To provide a rough but informative estimate of
the performance of domain-experts on each of
DOCMATH-EVAL sets, we invite two professionals
with Chartered Financial Analyst licenses for eval-
uation. Regarding human expert performance on
DMSimpShort and DMSimpLong, we report the same
results as those in the original papers, with accuracy
of 91% and 87%, respectively. For DMCompShort
and DMCompLong, We randomly sample 25 exam-
ples from each set, asking the expert evaluators
to answer the questions individually within a four-
hour period. They achieve accuracy of 88% and
80% on DMCompShort (average 84%); and accuracy
of 72% and 80% on DMCompLong (average 76%).

4 Experiment Setup

4.1 Large Language Models

Our goal is to investigate the capabilities of current
state-of-the-art LLMs on DOCMATH-EVAL to bet-
ter understand their strengths and limitations. To
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this end, we evaluate a wide range of models:

• General: GPT-3.5&4 (OpenAI, 2022, 2023),
Gemini (Google, 2023) Llama-2 (Touvron
et al., 2023), Mistral (Jiang et al., 2023),
MPT (Team, 2023), WizardLM (Luo et al.,
2023b), Yi (01.AI, 2023), Baichuan (Yang et al.,
2023a), Aquila (BAAI, 2023), Qwen (Bai et al.,
2023), Vicuna (Zheng et al., 2023) Phi-1.5&2 (Li
et al., 2023b), and DeepSeek (DeepSeek, 2023).

• Math-specific: WizardMath (Luo et al., 2023a).

• Finance-specific: FinMA (Xie et al., 2023).

• Code-based: StarCoder (Li et al., 2023a), Star-
Chat (Tunstall et al., 2023), CodeLlama (Rozière
et al., 2023), WizardCoder (Luo et al., 2023b),
and Lemur (Xu et al., 2023).

• Mixture of Experts (MoE): Mixtral of ex-
perts (Mistral.AI, 2023).

By default, we use chat or instruct versions
for each model, when available, otherwise, we used
their base version. Additionally, we select the
most recent, largest, and best-performing check-
point available as of paper submission (i.e, Decem-
ber 13th, 2023). All the model weights of evaluated
open-sourced LLMs can be found at HuggingFace
Model Hub3.

4.2 Retrieval

We experiment with both dense and sparse retrieval
models. For dense retrievers, we specifically ex-
periment with OpenAI Ada Embeddings4 and Con-
triever (Izacard et al., 2022), while for sparse re-
trievers, we use BM25 (Robertson et al., 1995).
These retrievers are employed in the subtasks of
DMSimpLong and DMCompLong to extract the top-n
most related textual and tabular evidence from the
source document. The extracted evidence is then
provided within the LLM input context to answer
the given question.

4.3 Prompting Methods

Following recent LLM reasoning benchmark
works (Lu et al., 2023a; Chen et al., 2023c), we
evaluate two established prompting methods, with
examples of prompt illustrated in Figure 2.

3https://huggingface.co/models
4platform.openai.com/docs/guides/embeddings

[system prompt] 
You are a financial expert, you are supposed to to answer the given 
question. You need to output the answer in your final sentence like 
'Therefore, the answer is ...'. The answer should be a numeric value.

[user input]
Document: 
{document}

Question: {question}

Using the information from the document, let's think step by step to 
answer the question.

Program-of-Thought Prompting Method:

[system prompt] 
You are a financial expert, you are supposed to generate a Python 
program to answer the given question. The returned value of the 
program is supposed to be the answer.

[user input]
Document: 
{document}

Question: {question}

Please generate a Python program to answer the given question using 
the information in the document.
```python
def solution( ):

Chain-of-Thoughts Prompting Method:

Figure 2: Examples of CoT and PoT prompts we used.

Chain-of-Thought The CoT method (Wei et al.,
2022; Kojima et al., 2022) instructs the LLMs to
articulate a step-by-step reasoning process. This
leads to a detailed explanation that culminates in
the final answer.

Program-of-Thought Different from CoT, the
PoT method (Chen et al., 2023a) disentangles com-
putation from the reasoning process by prompting
the LLMs to generate a structured program to rep-
resent the reasoning process. The final answer is
then derived by executing the generated program
with an external calculator.

4.4 Implementation Details

The implementation details, including 1) LLM pa-
rameter setting, 2) tabular data serialization, and 3)
final answer extraction and evaluation are discussed
in Appendix A.1.

5 Experimental Results

Given the extensive context length of input doc-
ument, the main evaluation of DOCMATH-EVAL

is conducted under a zero-shot setting, aiming to
assess LLMs’ capabilities to generate accurate an-
swers without few-shot demonstrations.

5.1 Main Results

We draw the following findings and conclusions
based on the results illustrated in Table 3.
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Model Size Backbone Notes DMSimpShort DMSimpLong DMCompShort DMCompLong Avg. Acc

CoT PoT CoT PoT CoT PoT CoT PoT CoT PoT

Human Expert 91.0 87.0 84.0 76.0

GPT-4-1106 – – – 89.3 87.4 62.6 63.2 80.0 74.4 38.8 41.2 67.7 66.5
GPT-4-0613 – – – 87.9 84.9 56.5 59.3 78.0 74.5 38.5 38.8 65.2 64.4
GPT-3.5-1106 – – – 80.0 80.8 45.8 45.9 50.3 57.6 23.7 27.0 49.9 52.8
deepseek 67B – – 76.5 68.5 40.7 37.0 52.6 50.5 20.0 20.5 47.5 44.1
Mixtral 8x7B – MoE 76.2 45.6 39.5 25.5 48.2 27.0 21.6 12.0 46.4 27.5
GPT-3.5-0613 – – – 70.1 77.6 44.1 44.5 45.0 48.1 21.7 22.7 45.2 48.2
Gemini-Pro – – – 76.7 77.7 34.7 46.3 39.4 52.1 12.7 27.1 40.9 50.8
WizardLM 70B Llama-2 – 66.8 6.1 34.8 1.8 36.6 4.1 16.5 1.3 38.7 3.3
Llama-2 70B – – 53.4 55.7 32.9 33.1 33.6 44.7 13.3 10.8 33.3 36.1
Lemur 70B Llama-2 code-based 50.9 55.4 27.1 27.6 33.9 45.9 12.2 13.3 31.1 35.5
Llama-2 13B – – 51.7 44.9 24.6 20.9 30.4 38.8 10.6 7.8 29.3 28.1
Llama-2 7B – – 35.0 29.8 19.4 10.5 22.0 20.2 7.9 4.1 21.1 16.2
CodeLlama 34B Llama-2 code-based 41.6 49.4 5.3 1.2 26.0 32.3 2.8 1.0 18.9 21.0
Baichuan2 13B Llama-2 – 30.5 18.3 15.8 7.6 15.0 7.8 7.2 2.8 17.1 9.1
Yi 34B – – 34.3 2.3 13.1 1.1 13.3 1.1 7.7 0.6 17.1 1.3
Qwen 14B – – 28.7 1.0 17.2 0.3 12.0 0.5 4.8 0.0 15.6 0.4
WizardMath 70B Llama-2 math 6.0 0.2 33.8 1.1 4.9 0.1 16.3 0.0 15.2 0.3
Mistral 7B Llama-2 – 24.6 15.7 9.5 5.7 14.4 10.7 4.0 1.7 13.1 8.5
WizardCoder 34B Llama-2 code-based 25.6 24.8 9.2 12.7 11.7 12.1 3.8 3.7 12.6 13.4
MPT 30B – – 22.2 0.0 9.8 0.0 11.5 0.0 5.3 0.0 12.2 0.0
AquilaChat2 34B – – 10.4 1.9 6.3 0.6 5.4 1.3 3.0 0.3 6.3 1.1
phi-2 2.7B – – 7.3 1.6 3.2 0.9 4.5 0.7 1.8 0.5 4.2 0.9
Vicuna 33B Llama-1 – 1.9 0.1 9.1 0.1 1.5 0.0 3.7 0.0 4.0 0.1
Pixiu (FinMA) 30B Llama-1 finance 2.1 0.0 6.4 0.0 1.7 0.0 2.7 0.0 3.2 0.0
StarChat-beta 15.5B StarCoder code-based 2.2 9.3 2.0 1.5 2.3 5.2 0.8 1.8 1.8 4.5
phi-1.5 1.3B – – 2.1 0.3 1.1 0.0 2.2 0.3 1.8 0.2 1.8 0.2
StarCoder 15.5B – code-based 2.5 1.0 0.9 0.2 1.7 0.5 0.8 0.1 1.5 0.5

Table 3: Results for CoT and PoT prompting on DOCMATH-EVAL. For DMSimpLong and DMCompLong, we use the
Ada Embedding-based retriever to retrieve top-10 evidence as input document.

GPT-* Significantly Outperforms Other Open-
source LLMs Proprietary models demonstrate
the best performance on each evaluation set of
DOCMATH-EVAL. Notably, GPT-4 significantly
outperforms other LLMs, achieving accuracies of
89.3% on DMSimpShort and 80.0 % on DMCompShort,
respectively, when utilizing CoT prompting. In con-
trast, open-source LLMs lag considerably behind,
indicating a substantial need for future efforts in
model development to bridge the performance gap.

Significant Performance Gap to Human Ex-
pert in the Complex Settings While the cur-
rent best-performing LLM (i.e., GPT-4) achieves
performance comparable to human experts in sim-
ple problem settings, we find significant perfor-
mance gaps in more challenging settings. Specif-
ically, GPT-4 achieves an accuracy of 41.2% on
DMCompLong with PoT, which is far behind the hu-
man expert performance of 76.0%. This under-
scores the need for ongoing development in the
field of LLMs, particularly in complex problem-
solving within expert domains.

Llama-2 Achieves Robust Performance We ob-
serve that the Llama-2 models generally outper-

form their variants in DOCMATH-EVAL task. For
instance, Llama-2-7B shows superior performance
compared to Mistral-7B across all evaluation sets.
Furthermore, despite its specialization in the fi-
nance domain, PiXiu does not demonstrate com-
petitive performance in DOCMATH-EVAL. These
findings suggest that Llama-2 is more versatile and
robust for our specific task, indicating the needs
for future research on exploring the development
of LLMs in specialized domains.

5.2 Program-of-Thought Analysis

We observe that the PoT prompting method consis-
tently improves performance over the CoT method
in GPT-* models and code-based LLMs. In con-
trast, the performance of several general LLMs,
such as Mistral and WizardLM degrades with PoT
prompting. To better analyze the reasons for these
differing performance outcomes, we examine the
execution rate of each LLM under PoT prompting,
measuring how many of the generated Python pro-
grams are executable. Figure 3 in Appendix illus-
trates the relationship between execution rate and
accuracy across different models. It demonstrates
that the degraded performance when applying PoT
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prompting is attributable to the low execution rate.
For instance, although WizardLM achieves compet-
itive performance with CoT, it struggles to consis-
tently generate executable Python solutions, lead-
ing to lower accuracy with the PoT prompting.

5.3 LLM Document Understanding Analysis

We develop a metric, DU-F1, designed to gauge
the nuanced Document Understanding capabilities
of LLMs. Specifically, we apply rule-based meth-
ods to extract all explicit values (i.e., those not de-
rived from the computation of other values) present
within the CoT or PoT output. Subsequently, a
comparative analysis is conducted by juxtaposing
these extracted direct values with those obtained
from the ground truth Python-format solution. The
evaluation criterion employs the F1-score, quan-
tifying the LLMs’ efficacy in evidence extraction.
The relationships between DU-F1 and accuracy
across different LLMs in CoT and PoT prompting
are illustrated in Figure 4 and Figure 5 in Appendix
respectively. The final accuracy of LLMs correlates
with DU-F1, indicating that enhancing the docu-
ment understanding abilities of LLMs can improve
their overall performance on DOCMATH-EVAL.

5.4 Error Analysis

Table 3 reveals the notable superiority of GPT-*
models over other LLMs. Despite this, the accu-
racy falls short of that achieved by human experts.
To further understand the strengths and weaknesses
of GPT-*, we undertook an extensive analysis of
errors. This analysis centered on 100 randomly
selected examples from the dataset where GPT-3.5-
0613 exhibited failure. We pinpoint four common
errors prone to occurring in current LLMs. A de-
tailed explanation for each error type is provided
in Table 6 in the Appendix. Our error analysis
reveals that LLMs are likely to make mistakes in
calculations. To disentangle the computational abil-
ities from the final accuracy, we applied an external
calculator (Inaba et al., 2023) for CoT output to
do computation. Figure 6 illustrates the calibrated
results of LLMs with an external calculator.

5.5 Analysis of Evidence Extraction

We analyze the impact of retrieval performance
on the final accuracy of LLMs in long document
settings. Initially, we evaluate the performance of
the retriever model used. As illustrated in Table 4,
the Ada embedding achieves the best performance.
Specifically, it attains a R@10 of 83% and 69.2%

Evaluation Set Retriever R@5 R@10

DMCompShort

BM25 22.7 36.8
Contriever 57.5 66.6
Ada Embedding 74.0 83.0

DMCompLong

Contriever 31.7 45.8
BM25 41.7 52.3
Ada Embedding 55.6 69.2

Table 4: Results of retrieving top-n question-relevant
evidence from the source documents.

Model top-n Retriever Acc

Llama-2-70B

5 BM25 6.6
5 Contriever 6.8
5 Ada Embedding 10.7

10 Contriever 6.5
10 BM25 8.9
10 Ada Embedding 13.3

– Oracle 17.0

GPT-3.5

5 Contriever 14.6
5 BM25 15.0
5 Ada Embedding 19.0

10 Contriever 14.9
10 BM25 17.1
10 Ada Embedding 21.7

– Oracle 29.4

Table 5: Results of the CoT prompting approach under
various retrieval settings on DMCompLong. A correlation
is observed between LLM performance and question-
relevance of the retrieved evidence.

on DMCompShort and DMCompLong, respectively. As
demonstrated in Table 5, improved performance of
the retriever module consistently enhances the final
accuracy of LLMs in our task. This finding under-
scores the necessity for future work in developing
more advanced information retrieval techniques.

6 Conclusion

This paper presents DOCMATH-EVAL, a compre-
hensive benchmark tailored to assess LLMs’ ca-
pabilities in numerical reasoning and problem-
solving, particularly in the realm of financial doc-
ument analysis. Our comprehensive experiments
over 27 LLMs with CoT and PoT prompting meth-
ods demonstrate that although the top-performing
current model excels in simple problem settings, it
falls short of human expert performance in prob-
lems requiring numerical reasoning over long con-
texts. We contend that DOCMATH-EVAL serves as
a valuable benchmark for future work on evaluating
LLMs’ proficiency in tackling complex numerical
reasoning tasks within expert domains.
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Ethical Consideration

For the DOCMATH-EVAL annotation, we hired
7 graduate students (5 females and 2 males) ma-
joring in finance-related disciplines, all of whom
passed our quality exams in Python and finance.
Before beginning the official annotation process,
each annotator received a two-hour training session
to familiarize themselves with the annotation re-
quirements and learn how to use the annotation in-
terface. For DMCompLong annotation from scratch,
we consider the following as a unit task: (1) cre-
ate one math reasoning question and annotate cor-
responding supporting evidence, (2) compose a
Python-format solution for a given question, and (3)
validate two annotated examples. We pay approxi-
mately $2.5 for each unit task. On average, an anno-
tator can complete 5 unit tasks per hour after train-
ing and practice. For dataset re-annotation from
existing datasets (i.e., DMSimpShort, DMSimpLong,
DMCompLong), we consider the following as a unit
task: (1) validate two questions and their origi-
nal solutions and (2) convert one original solution
to Python format and annotate corresponding sup-
porting evidence. We pay around $1 for each unit
task. On average, an annotator can complete 12
unit tasks per hour after training and practice. The
hourly rates are in the range of $10 to $15, depend-
ing on the different working speeds, which is above
the local average wage for similar jobs. We recom-
mend that annotators spend a maximum of 4 hours
per day to reduce pressure and maintain a comfort-
able pace. In total, the approximate working hours
to construct DOCMATH-EVAL is 700 hours. The
whole annotation work lasted three weeks.

Limitations

In this work, we propose DOCMATH-EVAL and
conduct comprehensive analysis of different LLMs’
capabilities in solving knowledge-intensive math
reasoning problems in finance domains. However,
there are still some limitations: First, our method
for extracting final answer from model output (Ap-
pendix A.1) is still not perfect. In some cases, this
methods fails to locate the answer, leading to the re-
ported accuracy being an approximate lower bound.
Moreover, among recently released finance-specific
LLMs (Wu et al., 2023b; Yang et al., 2023b; Xie
et al., 2023), we only evaluate FinMA, as it is the
only work with a checkpoint available at Hugging-
Face and compatible with the vllm framework. Due
to computational resource constraints, we do not

tune LLMs on a large-scale finance-domain data
ourselves. However, we believe that training on
finance data can help improve LLMs’ capabilities
in solving problems in DOCMATH-EVAL.
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A Experiment

A.1 Implementation Details

LLM Experiment The experiments for open-
sourced LLMs were conducted using the vLLM
framework (Kwon et al., 2023). For all the ex-
periments, we set temperature as 1.0, Top P as 1.0,
and maximum output length as 512.

Input Tabular Data Serialization Building on
previous work that evaluated LLMs on table-
relevant tasks (Chen, 2023; Zhao et al., 2023b,c),
we present our method for processing tabular data
in documents. Specifically, we separate headers or
cells in different columns using a vertical bar (|),
and rows using a newline. This approach allows
for the direct feeding of flattened table input into
LLMs. In our preliminary study, we discovered
that GPT-* and llama-2 can effectively understand
such table representations. Nevertheless, we be-
lieve future research could explore more effective
methods for encoding tabular data.

Final Answer Extraction For LLM with CoT
prompting, we adopt the answer extraction pipeline
from Chen et al. (2023b) to identify the final an-
swer from the model’s output. For LLM with PoT
prompting, we first develop a heuristic method
to extract the generated python solution from the
model’s output. If this python solution is exe-
cutable, we execute it to obtain the final answer.
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Once we obtain the final answer from model’s out-
put, we compare it with the ground-truth answer
for accuracy measurement.
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Error Type Representative Question Explanation

Calculation Error
(31/100)

The evidence retrieval is accurate, but there are errors in the cal-
culation formulas and/or the final results during the generation.

Table Misunderstanding
(26/100)

Model faces challenges in comprehending and parsing cell val-
ues, particularly in complex tables that lack perfect alignment in
the input. This difficulty arises as we serialize tabular data.

Incomplete or Incor-
rect Evidence Retrieval
(23/100)

What is the total value of common stock
issued by the Registrant in USD?

The challenge lies in locating accurate evidence, stemming from
the ambiguity of the questions. The values required for intermedi-
ate reasoning steps are not explicitly stated, leading to difficulties
for the retriever in identifying the correct evidence.

Exceeding Context
Length (11/100)

The evidence paragraphs surpass the context length limit.

Other errors (9/100)

Table 6: Case study on DOCMATH-EVAL’s failure cases.
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Figure 3: Execution rate and accuracy results for various LLMs using PoT prompting on DOCMATH-EVAL.
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Figure 4: F1-score in retrieval evaluation and accuracy results for various LLMs using CoT prompting on
DMCompLong
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Figure 5: F1-score in retrieval evaluation and accuracy results for various LLMs using PoT prompting on DMCompLong
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Figure 6: Accuracy Improvement with External Calculator in CoT
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