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Abstract

Annotated datasets are an essential ingredient
to train, evaluate, compare and productional-
ize supervised machine learning models. It
is therefore imperative that annotations are of
high quality. For their creation, good quality
management and thereby reliable quality esti-
mates are needed. Then, if quality is insuffi-
cient during the annotation process, rectifying
measures can be taken to improve it. Qual-
ity estimation is often performed by having
experts manually label instances as correct or
incorrect. But checking all annotated instances
tends to be expensive. Therefore, in practice,
usually only subsets are inspected; sizes are
chosen mostly without justification or regard
to statistical power and more often than not,
are relatively small. Basing estimates on small
sample sizes, however, can lead to imprecise
values for the error rate. Using unnecessarily
large sample sizes costs money that could be
better spent, for instance on more annotations.
Therefore, we first describe in detail how to use
confidence intervals for finding the minimal
sample size needed to estimate the annotation
error rate. Then, we propose applying accep-
tance sampling as an alternative to error rate
estimation We show that acceptance sampling
can reduce the required sample sizes up to 50%
while providing the same statistical guarantees.

1 Introduction

Having large, high-quality annotated datasets avail-
able is crucial for successfully training machine
learning models, as well as for evaluating and
bringing them into production (Banko and Brill,
2001; Sun et al., 2017; Jain et al., 2020; Sambasi-
van et al., 2021). Therefore, during the creation of
new datasets, it is essential to gauge dataset qual-
ity efficiently and statistically soundly. In case the
quality is too low, then rectifying measures can be
taken to improve it. These can be, among others, to
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Figure 1: Overview of agile data corpus creation, the rec-
ommended workflow to annotate high-quality datasets.
This work explores how to efficiently estimate annota-
tion quality using statistics.

analyze corner cases, correct annotations, re-train
annotators, as well as improving or adjusting the
annotation guidelines (Voormann and Gut, 2008;
Hovy and Lavid, 2010; Pustejovsky and Stubbs,
2013; Ide and Pustejovsky, 2017). It is also im-
portant to check dataset quality before release, so
that users can rely on the data for their downstream
application.

Estimating annotation quality, however, is expen-
sive, time consuming and tedious, as it typically
requires skilled annotators or experts that manually
inspect the annotated instances (Monarch, 2021).
Therefore, in practice, often only small subsamples
are inspected and used to estimate data quality or
no estimate at all is performed (Klie et al., 2024).
Small sample sizes have low statistical power and
large error margins, which bears the risk of hav-
ing inaccurate and too optimistic error rate esti-
mates (Button et al., 2013; Passonneau and Carpen-
ter, 2014). Having no error estimate at all makes
it difficult to track data quality throughout the an-
notation process. These issues can then result in
datasets that contain a non-negligible percentage
of incorrect annotations (Northcutt et al., 2021).
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Subsequently, using datasets with label errors then
can lead to inference errors in production, or wrong
conclusions when comparing model architectures
and training regimes (Barnes et al., 2019; Reiss
et al., 2020; Vasudevan et al., 2022; Vădineanu
et al., 2022).

In this work, we hence emphasize the importance
of proper quality estimation during, as well as after,
the annotation process. We then describe how to
calculate the sample size needed to estimate the
proportion of annotation errors using confidence
intervals given certain desired statistical guarantees.
Our analysis shows that estimating the annotation
error rate, which is expected to be small, requires
relatively large sample sizes to achieve tight bounds
and high confidence in the estimate. As this can be
prohibitively expensive, we suggest using accep-
tance sampling (Dodge, 1943), a statistical quality
management technique stemming from industrial
manufacturing, instead. Acceptance sampling does
not estimate the error proportion directly. It judges
batches of annotated instances on a accept/reject
basis whether they reach a desired quality level or
not. This is done by inspecting subsamples whose
size is based on the desired statistical guarantees.
We show that it can be a viable approach for an-
notation quality estimation: it is able to provide
similar statistical guarantees as confidence inter-
vals while requiring up to 50% less samples. Our
contributions are as follows:

• We show the effect of too small sample sizes
on the reliability of annotation error estimates.

• We propose using confidence intervals to esti-
mate the annotation error rate efficiently and
statistically soundly.

• We propose applying acceptance sampling to
the annotation process. Our results show that
it is a viable technique for annotation quality
control while reducing required sample sizes
compared to confidence intervals.

• We provide an easy-to-use and well-tested
Python package that implements confidence
intervals and acceptance sampling.1

To the best of our knowledge, we are the first to in-
vestigate statistical error rate estimation and accep-
tance sampling in the context of data annotation.

1https://github.com/apple/
ml-sampleplan

2 Background

Performing annotation quality estimation is crucial
during and after the annotation process. Accurate
quality estimates are needed, because if it is known
that quality is insufficient, countermeasures can be
taken to improve the quality. This is closely inter-
twined with how the annotation process is struc-
tured, which we discuss first. Then, we present the
most common ways to estimate annotation quality.

Annotation Process How the annotation process
is structured has a large impact on the resulting data
quality. The traditional dataset creation process is
similar to the waterfall model, in which phases of
data collecting, annotation scheme creation, anno-
tation and validation follow another (Voormann
and Gut, 2008). A more modern approach is agile
corpus creation (Alex et al., 2010; Hovy and Lavid,
2010; Pustejovsky and Stubbs, 2013) where anno-
tations are given out in batches. After each step,
the quality is estimated and annotations are vali-
dated. This allows evaluating the quality through-
out the annotation process to incorporate feedback,
develop or adjust the annotation guidelines, retrain
annotators, or re-annotate batches with too many
errors (Hovy and Lavid, 2010). In both cases, it
is recommended that annotations are not just pub-
lished, but the quality is validated via manual in-
spection during the creation and before release.

Agreement A common approach to determine
annotation reliability is to collect multiple anno-
tations per instance. These can then be used to
compute inter-annotator agreement (Krippendorff,
2004; Artstein and Poesio, 2008). However, agree-
ment does not automatically mean correctness, as
recent work has shown that state-of-the-art datasets
still can contain a non-negligible percentage of er-
rors despite high agreement (Northcutt et al., 2021).
Using agreement can also substantially increase
the cost. For many datasets, only one annotation
per instance is collected for saving save costs, or
because qualified annotators are difficult to recruit.
Then, only a subset of instances are annotated mul-
tiple times, based on which agreement is calcu-
lated. Oftentimes, the resulting sample size is too
low for a confident estimate with low margin of er-
ror (Passonneau and Carpenter, 2014). The compu-
tation and interpretation of agreement is often also
not straightforward (Amidei et al., 2019). Hence,
agreement should not be the only metric of qual-
ity (Monarch, 2021).
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Error Rate Estimation Due to the aforemen-
tioned issues, it is recommended that annotation
projects use (expert) annotators that inspect a (suf-
ficiently large) subset of annotations to estimate
the percentage of errors, which we call here the
error rate (Monarch, 2021, Chapter 8.4). During
agile corpus annotation, the error rate can then be
used to determine whether batches are of sufficient
quality or require further improvement. What is
missing in many annotation projects, however, is
statistical grounding and analysis of their quality
estimation step. For instance, sample sizes to esti-
mate the error rate are often picked ad-hoc. That
is, they are not grounded in statistics and are often
too small (Klie et al., 2024). The error rate then
is often only a point estimate, confidences in the
estimates are only rarely taken into account. This
can lead to wrong estimates of the error rate and
negatively impact the underlying data quality and
downstream usage of the final dataset.

To alleviate the aforementioned issues, we pro-
pose using error rate estimation with a sound, statis-
tical footing. For this, we first define best practices
for estimating the annotation error rate using con-
fidence intervals to determine the minimal sample
size needed given desired statistical guarantees. In
addition, we introduce acceptance sampling to the
annotation process, which we describe and analyze
in the following. To the best of our knowledge,
we are the first to discuss statistical quality control
and especially acceptance sampling, coming from
manufacturing, to the annotation process.

Automatic Annotation Error Detection An al-
ternative to random sampling followed by man-
ual inspection is to use automatic annotation er-
ror detection (Dickinson, 2005). This describes
algorithms that automatically find errors, e.g. by
using machine learning models or rules. Several
projects have used annotation error detection to re-
duce the effort for finding and improving annotated
datasets (e.g., Reiss et al., 2020; Northcutt et al.,
2021). However, it is less suitable for actually es-
timating annotation quality, because sampling this
way might yield biased results and thus unreliable
error estimates. Therefore, we still find random
sampling to be the best tool for precise annotation
quality estimation.

3 Annotation Quality Estimation

The goal of this work is to ground annotation error
estimation in statistics and to make it more econom-

ical. Therefore, in the following, we first model the
process of manual inspection as sampling without
replacement. We then describe two statistical qual-
ity estimation methods for annotation, confidence
intervals and acceptance sampling.

The setting we consider here is annotation in
batches, the modus operandi of the widely recom-
mended, agile annotation process (Voormann and
Gut, 2008; Hovy and Lavid, 2010; Pustejovsky and
Stubbs, 2013). Working with batches instead of
all data at once allows stakeholders to incorporate
feedback during an annotation project and improve
the data quality during annotation if necessary. But
to apply countermeasures in case quality is not suf-
ficient, it is first necessary to know whether the
quality is sufficient or not. As our goal is to esti-
mate annotation quality with a minimum of manual
inspection for a given level of confidence and pre-
cision, we also discuss how to compute the sample
size needed for each method. We compare the pre-
sented methods in Section 4.

3.1 Quality Estimation as Sampling

We model the process of manually inspecting a sub-
set of annotations as sampling n instances from a
dataset of size N and labeling them as either cor-
rect or incorrect. Because no instance is inspected
repeatedly, we model it as sampling without re-
placement. Hence, this is best described by the
hypergeometric distribution. Note that our sam-
pling is independent of the initial annotators and
their chance of making errors, as the inspection
happens after the annotations have been already
made.

Approximating the hypergeometric distribution
with a binomial distribution is tempting, as it would
simplify the math and its implementation. But in
our setting, this is often not justified, as the rule
of thumb for it, n/N < 0.1, does not hold; the
batch size is relatively small and for tight statisti-
cal guarantees, the sample size is comparatively
large. Using this approximation can lead to wildly
different and often higher suggested sample sizes
compared to the exact solution. This is also shown
in supplementary results (Appendix C). Using the
hypergeometric distribution, however, also makes
the following implementations more complicated
and error-prone, which is why we employ testing
and validation for our accompanying Python library.
But one advantage when using the hypergeometric
distribution is that it has a natural, maximum num-
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ber of inspections, which is when each instance has
been inspected once. This is not so clearly defined
for the binomial setting as items can be inspected
more than once.

Our model assumes that instances and errors are
made independent and are identically distributed.
Therefore, it is important that the actual sampling
procedure and granularity takes this into account.
For instance for span labeling, (an example task
would be named entity recognition), the sampling
should be based at least on sentences, as spans
often depend on each other. For text recognition
or object classification datasets, an instance should
preferably be an image and not a single bounding
box.

3.2 Error Rate Estimation

The most commonly used approach to quality es-
timation is to directly estimate the error rate. It is
computed as the ratio of annotations having incor-
rect labels and the total number of annotations. If it
is too high for a batch of annotated instances, then
it is rejected and measures are to be taken to im-
prove its quality. In the vast majority of works that
actually compute the error rate, it is given as a point
estimate (Klie et al., 2024). This has the disadvan-
tage that it does not convey a notion of precision or
potential margin of error (see also Fig. 3). There-
fore, we suggest using confidence intervals, which
are a common method to estimate a proportion and
gauge the certainty of the estimate.

A confidence interval is an interval estimate for
an unknown parameter θ. Its width is given by
a designated confidence level α. In the long run,
when estimating θ repeatedly from numerous sam-
ples, then approximately α% of the computed con-
fidence intervals contain θ. Desirable properties of
confidence intervals are that the specified α-level
actually holds while being as narrow as possible;
the width of the confidence interval determines the
precision of an estimate. An interval’s margin of
error (also called half-width, it is equal to half of an
interval’s width) is a more intuitive value to express
precision: given a point estimate θ̂ and a margin of
error m, if sampling repeatedly many times, then
α% of estimates will be in [θ̂ −m; θ̂ +m].

We favor using confidence intervals over point
estimates, as the former give additional informa-
tion about confidence and precision. Confidence
intervals can also be used to estimate the sample
size needed for a given confidence level, which we

investigate in our analysis. We are not aware of any
works using confidence intervals to estimate the
error rate or required sample size. While checking
the literature, we encountered only few works that
reported an error rate. All of which used point es-
timates and did not justify the sample size in case
they inspected only a subset.

Many different ways of constructing confidence
intervals have been devised for estimating propor-
tions (Brown et al., 2001). Using confidence inter-
vals based on uncorrected normal approximations,
like the Wald interval that is often taught in many
statistics textbooks and courses, is strongly discour-
aged as it has low coverage and performs poorly for
proportions close to 0 and 1 (Santner, 1998; Brown
et al., 2001). But low error rates are desired and ex-
pected for annotation errors. Also, most confidence
intervals are designed for the binomial distributions
and can again give incorrect answers when using
them for hypergeometric distributions. This is why
we recommend computing an the exact confidence
interval that directly uses the underlying distribu-
tion (Clopper and Pearson, 1934). An exact (1−α)
confidence interval for a parameter θ modeled by a
discrete distribution, as proposed by Clopper and
Pearson (1934), is given by

P (X ≥ k; θl) =
α1

2
,

P (X ≤ k; θu) =
α2

2
,

α1 + α2 ≤ α ,

where P (·) is a cumulative distribution function.
The result after solving this equation system is an
confidence interval [θl, θu] where θl ≤ θ ≤ θu.
For simplicity, similarly as in the literature, we
assume that α1 = α2. Then, the equations can be
solved individually to find θl and θu by numerically
finding roots in Pl(θl) − α/2 = 0 and Pu(θu) −
α/2 = 0.

To compute the sample size required for a given
interval half-width and confidence level α, we sim-
ilarly solve

P (X ≥ k; θl) + P (X ≤ k; θu)− α = 0 ,

via numerical root finding. This requires assuming
a parameter θ̂ (in this work, θ is an assumption for
the error rate) as well as the desired interval width,
from which θl and θu are computed.

Due to the underlying discreteness of the hy-
pergeometric distribution, this system of equations
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Figure 2: Flowcharts for the three different acceptance
sampling methods discussed in this work.

is usually not exactly solvable for every desired
value of α. As a side effect, exact intervals are con-
servative, that means they have higher confidence,
coverage and width than specified for a (1 − α)
interval (Newcombe, 1998; Brown et al., 2001).
Even though this incurs additional costs, we ar-
gue that it is desirable that an exact interval errs
on the side of suggesting slightly larger sample
sizes than required and working for any proportion.
Approximations would instead provide too small
sample sizes or might break down in edge cases.
For the hypergeometric distribution, more complex
algorithms exist that can find minimal-width inter-
vals (Wang, 2015; Bartroff et al., 2022). These are
difficult to implement, very few software packages
for them exist as of yet and their inversion to com-
pute the sample size for given confidence levels
and width instead of the confidence interval itself
is not given. This is why we leave their application
as future work but point them out as potential alter-
natives to using exact Clopper-Pearson intervals.

3.3 Acceptance Sampling

Acceptance Sampling (Dodge, 1943) is a quality
management approach originally applied by the US
military to gauge the quality procured equipment
on delivery. Adjusted for the task of estimating the
quality of an annotated dataset, it works the follow-
ing. Each item in a batch is either a correctly or
incorrectly annotated instance. Instead of inspect-
ing 100% of each batch, a subsample of instances
is taken and manually inspected. If too many in-
stances are found to be incorrect, then the whole

batch is rejected, otherwise it is accepted.
A sampling plan defines how many instances

to sample, how to sample, and the boundaries for
when to accept or reject. It is the solution to the
following equations:

P (X ≤ c; pa, n) ≥ 1− α , (1)

P (X ≤ c; pr, n) ≤ β ,

with
0 < pa < pr < 1 ,

and
1 > 1− α > β > 0.

The probability P is dependent on the underlying
distribution and sampling procedure. In general,
Eq. (1) is non-linear and has no closed-form solu-
tion. Inputs are the predetermined desirable accep-
tance error rate pa and unacceptable error rate pr
as well as the so called producer’s risk α and con-
sumer’s risk β. α is the probability to reject a good
batch of instances, β the probability to accept a bad
batch. These are similar to Type I (false-positive)
and Type II errors (false-negative) and α is iden-
tical to the α for confidence intervals. The range
between pa and pr is called the indifference zone,
we assume that quality in this zone is good enough
for borderline accepting a batch. Each plan has
an associated average sample number, that is, on
average, how many instances need to be inspected
until a verdict to accept or reject is reached.

It has to be noted that the goal of acceptance
sampling is not to estimate the actual error rate, it
just determines when to accept or reject a batch.
But if the batch is accepted, then its latent error rate
is below pa with a chance of β. In the following,
we discuss the three most common acceptance sam-
pling variants, single sampling, double sampling
and sequential sampling. A depiction of the differ-
ent acceptance sampling types is given in Fig. 2.

Single Sampling From a batch of annotated in-
stances of size N , a sample of size n is inspected.
If the sample contains more annotation errors than
a critical value c, the whole batch is rejected, oth-
erwise, it is accepted. For single sampling, Eq. (1)
can be solved via systematic search, as described
by Guenther (1969) and Meeker (1975).

1. Start with c∗ = 0.

2. Find the largest nU so that
P (X ≤ c∗; pa, nU ) ≥ 1− α
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3. Find the smallest nL so that
P (X ≤ c∗; pr, nL) ≤ β

4. If nL ≤ nU , then (nL, c
∗ is a plan that satis-

fies the requirements with minimum sample
size, n∗ = nL.

5. If nL > nU , increment c∗ by one and go to
step 2.

Step 2 and 3 can be computed via the quantile
function of the respective distribution. The average
sample number for a plan is n∗ and constant.

Double Sampling Instead of taking only a single
sample, in double sampling, batches are accepted
or rejected based on two consecutive, smaller sub-
samples. At first, a sample of size n1 is taken and
inspected. If it contains less incorrect annotations
than a lower limit c1, the batch is accepted, if it con-
tains more error than an upper limit c2, the batch is
rejected. If the number of errors it is between both,
then a second sample of size n2 is taken; the batch
is rejected if the number of incorrect instances in
both samples combined is larger than c2. The ad-
vantage of double sampling is that in the happy
case, only n1 samples need to be inspected, thereby
saving time and money. To make the actual com-
putation more tractable, we use only double-stage
plans where n1 = n2 . We analyze two versions
of double sampling, full where samples are always
completely inspected and curtailed, where inspec-
tion of the second sample is stopped in case there
are more than c2 defects found. It is recommended
to always at least look at the first n1 samples to get
a rough estimate for the error rate (Duncan, 1959),
we will follow this textbook advice in this work.

Double sampling plans as solutions to Eq. (1)
can be computed via Algorithm 1 in Luca et al.
(2020), to which we refer the interested reader. The
average sample number for a full double sampling
plan is then given by

ASNf = n1 · PI + (n1 + n2)(1− PI) ,

where PI is the probability that the batch is ac-
cepted or rejected after the first sample,

PI = P (D1 ≤ c1) + P (D1 > c2).

The ASN for a curtailed double sampling plan is

ASNc = n1 +
c2∑

i=c1+1

P (n1, i)[n2PL(n2, c2 − i)

+
c2 − i+ 1

p
PM (n+ 1, c2 − i+ 2)] ,

where P (n1, i) is the probability of observing ex-
actly i errors in a sample of size n1, PL(n2, c2 − i)
the probability of observing c2 − i or fewer errors
in in a sample size of n2 and PM (n+1, c2− i+2)
the probability of observing exactly c2 − i+ 2 er-
rors or more in a sample of size n+ 1, c2. A good
description of double sampling and its mathemati-
cal description can also be found in Duncan (1959,
Part 2 VIII 1.3) and Montgomery (2013, Section
15.3.1).

Sequential Sampling The generalization of dou-
ble sampling is sequential sampling. It is based on
the sequential probability ratio test (Wald, 1947;
Meeker, 1975). In this setting, instances in a batch
are inspected one by one and after each step, it is
decided whether to stop and accept or reject a batch,
or to continue the inspection. The acceptance and
rejection boundaries are computed at every step
from pa and pr, α and β as well as the number of
incorrect and total instances inspected so far. It
can happen that the stopping criterion never would
hold and thereby the whole batch would need to
be inspected, especially if the actual error rate is
between pa and pr. As this is an undesirable out-
come, we recommend stopping inspection at the
sample size of single sampling and accept or reject
based on its critical value, as proposed by Meeker
(1975). Thereby, the statistical guarantees still hold,
as then sequential sampling essentially turned into
single sampling. Curtailment requires adjusting
the acceptance and rejection borders to shrink the
zone of indifference and thus stop earlier. Note
that this curtailment and adjustment is an approx-
imation and better stopping conditions can exist.
But computing an optimal curtailment in general is
difficult (Tantaratana and Thomas, 1977), which is
why we leave evaluating this case for future work.

For the binomial case, closed form solutions for
Eq. (1) exist to compute sequential sampling plans,
see Duncan (1959, Part 2 VIII 2.1) or Montgomery
(2013, 15.3.3). For the hypergeometric distribu-
tion, computing a sequential sampling plan is more
intricate. We use the direct method proposed by
Aroian (1968) and adapted by Meeker (1975) for
the hypergeometric distribution. When curtailing,
for hypergeometric distribution, we compute the
threshold via single sampling and wedge truncation,
for the binomial, we use 3n from the corresponding
single sampling plan (Montgomery, 2013).
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Figure 3: Sampling error vs. margin of error when sam-
pling without replacement for manually inspecting a
dataset to estimate the error rate. We compute a hyper-
geometric confidence interval for different confidence
levels α and two underlying, true error rates pe and
N = 1000. The closer the true error rate (and thereby
hopefully the assumed error rate to compute the sample
size) is to 0.5, the larger the required sample size is. The
jaggedness is caused by the distribution’s discreteness.

4 Sample Size Analysis

To make quality management more feasible, our
goal is to estimate the quality in annotated batches
given a desired set of statistical guarantees while in-
specting as few samples as possible. To emphasize
the importance of choosing a proper sample size,
we first briefly simulate the relation between sam-
ple size and the reliability of an estimate. If it is too
small, then the margin of error is large compared to
the proportion estimated and the quality estimate
cannot be trusted. Then, we compare confidence
intervals and acceptance sampling with regard to
their required average sample number (ASN).

The following results are derived analytically
and are agnostic to the underlying datasets, as long
as the statistical assumptions hold; only dataset size
and error counts are used. We show the application

Strict Relaxed

pa 0.01 0.02
pr 0.03 0.05
α 0.01 0.05
β 0.1 0.2

CI half width 0.01 0.02

Table 1: Target quality levels

of acceptance sampling on existing datasets with
known error rate Section 5.

The ASN for a method is the expected number of
instances that need to be inspected until a decision
can be made to accept or reject a batch. In case of
confidence intervals and single sampling, the ASN
is a constant; the whole sample is always inspected
as there is no form of early stopping. For double
and sequential sampling, the ASN depends on the
true error rate in the current batch.

For our analysis, we assume a batch size of
N = 1000 . If it was smaller, then it is often feasi-
ble to inspect whole batches. If it was larger, then
this causes only minor changes to the required sam-
ple sizes (see Fig. 9). We choose two sets of values
simulating two different quality control regimes,
which we call strict and relaxed. They are listed
Section 4. Computing the minimum sample size to
achieve a certain confidence interval width given
a confidence level requires assuming a value for
the a-priori unknown true error rate pe. We choose
to calculate the sample size both for pe = pa as
well as pe = pr. The closer pe is to 0.5, the larger
the required sample size would be. Note that us-
ing a sample size estimate for a pe leads to under-
powered estimates if p > pe, which makes using
confidence intervals more difficult to use correctly
compared to acceptance sampling, where this is not
needed. Therefore, the rates for which we estimate
confidence interval sample sizes can be seen as an
optimistic estimate.

4.1 Sampling Error

In Fig. 3, we show the relation between sample
sizes and the precision of the resulting estimate.
The smaller a sample that is used to estimate a
proportion, here the error rate, the more imprecise
an estimate is. As a proxy for the reliability of
the estimate, we compute a hypergeometric con-
fidence interval and use the resulting margin of
error as our metric, which is half of the interval’s
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Figure 4: Average sample numbers (ASN) required for a strict and relaxed configuration for Confidence Intervals
(CI), Single Sampling Plans (SSP), Double Sampling Plans (DSP), and Sequential Sampling Plans based on the
Sequential Probability Ratio Test (SPRT). Dotted lines are plans with curtailment. The confidence interval requiring
the smaller sample size is the one assuming pa.

width (Section 3.2). We assume here an underly-
ing true error rate in this simulation of 5% or 10%,
which are common error values based on the litera-
ture (Northcutt et al., 2021). Overall, it can be seen
that for sample sizes up to around 300, the margin
of error is relatively large. An interval estimate for
instance based on 100 samples would be 5±4% for
the former and 10± 5.5% for the latter with 95%
confidence. In case the sample size is 200, then it
would be 5±2.75% for the former and 10±3.75%
for the latter with 95% confidence. This shows that
for lower sample sizes, the error margin causes the
estimates to be rather imprecise and not useful.

4.2 Average Sample Sizes

In the following, we analyse how many samples
are needed at minimum for given statistical guar-
antees and desired quality levels. The ASN curves
for the strict and relaxed configurations are shown
in Fig. 4. Note that these are obtained analytically
and are not simulated. It can be seen that actually
estimating the error rate with confidence intervals
almost always requires the largest sample sizes and
around double the samples compared to the best
acceptance sampling approach, curtailed sequential
sampling. This is because the error rate is assumed
to be a relatively small proportion and a small in-
terval width is desired in order to have meaning-
ful bounds. Double sampling without curtailment
typically requires the same or more samples than
single sampling, but curtailment almost always has
the same or better sample efficiency. Sequential

sampling requires overall the fewest samples when
used with curtailment. Settling with less confidence
in the results, that is using the relaxed configura-
tion, can half the sample size needed compared to
a stricter plan.

Overall, we see that acceptance sampling, while
not directly estimating the error rate, can be a feasi-
ble and economic alternative compared to the typi-
cally used point estimate or confidence intervals. It
can reduce the required sample size by almost half
while providing the same statistical guarantees.

5 Acceptance Sampling in Practice

In the following, we show the application of ac-
ceptance sampling on actual datasets with known
error rates and observe their behaviour. For this,
we use two datasets that have been found to contain
non-negligible amounts of annotation errors:

CoNLL 2003 is a dataset for named entity recon-
gition, introduced by Tjong Kim Sang and
De Meulder (2003); errors analysis was con-
ducted by Reiss et al. (2020).

IMDB is a dataset for sentence-level sentiment
classification, introduced by Maas et al.
(2011), error analysis was performed by
Northcutt et al. (2021).

We use the dataset and error counts as described in
Klie et al. (2023). These are listed in Table 2.
For CoNLL 2003, we consider annotations and
errors on sentence-level in order to satisfy the in-
dependence assumption needed for the statistical
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Figure 5: Simulating using acceptance sampling on
existing NLP datasets. We run 1000 simulations with
different seeds and count how often a sample was ac-
cepted or rejected .

methods used; a sentence is considered erroneous
if at least one span is annotated incorrectly. We use
the same configurations as described in Section 4.
Fig. 5 shows the results. It can be seen that for
Conll-2003, almost all samples are rejected. This
is expected, because the error rate is above 3%
and 5% for the strict and relaxed configurations,
respectively. For IMDB, the error rate is in the
zone of indifference for the strict configuration.
Thus, the results are inconclusive. In a real setting,
these batches would be either accepted or inspected
further to determine the underlying error rate as
well as to correct instances (Institute of Medicine
and National Research Council, 1985, Chapter 6).
In its relaxed configuration, most samples are ac-
cepted even though the error rate is slightly above
pa. Most methods still accept there, except for se-
quential sampling without curtailment. Average
sample sizes for these plans are listed in Table 3.

6 Conclusion

In this work, we proposed two methods statisti-
cal concerning quality control for data annotation.
First, we showed how to estimate the error rate sta-
tistically sound using confidence intervals. Given

Dataset #Errors #Sentences % Error

ConLL 2003 217 3380 6.42
IMDB 499 24799 2.01

Table 2: Dataset and error statistics for ConLL 2003
and IMDB as given in Klie et al. (2023).

desired confidence and precision of the estimate,
confidence intervals compute the minimal sample
sizes needed to statistically guarantee these. Hence,
we presented an alternative technique from manu-
facturing, that is, acceptance sampling. Acceptance
sampling does not estimate the error rate directly,
but can be used to determine whether to accept or
reject batches of annotated instances. For both we
analysed the average sample sizes needed for two
configurations of confidence and power. We show
that estimating the error rate using confidence in-
tervals can require surprisingly large sample sizes,
especially if more tight boundaries are wanted. Ac-
ceptance sampling, especially sequential sampling
with curtailment, can be a viable alternative as it
overall requires far less inspection. Finally, we
urge researchers to apply statistical quality control
during their annotation campaign, use large enough
sample sizes and report their approaches alongside
the recommended datasheet for datasets (Gebru
et al., 2021). Ideally, the error rate of the final
artifact is also estimated and reported.

7 Limitations

In this work, we described how to thoroughly esti-
mate the error rate using confidence intervals and
how to apply acceptance sampling for quality con-
trol during and after annotation campaigns. While
already working well, there are some limitations
that need to be taken into account. For our analy-
sis, we used the closed form solutions to estimate
the average sample numbers. As these are theoret-
ical results, it would be worthwhile to apply the
presented methods during real annotation projects
and study their feasibility there. This is especially
relevant for sequential sampling, as its good perfor-
mance relies on true error rates that are either below
the desired acceptance rate or above the rejection
rate. In cases where it is often in the indifference
zone, it might degrade to single sampling.

It is also required that annotations are made inde-
pendent and identically distributed. This assump-
tion needs to be validated in more depth, as annota-
tions depend on the underlying datum to annotate
which can be dependent, e.g., the text or image, or
on the annotators.

Finally, one limiting factor and important reason
why it is maybe only rarely deployed of quality con-
trol is the additional cost it comes with; it has to be
weighed against annotating more with potentially
having lower resulting data quality.
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A Acceptance Sampling Simulations using Existing NLP Datasets

This section contains additional information extending the results from the experiments in Section 5.

Dataset QA Config Plan Sample Size

CoNLL 2003

strict

Single Sampling 585
Double Sampling Full 720
Double Sampling Curtailed 361.296
Sequential Sampling Full 92.36
Sequential Sampling Curtailed 92.36
Confidence Interval pa 803
Confidence Interval pr 1389

relaxed

Single Sampling 278
Double Sampling Full 314
Double Sampling Curtailed 184.508
Sequential Sampling Full 91.833
Sequential Sampling Curtailed 98.299
Confidence Interval pa 288
Confidence Interval pr 443

IMDB

strict

Single Sampling 682
Double Sampling Full 758
Double Sampling Curtailed 682.675
Sequential Sampling Full 627.084
Sequential Sampling Curtailed 461.713
Confidence Interval pa 992
Confidence Interval pr 1993

relaxed

Single Sampling 305
Double Sampling Full 350
Double Sampling Curtailed 347.572
Sequential Sampling Full 620.491
Sequential Sampling Curtailed 154.949
Confidence Interval pa 260
Confidence Interval pr 501

Table 3: (Average) sample sizes when applying acceptance sampling and using confidence intervals on ConLL 2003
and IMDB over 1000 repetitions. Overall, sequential sampling with curtailment has the lowest samples inspected.
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B Validation

Acceptance sampling for a hypergeometric distribution is quite intricate and difficult to implement. We
validate our implementations for the different acceptance sampling approaches in the following and show
that our implementation is correct.

B.1 Comparison of Operating Characteristic curves

The Operating Characteristic curve (OC) for an acceptance plan shows the ability to discriminate good and
bad datasets over the range of possible error rates. When using the same parameters for a binomial and
hypergeometric plan and simulating sampling with replacement for the binomial and with replacement for
the hypergeometric case, the OC curves of both should be close to each other. The binomial solution has
available implementations and closed forms that can be assumed to be correct, we re-implemented these
and compared our implementation to existing implementations and tabulated values. This binomial case is
then used to compare OC curves to acceptance sampling with the hypergeometric distribution. OC curves
for single, double, and sequential sampling across different dataset sizes can be seen in Fig. 6. Curves for
binomial and hypergeometric as the underlying distribution follow each other very close, validating our
implementations.
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Figure 6: Operating Characteristic curves plotting error rate against probability of accepting a lot. We simulate
acceptance sampling with replacement (binomial ) and without replacement (hypergeometric ) over 1000
repetitions and count how often for a probability, plans told to accept or reject. Horizontal lines indicate pa and
pr . Note that there is no real stopping criterion for sequential sampling for binomial, which is why we simulate
stopping either if the number of errors steps outside the boundaries or after 10 times the dataset size.
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B.2 Simulation
We repeatedly simulate manual inspection as sampling without replacement, compute the average sample
number (ASN) and compare the results to the analytical solutions. The results are depicted in Fig. 7. It
can be seen that both are almost identical, showing the correctness of our implementation. We attribute
minor differences for sequential sampling to the approximated curtailment in the analytical computation.
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Figure 8: Analytical and simulated results for the average sampling numbers (ASN) across approaches and error
rates p. We simulate 1000 samples per possible error count in 0 . . . 1000. It can be seen that the simulated sample
size numbers are almost always very close to the analytically obtained ones, validating that our implementations are
correct. In the case of the curtailed sequential sampling, the average sample numbers can be slightly overestimated
in the indifference zone, which we attribute to the approximate curtailment used.
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C Using the Hypergeometric vs. the Binomial Distribution

Manual inspection as sampling without replacement is best described by the hypergeometric distribution.
It is often approximated by the binomial distribution, as for the latter, more implementations and research
is available. In Fig. 9, we compare both across different dataset sizes and show that approximation can
lead to inaccuracies. Therefore, care needs to be taken to only approximate if the dataset size is at least 10
times larger than the sample size. For the configurations used in this work, this turns out to be dataset
sizes above 5000 instances.
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(b) Relaxed

Figure 9: Comparing the analytical average sample numbers (ASN) when using the binomial distribution (sampling
with replacement, ) and hypergeometric distribution (sampling with replacement, ) to compare the average
sample numbers required for a strict and relaxed configuration across different dataset sizes N . The hypergeometric
model best describes annotation inspection, as no instance is inspected twice; the binomial is an approximation. It
can be seen that there are stark differences between the suggested average sample numbers, especially for dataset
sizes below 5000 and for sequential sampling. Horizontal lines indicate pa and pr .
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