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Abstract

Originating from China’s Shang Dynasty ap-
proximately 3,000 years ago, the Oracle Bone
Script (OBS) is a cornerstone in the annals
of linguistic history, predating many estab-
lished writing systems. Despite the discov-
ery of thousands of inscriptions, a vast ex-
panse of OBS remains undeciphered, casting
a veil of mystery over this ancient language.
The emergence of modern AI technologies
presents a novel frontier for OBS decipher-
ment, challenging traditional NLP methods
that rely heavily on large textual corpora, a
luxury not afforded by historical languages.
This paper introduces a novel approach by
adopting image generation techniques, specifi-
cally through the development of Oracle Bone
Script Decipher (OBSD). Utilizing a condi-
tional diffusion-based strategy, OBSD gener-
ates vital clues for decipherment, charting a
new course for AI-assisted analysis of ancient
languages. To validate its efficacy, extensive
experiments were conducted on an oracle bone
script dataset, with quantitative results demon-
strating the effectiveness of OBSD. Code and
decipherment results will be made available at
https://github.com/guanhaisu/OBSD.

1 Introduction

Oracle Bone Script (OBS) represents an ancient lan-
guage inscribed on turtle shells and animal bones,
extensively utilized during China’s Shang Dynasty,
a feudal dynasty dating back 3,000 years. The
script not only chronicled the human geography
and daily activities of that period but also encap-
sulates invaluable historical significance, offering
a unique window into the linguistic and cultural
practices of early Chinese civilization. However,
despite the discovery of tens of thousands of frag-
ments of oracle bones, a significant portion of the
characters remain undeciphered (Wang and Deng,
2024), leaving the rest shrouded in mystery. To
date, more than 4,500 Oracle Bone Script (OBS)

characters have been discovered, but only about
1,600 of these have been deciphered and linked
to their modern Chinese counterparts. In modern
Chinese, Unicode includes more than 90,000 Chi-
nese characters, though only approximately 3,500
characters are commonly used in contemporary
Chinese society. This challenge of understanding
the remaining undeciphered OBS characters and
linking them to modern Chinese has attracted sig-
nificant research interest, with attempts being made
to leverage modern AI technologies for the under-
standing of such an ancient language (Zhang et al.,
2022; Jiang et al., 2023; Wang and Deng, 2024;
Guan et al., 2024).

However, the majority of existing methodolo-
gies primarily focus on the recognition and under-
standing of already deciphered OBS (Guo et al.,
2015; Meng et al., 2018; Zhang et al., 2019; Hu,
2023), with the utilization of AI to assist in the de-
cipherment of unknown inscriptions remaining an
underexplored area. This is partly because, unlike
modern languages that can be digitized and stored
as text due to established encoding systems, OBS
lacks a standard input method or encoding scheme,
resulting in its preservation predominantly in the
form of images rather than digital text usually used
in NLP methods. Additionally, since OBS was in-
scribed on turtle shells and animal bones, many
of which have been damaged or fragmented upon
discovery, there is essentially no complete corpus
available. This absence of a comprehensive corpus
severely limits the applicability of language models
that require extensive datasets for training, such as
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019), and GPT (Brown et al., 2020).

To address the challenges inherent in the deci-
pherment of OBS using conventional NLP method-
ologies, this paper introduces a novel approach by
employing image-based generative techniques for
auxiliary decipherment of OBS. Specifically, we
train a conditional diffusion model that utilizes un-
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seen categories of OBS as a conditional input to
generate corresponding images of its modern coun-
terpart. This direct provision of modern represen-
tations or potential decipherment clues leverages
the model’s learned evolution from ancient scripts
to contemporary fonts, circumventing the corpus
construction and other challenges that traditional
NLP methods face with ancient languages. No-
tably, while our experiments focus on OBS, this
training paradigm holds the potential for extension
to other ancient languages, such as Cuneiform and
Hieroglyphics. In summary, this paper makes three
key contributions:

• We introduce a novel approach to the task
of ancient script decipherment by utilizing
image generation techniques, offering a novel
solution to challenges that conventional NLP
methods struggle to address.

• We propose Oracle Bone Script Decipher
(OBSD), a conditional diffusion model opti-
mized for OBS decipherment. Our Localized
Structural Sampling technique enhances the
model’s ability to discern and interpret the
intricate patterns of characters.

• OBSD demonstrates its effectiveness in de-
cipherment through comprehensive ablation
studies and benchmark comparisons. It offers
a pioneering approach for AI-assisted ancient
language decipherment, potentially laying a
foundation for future research.

2 Related Works

Applying machine learning to the study of ancient
languages represents a notable shift in linguistics
and epigraphy. This area, distinct from the NLP
tasks typically associated with modern languages,
involves digitization, linguistic analysis, textual
criticism, translation, and decipherment (Jin et al.,
2023; Nuhn et al., 2012; Ravi and Knight, 2011).
For a comprehensive overview of this field, we
direct interested readers to the survey by Sommer-
schield et al. (Sommerschield et al., 2023; Li et al.,
2020; Huang et al., 2019; Yang and Fu, 2020; Guo
et al., 2015). Due to space constraints, our review
is limited to literature most pertinent to oracle bone
language decipherment.

The oracle bone language is considered a form
of hieroglyphic that uses pictorial symbols to repre-
sent specific meanings. It originated around 1500
BC and has evolved over thousands of years into

modern Chinese characters. The evolution timeline
can be summarized into seven periods as follows:
Oracle Bone Script (1500 BC), Bronze Inscriptions
(1300 BC - 221 BC), Seal Script (1100 BC - 221
BC), Spring & Autumn Characters (770 BC - 476
BC), Warring States Characters (475 BC - 221 BC),
Clerical Script (221 BC - 220 AD) and Regular
Script (around 3rd century AD). The continuous
evolutionary path makes OBS a unique presence
among ancient scripts. Many of its character forms
have been preserved in modern standard Chinese
characters. While these are significant overlaps
in the forms and meanings of characters between
adjacent periods, greater differences can be found
between more distant periods. Some characters
disappeared and later reappeared across different
periods, highlighting the dynamic nature of this
ancient writing system.

While the majority of work related to OBS has
focused on employing CV or NLP techniques to
recognize (Zhang et al., 2021a; Fu et al., 2022;
Wang et al., 2022) or understand (Han et al., 2020;
Qi et al., 2023; Hu, 2023) already deciphered char-
acters, the use of AI to assist in deciphering char-
acters with unknown meanings remains a largely
unexplored and challenging task. Among these, the
case-based reasoning strategy developed by Zhang
et al. (Zhang et al., 2021b) stands out in its method
of drawing parallels to already interpreted charac-
ters to decipher OBS. While effective to a degree,
this approach is inherently constrained by its depen-
dence on the corpus of previously deciphered char-
acters, potentially stymieing the discovery of novel
meanings. On another front, Chang et al.’s cascade
generative adversarial networks framework (Chang
et al., 2022) presents an innovative attempt at deci-
phering, yet it faces challenges due to evolutionary
gaps in OBS and the completeness of training data.
These challenges arise because when a character
disappears for a specific period, the evolutionary
path relied upon by such methods no longer re-
mains intact, significantly impacting the success
rate of deciphering and restricting their effective-
ness to small datasets with clear evolutionary paths.

3 Method

3.1 Preliminary

In this study, we focus on the task of OBS de-
cipherment, aiming to predict the corresponding
modern Chinese character forms for the oracle
bone language. This endeavor not only seeks to
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Figure 1: Conditional diffusion model for OBS decipherment.

match known characters but also to uncover new
forms that could elucidate the meanings of these
ancient scripts. Formally, the training set denoted
as S = {(si, ci) | si is an OBS instance and ci ∈
C}, pairs OBS instances with their modern Chi-
nese counterparts from a set of known Categories
C. The model is designed to extend beyond the
training set S, identifying modern equivalents for
OBS instances s′, and proposing new character
forms where existing matches are absent.

To achieve this, our approach utilizes a diffusion-
based (Ho et al., 2020) model, for transforming
OBS character images X̃ into their modern Chi-
nese equivalents, as illustrated in Figure 1. The
model operates in two phases: the forward pro-
cess, the forward phase introduces noise to the
modern Chinese character images X0, transition-
ing them towards a state resembling pure noise via
a controlled Markov chain process, ultimately con-
forming to a Gaussian distribution N (0, I). This
is mathematically articulated as follows:

q (X1:T | X0) =
T∏

t=1

q (Xt | Xt−1) (1)

where T denotes the total number of steps. For each
step t, noise is added according to the following
equation:

q (Xt | Xt−1) = N
(
Xt |

√
αtXt−1, (1− αt) I

)
(2)

where αt is a hyperparameter controlling the noise
intensity, and I represents the identity matrix. The
transition from X0 to a noisy state Xt over t step
is captured by the equation:

Xt =
√
γtX0 +

√
1− γtϵ, ϵ ∼ N (0, I) (3)

with γt being the cumulative product of α values
up to t.

The denoising phase employs a U-Net architec-
ture (Ronneberger et al., 2015) for the model fθ,
trained to predict the noise ϵ and restore the image.
The training objective minimizes the loss function:

L = Eϵ,γ

∥∥∥ϵ− fθ

(
X̃,Xt, γ

)∥∥∥
2

(4)

which measures the discrepancy between the actual
noise ϵ and its estimation by the fθ. In the infer-
ence stage pθ(Xt | Xt, X̃), we reverse the noise
addition process, starting from the noisiest state
XT and iteratively denoising down to t = 1.

Xt−1 =
1√
αt

(
Xt − 1−αt√

1−γt
fθ

(
X̃,Xt, γt

))
+

√
1− αtϵt (5)

where ϵt ∼ N (0, I) introduces randomness to en-
hance the diversity of model generated results. The
outcome is the denoised image X̂0, representing
the deciphered results.

Building on this, our OBSD model integrates
an Initial Decipherment phase with a Zero-shot
Refinement stage to improve the decipherment ac-
curacy. As shown in Figure 2, initially, an OBS
image X̃ undergoes conditional diffusion to ap-
proximate an initial decipherment X0, which is
then refined using a zero-shot learning approach,
leveraging a reference style image Xref to correct
and enhance the structure. with a distinct style to
enhance X0, learning from the structure of modern
Chinese characters. The final result XF emerges
as a refined representation of the intended modern
Chinese character, benefiting from the refinement
process’s structural insights.

3.2 Initial Decipherment
After revisiting the fundamentals in Section 3.1,
a preliminary and somewhat naive idea was to di-
rectly utilize OBS images as the condition X̃ and
modern Chinese characters as the target images X0
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Figure 2: Overview pipeline of the proposed OBSD. The input OBS X̃ undergoes a diffusion model to generate
initial decipherment result X0, which is then refined with a style-specific reference to produce the final output XF .

Figure 3: Directly training a conditional diffusion model
results in failure decipherment.
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Figure 4: Comparative analysis of the Chinese character
宗 (zōng): (a) Depicts the evolution of global structure
from OBS to its modern form. (b) Highlights the reten-
tion of specific local structures amidst the evolution.

to train a conditional diffusion model for decipher-
ment. However, as shown in Figure 3, we observed
that directly training such a model did not result in
the accurate generation of the corresponding photos
of modern Chinese characters. Instead, the model
produces images comprised of a multitude of ran-
dom stroke fragments, resembling gibberish. We
speculate that this discrepancy arises because diffu-
sion models are primarily designed for generating
natural images, where the input conditions, such as
edges and sketches, provide structural information
to guide the generation of target images. However,
in the context of deciphering OBS, the structural
disparity between the input OBS images and the
expected modern Chinese character outcomes is
significant (see Figure 4(a)), rendering the standard
conditional diffusion model ineffective for accurate
reconstruction of the target modern characters. To
address this challenge, we introduce the concept of
Localized Structural Sampling (LSS) as a means to
aid the diffusion model in learning how to map lo-
cal radical structures of OBS to the corresponding

modern Chinese character space (see Figure 4(b)
red marks), thereby enhancing the model’s capa-
bility to bridge the structural gap between ancient
inscriptions and contemporary linguistic forms.

Figure 4 has demonstrated that despite the con-
siderable structural evolution from OBS to modern
Chinese characters, certain local structures have
been preserved. As shown in Figure 5, to enable
the diffusion model to learn these localized rad-
ical features, the LSS module employs a sliding
window approach to segment the target modern
Chinese character images X0 ∈ RH×W×3 and
corresponding OBS images X̃ ∈ RH×W×3 into
D patches of size p̃ × p̃, denoted as X̃(d) and
X

(d)
t ∈ Rp̃×p̃×3, d = 1, 2, ...D, p̃ = 64. Here,

Xt represents the modern text image with added
Gaussian noise ϵt at timestep t. Consequently, we
focus on learning the conditional reverse process
as follows:

pθ(X
(i)
0:T | X̃(i)) = p(X

(i)
T )

∏T
t=1 pθ(X

(i)
t−1 | X

(i)
t , X̃(i)) (6)

By adopting this approach, the model iteratively
refines each patch by learning the nuanced map-
pings from the localized structures of OBS to their
modern counterparts. The loss function in Equa-
tion 4 can then be rewritten as follows:

ϵ̂
(d)
t = fθ(X

(d)
t , X̃(d), t)

L′ = Et,d ∥ ϵ̂
(d)
t − ϵ

(d)
t ∥2

(7)

Here, the model’s goal is to minimize the dif-
ference between the estimated noise ϵ̂

(d)
t , and the

actual noise, ϵ(d)t , within each patch.
In the inference phase, our approach involves

dissecting the OBS image X̃ into p̃ × p̃ patches,
with p set at 64, through a structured grid layout,
utilizing a sliding window for systematic extrac-
tion. The grid is arranged such that each cell hosts
r × r patches, with r set at 16, allowing for a finer
subdivision than the patch size p̃. Patches are ex-
tracted by navigating the grid in both horizontal
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Figure 5: The overview pipeline of initial decipherment of OBSD.

and vertical directions with a step size of r. The
initial decipherment model then progressively re-
fines each patch by denoising and sampling.

Algorithm 1 LSS Algorithm

Require: OBS image X̃ , conditional diffusion
model fθ(Xt, X̃, t), dictionary of D overlap-
ping patch locations.

1: XT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: Ωt = 0 and M = 0
4: for d = 1, . . . , D do
5: X

(d)
t = Crop(Pd ◦ Xt) and X̃(d) =

Crop(Pd ◦ X̃) // Pd represents the mask
of the dth patch in the image.

6: Ωt = Ωt + Pd · fθ(X(d)
t , X̃(d), t)

7: M = M + Pd

8: end for
9: Ωt = Ωt ⊘M // ⊘: element-wise division

10: Xt−1 =
1√
αt
(Xt − 1−αt√

1−γt
Ωt) +

√
1− αtϵt

// ϵt ∼ N (0, I)
11: end for
12: return X0

Unique to our method is the handling of over-
laps between patches. Instead of waiting until the
denoising is complete, we average the overlapped
sections at every timestep t, ensuring a uniform
effect across the shared areas. This continuous av-
eraging at each timestep prevents the formation of
merging artifacts that typically occur when patches
are processed independently. By smoothing tran-
sitions between patches during the sampling, we
avoid edge discrepancies, maintaining the visual co-
herence of the reconstructed image. The sampling

Generated 

Results

Ground 

Truth

Figure 6: Modern Chinese characters generated by the
initial decipherment stage, showing numerous artifacts
and deformations as identified by the red circles.

dynamics at each step are defined by Equation 5,
which guides the process toward a seamless and
artifact-free image assembly. Algorithm 1 shows
the pseudocode of LSS. Figure 5 demonstrates the
overview pipeline of initial decipherment.

3.3 Zero-shot Refinement

Despite advancements in generating modern Chi-
nese characters with Localized Structural Sam-
pling, initial decipherment efforts encounter no-
table obstacles, such as structural deformities and
artifacts, highlighted in Figure 6. These issues
stem from the many-to-one training approach used,
where multiple OBS instances are mapped to a sin-
gle modern Chinese character image (see Figure 8),
leading to confusion and inaccuracies in capturing
character evolution, and resulting in artifacts or
incomplete structures due to a limited variety of
modern Chinese character samples.

To overcome these challenges, we propose a
zero-shot refinement strategy that involves training
a model on a diverse collection of modern Chi-
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Figure 7: Overview pipeline of the zero-shot refiner.

Many-To-One

One-To-One

Figure 8: Comparison of many-to-one and one-to-one
training paradigms. In the many-to-one approach, multi-
ple OBC images, despite their large structural variances,
are mapped to a single modern Chinese character. Con-
versely, the one-to-one paradigm ensures each image is
individually paired.

nese characters. Considering the multiple writing
styles for modern Chinese characters, we aim to im-
prove the model’s understanding of their structure
by employing a transformation task between differ-
ent styles. We trained the module on 20 different
modern Chinese character fonts to learn structural
transformations between different modern Chinese
character writing styles. As shown in Figure 8, this
training process is one-to-one. This method simpli-
fies data collection by leveraging readily available
font variations, thereby enhancing the model’s un-
derstanding of character structures and enabling
the application of this knowledge to improve ini-
tial decipherment results without direct training on
OBS-to-modern character mappings.

Our zero-shot refinement approach is grounded
in a generic font style transformation framework,
as depicted in Figure 7 and based on (Yang et al.,
2024). The process involves a dual-encoder system
to adapt the style of a source font image X0 to a
target style Xref , preserving content integrity. The
style encoder Es extracts style features es from
Xref , while the content encoder Ec processes Xo

and Xref to obtain multi-scale content features
F0 = {f1

o , f
2
o , f

3
o } and Fref = {f1

ref , f
2
ref , f

3
ref},

refined by a specialized UNet with Multi-scale Con-
tent Aggregation (MCA) and Reference-Structure

Interaction (RSI) blocks for enhanced feature inte-
gration. The model employs cross-attention mech-
anisms to align features and address structural dif-
ferences, formalized as:

Sref ∈ RCi
ref×HiWi = flatten(f i

ref )

Ss ∈ RCi
s×HiWi = flatten(oi)

Q = Φq(Sref ), K = Φk(Ss), V = Φv(Ss)
(8)

where oi represents the UNet feature derived from
f i
o and es, and Φq, Φk, Φv denote linear projec-

tions. The deformation offset δoffset is calculated as
follows:

Fattn = softmax(QKT
√
dk

)V

δoffset = FFN(Fattn)
(9)

The output If is the result of rendering the source
image with DCN (Dai et al., 2017), considering the
calculated deformation offset:

If = DCN(oi, δoffset) (10)

In adapting the framework for OBS decipher-
ment, we streamline the model by focusing on a
singular font style, thereby omitting the style con-
trastive refinement module and its contrastive loss,
simplifying the training process. The encoders are
trained using the offset loss Loffset, which measures
the mean magnitude of deformation offsets:

Loffset = mean(∥δoffset∥) (11)

where δoffset signifies the deformation offset, encap-
sulating structural information gleaned from the
reference features, and the mean operation com-
putes the average magnitude of these offsets.

After training, the zero-shot refinement module
was directly employed to refine the results gener-
ated by the diffusion model.
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4 Experiments

4.1 Dataset and Evaluation Metric

To train and evaluate the proposed OBSD model,
we selected the HUST-OBS dataset (Wang et al.,
2024) and EVOBC dataset (Guan et al., 2024),
which stands as one of the largest repositories of
OBS, with 1,590 distinct characters depicted in
71,698 images. Recognizing the complexities in-
volved in deciphering unknown OBS, which usu-
ally require comprehensive expert validation, we
opted for already deciphered inscriptions in our
testing set to streamline the evaluation process. Im-
portantly, the categories of characters in the testing
set were specifically chosen to be absent from the
training set, ensuring that the model faces the gen-
uine challenge of deciphering unseen and novel
categories. The dataset was partitioned into train-
ing and test sets with a 9:1 ratio, providing a robust
framework for assessment.

While the proposed OBSD model approaches
OBS decipherment from an image generation
perspective, it is crucial to acknowledge that
traditional image generation metrics, such as
SSIM (Nilsson and Akenine-Möller, 2020), are
not suitable for this distinct challenge. Instead,
we adopted OCR technology as a more objective
measure of decipherment success. Our custom-
built OCR tool, OBS-OCR, is a simple classifier
using ResNet-101 backbone specifically trained
on a large dataset of 88,899 categories modern
Chinese characters to evaluate the model’s output.
The custom-built OCR tool achieved a recogni-
tion accuracy of 99.87% on 88,899 categories of
Chinese characters, which demonstrates reliable
performance to evaluate the decipherment results.
Its aim is to automatically recognize the results gen-
erated by the diffusion models and compare these
results with the ground truth in order to evaluate
the model’s deciphering performance. By compar-
ing the OCR-recognized characters against their
ground truth labels, we simulate a quantifiable
form of expert validation. To make a more reli-
able and objective evaluation, we also incorporated
the widely-used, open-source Chinese OCR tool
PaddleOCR 1 as an additional OCR tool to support
further evaluations. This dual-OCR method pro-
vides a robust framework for assessing the model’s
efficacy in accurately deciphering oracle bone lan-
guages.

1https://github.com/PaddlePaddle/PaddleOCR

4.2 Quantitative Results

In quantitatively evaluating the performance of our
proposed OBSD, we employ two distinct assess-
ment criteria: single-round decipherment and multi-
round decipherment. The single-round decipher-
ment evaluation aims to gauge the method’s ca-
pability to decipher individual samples accurately,
providing insight into its immediate effectiveness.
On the other hand, the multi-round decipherment
assessment offers a more practical appraisal of the
method’s performance, where multiple attempts at
deciphering a single image are permitted. This ap-
proach mirrors the iterative nature of real-world
decipherment tasks, allowing for a comprehensive
assessment of the method’s resilience and adapt-
ability over successive trials.

Given the absence of dedicated tools for oracle
bone language decipherment, we employ a com-
parative framework that adapts leading image-to-
image translation methods to this specialized task.
This set includes GAN-based approaches such as
Pix2Pix (Isola et al., 2017), CycleGAN (Zhu et al.,
2017), DRIT++ (Lee et al., 2020), and diffusion-
based methods like CDE (Saharia et al., 2022b),
Palette (Saharia et al., 2022a), BBDM (Li et al.,
2023). This setting not only mirrors the core mech-
anism of our OBSD method but also allows for a
comprehensive evaluation against the backdrop of
the latest advancements in image translation. Each
method was carefully adapted to the OBS context,
ensuring consistent training and testing conditions
for a fair evaluation.

In the single-round decipherment evaluation, as
shown in Table 1, our OBSD demonstrates a signif-
icant advantage over the adapted image-to-image
translation methods in deciphering oracle bone
language. Notably, the top-1 accuracy for OBS-
OCR and PaddleOCR achieved by OBSD stand at
41.0% and 30.0%, respectively, surpassing the per-
formance of other methods. As the rank increases,
there is a clear trend of improving accuracy, at
Top-500 accuracy, OBSD reaches a 64.5% OBS-
OCR recognition accuracy. It is noteworthy that all
GAN-based approaches, such as Pix2Pix, Palette,
DRIT++, and CycleGAN, exhibit minimal effec-
tiveness in this context, with top-1 accuracies at
0%. This could be attributed to the GANs’ inherent
challenge in capturing the complex and nuanced
mappings required for accurately deciphering the
oracle bone language into modern Chinese. Surpris-
ingly, the adapted diffusion models, despite their
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Evaluation Tool Rank Pix2Pix Palette DRIT++ CycleGAN BBDM CDE OBSD (ours)
OBS-OCR Top-1@Acc 0.0% 0.0% 0.0% 0.0% 19.5% 31.0% 41.0%
OBS-OCR Top-10@Acc 0.0% 0.0% 0.0% 0.0% 29.5% 47.5% 50.5%
OBS-OCR Top-20@Acc 0.0% 0.0% 0.0% 0.0% 34.5% 50.0% 54.5%
OBS-OCR Top-50@Acc 0.0% 0.0% 4.5% 8.5% 39.0% 52.5% 58.0%
OBS-OCR Top-100@Acc 0.0% 3.0% 13.0% 19.0% 42.0% 56.0% 61.0%
OBS-OCR Top-200@Acc 14.5% 8.5% 20.0% 37.5% 46.0% 59.5% 62.5%
OBS-OCR Top-500@Acc 17.5% 19.5% 21.5% 60.0% 58.0% 64.0% 64.5%
PaddleOCR Top-1@Acc 0.0% 0.0% 0.0% 0.0% 7.0% 19.0% 30.0%

Table 1: Comparison of single-round decipherment success rate between the proposed OBSD and state-of-the-art
image-to-image translation methods.

Number of Trial 1 2 3 4 5

Evaluation Tool
OBS-OCR 41.0% 56.0% 67.5% 75.5% 76.5%
PaddleOCR 30.0% 40.0% 46.0% 50.5% 53.0%

Number of Trial 6 7 8 9 10

Evaluation Tool
OBS-OCR 77.0% 78.0% 79.5% 80.0% 80.0%
PaddleOCR 55.5% 57.0% 57.5% 58.5% 58.5%

Table 2: Top-1 accuracy of the multi-round decipher-
ment success rate of the proposed OBSD.

general-purpose nature, have shown commendable
performance, underscoring the viability of leverag-
ing image generation techniques in addressing the
challenges traditional NLP algorithms encounter in
decipherment tasks. This aligns with our method-
ological premise, validating the novel approach of
integrating image-based generative models into the
domain of linguistic decipherment.

In addition, Table 2 presents the multi-round de-
cipherment results, where a progressive increase
in decipherment success rates can be witnessed
across multiple trials. The OBS-OCR metric starts
at a success rate of 41.0%, and levels out at 80.0%
by the 10th trial, showcasing the cumulative ben-
efit of iterative testing. Similarly, the PaddleOCR
metric exhibits a consistent upward trend, com-
mencing at 30.0% and culminating at 58.5% in
the final trial. These results validate the incremen-
tal improvements achievable through successive
attempts.

4.3 Ablation Study

To further examine the impact of individual com-
ponents in our proposed method, we conducted an
ablation study focusing on the LSS module and
zero-shot refinement. The results, presented in Ta-
ble 3, highlight the limitations of employing only
the basic conditional diffusion model for OBS deci-
pherment, which resulted in notably low accuracy
rates. Specifically, training the diffusion model
without any enhancements led to outputs that were
essentially nonsensical, characterized by random
and uninterpretable stroke combinations (see Fig-
ure 3). The introduction of the LSS module marked
a significant improvement, enabling the generation

Metric Rank Diffusion +LSS +Refinement
OBS-OCR Top-1 0.5% 37.5% 41.0%
OBS-OCR Top-10 2.5% 49.0% 50.5%
OBS-OCR Top-20 4.5% 52.0% 54.5%
OBS-OCR Top-50 6.5% 55.0% 58.0%
OBS-OCR Top-100 9.0% 58.0% 61.0%
OBS-OCR Top-200 10.5% 60.5% 62.5%
OBS-OCR Top-500 16.5% 64.0% 64.5%
PaddleOCR Top-1 0.0% 24.0% 30.0%

Table 3: Ablation Study of OBSD.

of decipherment outcomes with a Top-1 recogni-
tion rate of 37.5% for OBS-OCR and 24% for Pad-
dleOCR. The addition of the zero-shot refinement
module, in conjunction with the LSS, further in-
creased the Top-1 accuracy for both OBS-OCR
and PaddleOCR by an additional 3.5% and 6%,
respectively.

4.4 Qualitative Results

OBS

Ground

Truth

Pix2Pix

Palette

DRIT++

CycleGAN

BBDM

CDE

OBSD(ours

no 

refinement)

OBSD(ours)

Figure 9: Comparison of qualitative results be-
tween the proposed OBSD and other state-of-the-
art image-to-image translation frameworks, including
Pix2PIx (Isola et al., 2017), Palette (Saharia et al.,
2022a), DRIT++ (Lee et al., 2020), CycleGAN (Zhu
et al., 2017), BBDM (Li et al., 2023), and CDE (Saharia
et al., 2022b).
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Figure 9 showcases the qualitative results of
various image-to-image translation models, with
our method, OBSD, standing out by producing
the most accurate reconstructions of modern Chi-
nese characters from OBS inputs. Pix2Pix (Isola
et al., 2017), for example, generates outputs that
are highly uniform across different inputs, demon-
strating a lack of differentiation in character deci-
pherment. On the other hand, DRIT++ (Lee et al.,
2020) struggles to produce complete characters,
often resulting in fragmented and unrecognizable
forms. In stark contrast, OBSD demonstrates a
robust capability to discern and reconstruct the in-
tricate details of each OBS, leading to coherent
and precise character forms that closely align with
the ground truth. These results not only highlight
the efficacy of OBSD but also its potential as a
tool for experts in the field of oracle bone language
decipherment.

To demonstrate the performance of OBSD on
authentic, undeciphered OBS, we present an exten-
sive evaluation in the appendix, depicted in Fig-
ure 10, 11, 12 and 13. This evaluation showcases
a range of decipherment outcomes, from partial
reconstructions that shed light on the structural el-
ements of OBS characters, such as radicals and
strokes, to complete character forms that exhibit a
high resemblance to modern Chinese script. While
the bulk of these results provide structural clues,
the fully reconstructed characters hold particular
promise, indicating the potential of OBSD to con-
tribute meaningfully to the field of oracle bone
language decipherment.

4.5 Discussion
Experiment Results: We compared the proposed
OBSD with other generic image generation mod-
els for the OBS deciphering task. As shown in
Figure 9, most generic image generation models
fail to produce structurally complete Chinese char-
acters. This is because these methods, based on
conditional generation, attempt to directly map the
input OBS image to modern characters, neglecting
the structural and writing conventions of the char-
acters. In contrast, the proposed OBSD addresses
these issues by incorporating local radical structure
information into the training process, resulting in
more accurate outputs.
Analysis of Proposed Modules: According to
the experimental results, we found that the pro-
posed LSS module effectively directs the diffusion
model’s focus towards the local structures of both

OBS and modern Chinese characters. This results
in clearer character strokes and more reasonable
character structures. Additionally, the Zero-shot
Refinement module refines the initial decipherment
results by learning the structural characteristics of
modern Chinese characters, ensuring a more pre-
cise and coherent structure.
Generalizability to Other Languages: The pro-
posed method was initially designed for ideo-
graphic or pictographic languages, such as Chinese
characters or Mayan script, where a single charac-
ter represents a word or morpheme. This design
enables the adaptation of the method to similar
languages. For alphabetic scripts, which typically
have a small number of letters, decipherment is
rarely an issue. The applicability of these methods
to other languages presents an interesting research
question, which we will explore in our future work.

5 Conclusion

In this work, we presented OBSD, an innovative
approach leveraging conditional image generation
for the decipherment of OBS. Our novel Local
Structure Sampling technique addresses the inher-
ent challenges in learning modern Chinese char-
acters’ structures from limited samples, enabling
effective structural correspondence learning be-
tween OBS and modern Chinese characters. Fur-
thermore, the integration of a zero-shot refinement
module significantly enhances the decipherment ac-
curacy, a claim substantiated by promising results
on the HUST-OBS dataset and EVOBC dataset.
The potential of OBSD extends beyond OBS, offer-
ing prospects for deciphering other ancient scripts,
such as hieroglyphs and Maya glyphs. Looking
ahead, we aim to collaborate with epigraphy ex-
perts to further validate and refine the OBSD, as-
piring to advance AI’s role in the decipherment of
ancient languages.

6 Limitations

In this study, we employed OCR technology, in-
cluding a custom-built tool and the off-the-shelf
package PaddleOCR, to evaluate the success of our
OBSD in deciphering oracle bone language. While
this approach offers a novel and objective metric,
it is important to recognize its inherent limitations.
However, these methods cannot be directly applied
to evaluate truly undeciphered OBS, where the ab-
sence of ground truth necessitates expert validation.

Evaluating the decipherment results of entirely
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unknown OBS characters presents a unique chal-
lenge that goes beyond the capabilities of OCR
technology. This task involves interpreting histori-
cal, cultural, and linguistic contexts that are deeply
embedded within the languages. Therefore, the
ultimate validation of our model’s decipherment
for such inscriptions requires the involvement of
scholars and experts in oracle bone studies. We ac-
knowledge the importance of this expert validation
and are exploring collaborations with specialists in
the field to assess the relevance and accuracy of our
model’s outputs for genuinely undeciphered texts.
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A Appendix

A.1 Implementation Details
The proposed OBSD was trained using the Adam
optimizer with a weight decay of 10−4, β1 = 0.9,
and β2 = 0.999. During training, the learning rate
was set to 2e−5, and the batch size was 8. Each
batch contained 8 patches of size 64 × 64, and
the model was trained on an Nvidia RTX A6000
model for 300 epochs. The entire training process
spanned over 2 weeks.

A.2 Decipherment Results on Genuine
Unknown OBS

Figure 10, 11, 12 and 13 showcase the OBSD
model’s decipherement outputs for previously un-
deciphered characters from the HUST-OBS (Wang
et al., 2024) dataset and EVOBC dataset (Guan
et al., 2024). For each character, we present a set
of 10 potential interpretations, generated using dis-
tinct random seeds to ensure diversity in the results.
In our commitment to supporting ongoing research
in this field, we plan to make the code, the pre-
trained models, and a comprehensive collection
encompassing all decipherment outcomes publicly
available. We hope this contribution will assist
scholars and researchers in advancing the study of
ancient languages.

Figure 10: Deciphered results for genuine undeciphered
OBS.
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Figure 11: Deciphered results for genuine undeciphered
OBS.

Figure 12: Deciphered results for genuine undeciphered
OBS.
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Figure 13: Deciphered results for genuine undeciphered
OBS.
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