
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15460–15473
August 11-16, 2024 ©2024 Association for Computational Linguistics

Iterative Forward Tuning Boosts In-Context Learning in Language Models
Jiaxi Yang1,2,∗‡, Binyuan Hui3,∗, Min Yang1†, Bailin Wang4

Bowen Li5, Binhua Li3, Fei Huang3, Yongbin Li3†

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
2 University of Chinese Academy of Sciences

3 Alibaba Group, 4 MIT CSAIL, 5 Shanghai AI Laboratory
{jx.yang, min.yang}@siat.ac.cn
binyuan.hby@alibaba-inc.com

https://github.com/Yangjiaxi/DeepThinking

Abstract

Despite the advancements in in-context learn-
ing (ICL) for large language models (LLMs),
current research centers on specific prompt
engineering, such as demonstration selection,
with the expectation that a single iteration of
demonstrations processing can generalize ef-
fectively to a given test sample. However,
this perspective overlooks the potential ben-
efits derived from multiple iterations involv-
ing demonstrations, a practice aligning more
closely with the iterative decision-making pro-
cess exhibited by humans, who often learn
through analogy. In this study, we introduce
a novel two-stage framework to boost ICL in
LLMs. Specifically, our framework delineates
the ICL process into two distinct stages: Deep-
Thinking and test stages. The Deep-Thinking
stage incorporates a unique attention mecha-
nism, i.e., iterative enhanced attention, which
enables multiple rounds of information accu-
mulation. This mechanism operates by manipu-
lating the Key-Value matrices without training,
fostering enhanced understanding capabilities
in LLMs by “thinking” demonstrations multi-
ple times. We evaluated Deep-Thinking across
a range of benchmarks and LLMs, showing its
superior performance over vanilla ICL methods
and its effectiveness in challenging tasks where
demonstration selection is infeasible.

1 Introduction

Large language models (LLMs), e.g. OpenAI
GPTs (OpenAI, 2023), LLaMA (Touvron et al.,
2023) and Qwen (Bai et al., 2023), demonstrate
the mysterious in-context learning (ICL) ability,
where LLMs make predictions directly by prepend-
ing demonstrations to the original input without
updating model parameters. LLMs are expected
to learn the patterns hidden in demonstrations and

∗ Equal contribution.
‡Work done during an intern at Alibaba Group.
†Corresponding authors.

make predictions accordingly. As illustrated in
Figure 1 (a), an LLM can correctly perform infer-
ence on an unseen task by conditioning on sev-
eral demonstrations. The ICL paradigm empow-
ers LLMs to achieve impressive results in various
downstream tasks with a few demonstrations, mak-
ing Language-Model-as-a-Service (LMaaS) (Sun
et al., 2022) possible.

Since the performance of ICL is sensitive to
specific prompt settings, considerable efforts have
been developed to improve the performance of ICL
by refining the prompt design from different per-
spectives, such as demonstration selection (Liu
et al., 2022; Li and Qiu, 2023), instruction design
(Wei et al., 2022a; Ye et al., 2023), and intermedi-
ate chain-of-thought (CoT) reasoning (Wei et al.,
2022b; Zhang et al., 2023; Lu et al., 2023). These
methods can facilitate LLMs to reduce inference
variance and avoid poor worst-case accuracy to
some extent by performing prompt engineering.
The working mechanism of ICL also draws a lot
of attention. Dai et al. (2023) shed light on the
connections between ICL and explicit fine-tuning.
Specifically, ICL computes meta-gradients via for-
ward computation, while explicit fine-tuning ob-
tains gradients by back-propagation. A dual form
exists between attention and gradient descent-based
optimization (Irie et al., 2022a), directly connect-
ing the test input to demonstrations. Wang et al.
(2023a) argue that label words in demonstrations
act as anchors, enabling mapping from demonstra-
tions to test input through information aggregation
and label propagation.

However, these studies assume that the models
process demonstrations only once (i.e., perform
a single forward computation), which is incoor-
dinate with the human decision-making process
by learning from analogy. Humans usually learn
from analogy via an iterative thinking process,
such as analyzing demonstrations, reflecting on
them, and forming abstract concepts. The models

15460

https://github.com/Yangjiaxi/DeepThinking

 (a) In-Context Learning

 (b) Ours: Deep-Thinking

❄ LLM Negative
Review: big time

Sentiment: Positive
Review: in boredom Sentiment: Negative
Review: gone wrong Sentiment:

demonstrations

test input

}
}

❄ LLM

❄ LLM

↺
Review: big time Sentiment: Positive
Review: in boredom Sentiment: Negative

Review: gone wrong Sentiment: Negative

<latexit sha1_base64="XG6BM0vmKxewU4FRY85SeWBhSOI=">AAAC5HicjVHLSsNAFD2Nr1pfUZcuDBbBVUmlqMuiG8FNBfuAtpQkndahaRKSiVpKl+7ciVt/wK1+i/gH+hfemaagFtEJmTlz7j1n5s61A5dHwjTfUtrM7Nz8Qnoxs7S8srqmr29UIj8OHVZ2fNcPa7YVMZd7rCy4cFktCJnVt11WtXsnMl69YmHEfe9CDALW7Ftdj3e4YwmiWvp245q3meBumw0bgt0IuzNeuRiejUajlp41c6YaxjTIJyCLZJR8/RUNtOHDQYw+GDwIwi4sRPTVkYeJgLgmhsSFhLiKM4yQIW1MWYwyLGJ7NHdpV09Yj/bSM1Jqh05x6Q9JaWCXND7lhYTlaYaKx8pZsr95D5WnvNuAVjvx6hMrcEnsX7pJ5n91shaBDo5UDZxqChQjq3MSl1i9iry58aUqQQ4BcRK3KR4SdpRy8s6G0kSqdvm2loq/q0zJyr2T5Mb4kLekBud/tnMaVPZz+YNc4byQLR4nrU5jCzvYo34eoohTlFAm71s84RkvWke70+61h3Gqlko0m/g2tMdPbd2dnA==</latexit>

fK
<latexit sha1_base64="9YHkjWy/KiOHF4ASjfHWNl70y8A=">AAAC5HicjVHLSsNAFD2Nr1pfVZcuDBbBVUmlqMuiG5cV7APaUvKY1qFpEpKJWkKX7tyJW3/ArX6L+Af6F96ZRlCL6ITMnDn3njNz51qByyNhGK8ZbWZ2bn4hu5hbWl5ZXcuvb9QjPw5tVrN91w+blhkxl3usJrhwWTMImTm0XNawBicy3rhkYcR971yMAtYZmn2P97htCqK6+e32FXeY4K7DkrZg18LqTVYukvp4PO7mC0bRUEOfBqUUFJCOqp9/QRsOfNiIMQSDB0HYhYmIvhZKMBAQ10FCXEiIqzjDGDnSxpTFKMMkdkBzn3atlPVoLz0jpbbpFJf+kJQ6dknjU15IWJ6mq3isnCX7m3eiPOXdRrRaqdeQWIELYv/SfWb+VydrEejhSNXAqaZAMbI6O3WJ1avIm+tfqhLkEBAnsUPxkLCtlJ/vrCtNpGqXb2uq+JvKlKzc22lujHd5S2pw6Wc7p0F9v1g6KJbPyoXKcdrqLLawgz3q5yEqOEUVNfK+wSOe8Kz1tFvtTrufpGqZVLOJb0N7+ACIHp2n</latexit>

fV

demonstrations

test input

}

}

 Thinking multiple times…

Figure 1: The illustrations of vanilla ICL and our proposed two-stage framework through Deep-Thinking. The
vanilla ICL method processes demonstrations only once, while our “Deep-Thinking” method enables multiple
rounds of information accumulation during the reasoning process.

learned from demonstrations in inference time by
“thinking for longer” or “thinking multiple times”
(Schwarzschild et al., 2021). These findings inspire
us to ask a question: Can we boost the perfor-
mance of ICL by learning from demonstrations
through several (iterative) forward inferences?

In this paper, we propose a two-stage framework
to boost the ICL ability in LLMs. Instead of sim-
ply concatenating demonstrations and test input
together for inference, we decouple the ICL pro-
cess into a Deep-Thinking stage for demonstration
training and a test stage, as illustrated in Figure
1 (b). In the Deep-Thinking stage, we introduce
a new attention module that manipulates the up-
dates of Key-Value matrices (Vaswani et al., 2017)
within the Transformer’s self-attention (Vaswani
et al., 2017) mechanism. This modification lever-
ages Key-Value matrices as a bridge to change the
information flow to accumulate and learn informa-
tion over multiple forward iterations without any
training. During the test stage, since the concepts
contained in demonstrations are already stored in
final Key-Value matrices, we only need to feed the
test input into the model and utilize the Key-Value
cache for inference. This Deep-Thinking strategy is
motivated by humans’ repeat logical thinking and
reasoning process. LLMs are expected to extend
their abilities to solve unseen, complex tasks by
“thinking” demonstrations multiple times.

To verify the effectiveness of the proposed Deep-
Thinking, we initially conduct evaluations on con-
ventional ICL benchmarks across language mod-
els of various sizes. The experiments show that

Deep-Thinking significantly outperforms vanilla
ICL in a variety of model sizes and tasks, surpass-
ing previous state-of-the-art (SOTA) methods fo-
cused on selecting demonstrations. In addition, we
introduce two more challenging benchmarks (i.e.,
MMLU (Hendrycks et al., 2021) and BBH (Srivas-
tava et al., 2023)) and conduct experiments on ad-
vanced LLMs, including LLaMA2 (Touvron et al.,
2023) and Pythia (Biderman et al., 2023). We argue
that on these challenging benchmarks, demonstra-
tion selection becomes impractical due to the lack
of a potential candidate pool. Deep-Thinking ob-
tains a significant advantage over vanilla ICL.

2 Preliminaries: In-Context Learning

This paper focuses on in-context learning tasks.
Formally, given a nature language test input xtest

with a few (N -shot) input-output demonstrations
Cdemos = {(xi, yi)}Ni=1, the goal of in-context learn-
ing is to predict the label ŷ of xtest from a pre-
defined candidate label set Y = {y1, y2, ..., ym}
conditioned on N demonstrations. Given an LLM
M (e.g., a GPT model), the prediction process can
be formulated as follows:

ŷ = argmax
yj∈Y

PM(yj |Cdemos, xtest), (1)

where P is the output probability of the LLM M.
Generally, an LLM adopts the Transformer as the
backbone, which consists of a stack of several
Transformer blocks (Vaswani et al., 2017).

15461

XL

an intoxicating experience. 1

one long string of cliches. 0

it never fails to engage us. 1

a quiet, pure, elliptical film ?Review: a quiet, pure, elliptical film Sentiment:

Review: an intoxicating experience. Sentiment: Positive
Review: one long string of cliches. Sentiment: Negative
Review: it never fails to engage us. Sentiment: Positive

demonstrations}
test input}

❄ LLM

Ṽ1K̃1

Ṽ t−1K̃t−1

❄ LLM

Ṽ tK̃t

⋯

❄ LLM

Ṽ2K̃2

⋯

ṼT−1K̃T−1

❄ LLM

ṼTK̃T

Xdemos

Xtest ❄ LLM

1

2

t

T

Output:
Positive

Xl
t Xl+1

tAttentionl ℱ Attentionl+1 ℱ

Ṽ l
tK̃l

t Ṽ l+1
tK̃l+1

t

Xl−1
tAttentionl−1 ℱ

Ṽ l−1
tK̃l−1

t

Xl−2
t⋯ ⋯

Ṽ t−1K̃t−1

Ṽ1
t−1K̃1

t−1 ⋯ ṼL
t−1K̃L

t−1⋯Ṽ tK̃t

Ṽ l
t−1K̃l

t−1 Ṽ l+1
t−1K̃l+1

t−1Ṽ l−1
t−1K̃l−1

t−1Ṽ1
t−1K̃1

t−1 ⋯ ṼL
t−1K̃L

t−1⋯

WK

WV

WQ

Kl
t

V l
t

Ql
t

concat

update

concat

update

{K̃ l
t−1∥K

l
t}

{Ṽ l
t−1∥V

l
t}

Xl−1
t Xl

t

K̃l
t−1 Ṽ l

t−1

Ṽ l
tK̃l

t

ℱ

⋯

⋯

Xdemos

Xdemos

Xdemos

Fo
rw

ar
d

It
er

at
io

ns

Test Stage

Iterative Enhanced Attention

present

present

history

updated

mixed

mixed

Scaled D
ot-P

roduct
A
ttention

Xdemos

Expand Keys and Values for Each Layer → Layer l

← Stack along Layers

Deep-Thinking Stage

Figure 2: The overview of proposed two-stage ICL framework. It divides the ICL process into Deep-Thinking stage
and test stage, which take demonstrations and test query as input, respectively. It replaces the vanilla self-attention
mechanism with the proposed Iterative Enhanced Attention (IEA). IEA utilizes the Key-Value matrices as bridge
of memories, capable of receiving historical (from the previous iteration) memories. It can mix memories with
present information to perform attention, and update memories for the next iteration. During testing, predictions are
performed using memories that have been refined through multiple iterations. Notably, throughout this process, the
LLM parameters remain frozen and no additional parameters are introduced.

3 Methodology

In this paper, we propose a two-stage ICL frame-
work that improves performance through multiple
forward iterations. As shown in Figure 2, we as-
sign the demonstrations and test input to the Deep-
Thinking and test stages, respectively, where Key-
Value matrices serve as a bridge between the two
stages. Next, we describe these two stages in detail.

3.1 The Deep-Thinking Stage

In the Deep-Thinking stage, given the demonstra-
tions, we perform multiple forward passes in an
iterative way by manipulating the Key-Value ma-
trices in the self-attention (Vaswani et al., 2017)
module. We use Xl

t to denote the output repre-
sentation of the entire demonstration sequence at
layer l and the t-th forward pass. Notably, Xl

t re-
ceives not only the output Xl−1

t from the previous
Transformer block, but also the Key-Value matrices

K̃l
t−1, Ṽl

t−1
* produced by the same self-attention

module at the (t−1)-th forward pass. Accordingly,
the Key-Value matrices will be updated as K̃l

t, Ṽl
t.

Iterative Enhanced Attention To handle multi-
ple forward iteration information in Deep-Thinking,
we proposed a modified attention mechanism,
named Iterative Enhanced Attention (IEA). Each
block of IEA is illustrated in Figure 2. The infor-
mation flowing through a block can be observed
from both horizontal and vertical processes. The
horizontal process represents the calculation of the
input parameters in a conventional manner, while
the vertical process stands for the manipulation
of the Key-Value matrices. Specifically, the input
Xl−1
t is firstly projected by key, value and query

weight matrices, respectively:

Kl
t = WKXl−1

t , Vl
t = WV Xl−1

t , Ql
t = WQXl−1

t (2)

*Key-Value matrices, represented in blue, act as memory
carriers throughout the Deep-Thinking iterations and serve as
inputs in the final test stage.

15462

where Kl
t,Vl

t represent the present Key-Value ma-
trices of vanilla self-attention, projected from input
X. For the horizontal process, we concatenate the
present Key-Value matrices with the history Key-
Value matrices K̃l

t−1, Ṽl
t−1 as the mixed Key-Value

to compute attention map and obtain the output Xl
t

of current layer as follows:

Xl
t = F (Attentionl({K̃l

t−1∥Kl
t}, {Ṽl

t−1∥Vl
t},Ql

t)) (3)

where F refers to the operations after self-
attention, namely the Feed-Forward Net-
work (FFN) (Vaswani et al., 2017), layer
normalization (Ba et al., 2016) and residual
connection (He et al., 2015).

Furthermore, the update process is jointly con-
tributed by the present and history Key-Value ma-
trices. From a high-level abstract perspective, the
update process can be formalized as follows:

K̃l
t = update(K̃l

t−1,Kl
t) = ηKl

t + (1− η)K̃l
t−1

Ṽl
t = update(Ṽl

t−1,Vl
t) = ηVl

t + (1− η)Ṽl
t−1

(4)

where K̃l
t and Ṽl

t are updated Key-Value matrices.
For the update function, we adopt a simple gat-
ing mechanism that utilizes the hyper-parameter
η to control the fusion rate of history and present
information.

Modeling demonstrations takes up to T itera-
tions, where the value of T can be predefined by
users. After the iterative forward process, we can
obtain final updated Key-Value matrices K̃l

T , Ṽl
T .

By stacking updated Key-Value matrices of all
layers in a given LLM, we have

K̃T = {K̃l
T }Ll=1, ṼT = {Ṽl

T }Ll=1 (5)

which can be stored statically. L denotes the num-
ber of Transformer blocks in an LLM.

3.2 The Test Stage
Considering that we now have the Key-Value matri-
ces K̃T , ṼT that have been updated for T iterations,
the information contained in them can be regarded
as a highly condensed modeling of the demonstra-
tions. The inference process can be performed us-
ing the same formulation as given by Eq.(2)-Eq.(3).
Specifically, the inference process for l-th layer can
be formalized as:

Kl
test = WKXl−1

test , Vl
test = WV Xl−1

test , Ql
test = WQXl−1

test

Xl
test = F (Attentionl({K̃l

T ∥Kl
test}, {Ṽl

T ∥Vl
test},Ql

test))
(6)

In this way, we can obtain the representation XL
test

produced by the final layer, which is used to make
predictions.

4 Experiments

4.1 Conventional In-context Learning Tasks

We first evaluate the proposed Deep-Thinking
against other enhanced ICL methods in a fair com-
parison of conventional ICL tasks. We select
five popular tasks, including SST2 (Socher et al.,
2013), SST5 (Socher et al., 2013), MR (Pang and
Lee, 2005), AGNews (Zhang et al., 2015) and
TREC (Li and Roth, 2002; Hovy et al., 2001). For
a fair comparison, we choose GPT2-L as the base
model, which is widely used by previous studies
(Li and Qiu, 2023).

Compared Methods We use several demonstra-
tion selection methods as baselines, which can be
classified into distinct approaches. (1) Geometry-
based techniques, such as Herding (Chen et al.,
2010) and K-Center Greedy (Sener and Savarese,
2018), concentrate on spatial proximity within the
feature space for constructing demonstrations. (2)
Uncertainty-based methods posit that demonstra-
tions with higher uncertainty exert more substan-
tial influence on the model, encompassing tech-
niques such as Entropy, Least Confidence, Mar-
gin (Coleman et al., 2019), and CAL (Margatina
et al., 2021). (3) Gradient matching-based methods,
such as CRAIG (Mirzasoleiman et al., 2020) and
GradMatch (Killamsetty et al., 2021), aim to repli-
cate the gradient distribution of the full dataset with
a subset. (4) Submodularity-based methods assess
informativeness and diversity for selection, includ-
ing such as FacilityLocation and GraphCut (Iyer
and Bilmes, 2013). (5) LENS (Li and Qiu, 2023)
adopts a “filter-then-search” approach, utilizing the
“InfoScore” metric to select the best demonstra-
tions. Notably, our fairest baseline is the Random
method (vanilla ICL), where we use the exact same
demonstrations without any selection process.

Further Comparison To assess the performance
of Deep-Thinking across a range of LMs across
different sizes, we extend the base model of Deep-
Thinking on conventional ICL tasks to include OPT
(125M, 350M, 2.7B) (Zhang et al., 2022), GPT-2
(Medium, Large, and XL) (Radford et al., 2019),
GPT-Neo (2.7B) (Black et al., 2021) and LLaMA2
(7B, 13B) (Touvron et al., 2023). This extension
aims to demonstrate the effectiveness of Deep-
Thinking across a spectrum of LM scales.

15463

Method SST2 SST5 TREC MR AGNews Average

In-context learning w/o dev set. ♢

Random 57.9 27.5 30.3 59.5 33.6 41.8
Herding (Chen et al., 2010) 62.0 24.8 26.4 54.1 38.7 41.2
K-Center Greedy (Sener and Savarese, 2018) 58.6 25.1 31.3 59.0 42.3 43.3
Entropy (Coleman et al., 2019) 62.4 25.5 26.2 54.1 30.6 39.8
LeastConfidence (Coleman et al., 2019) 58.4 26.0 23.5 55.9 31.6 39.1
Margin (Coleman et al., 2019) 62.4 26.1 24.2 54.1 38.1 41.0
CAL (Margatina et al., 2021) 59.3 25.3 31.8 66.2 42.3 45.0
CRAIG (Mirzasoleiman et al., 2020) 63.4 26.4 32.0 59.3 37.4 43.7
GradMatch (Killamsetty et al., 2021) 57.0 26.3 25.8 56.6 32.6 39.7
FacilityLocation (Iyer and Bilmes, 2013) 65.5 23.9 35.7 61.7 42.5 45.9
GraphCut (Iyer and Bilmes, 2013) 65.0 25.3 34.7 66.3 41.9 46.6
Deep-Thinking 85.7 39.2 54.2 71.6 72.9 64.7

In-context learning w/ dev set. ♡

LENS (Li and Qiu, 2023) 86.3 44.9 59.0 83.1 77.9 70.2
Random♣ 77.9 38.0 56.6 81.8 74.6 65.8
Deep-Thinking♣ 88.1 45.2 61.6 84.8 80.3 72.0

Table 1: Experimental results across conventional ICL tasks with different ICL methods. ♢ denotes that each
method was assessed over ten random seeds, and the reported values are the average performance across these
seeds. ♡ signifies the evaluation of multiple sets of random demonstrations on the dev set, with the best-performing
set selected (Li and Qiu, 2023). ♣ indicates the methods utilized the same demonstrations, ensuring that any
improvement stemmed solely from the Deep-Thinking stage.

4.2 Challenging Benchmarks

In contrast to the conventional ICL benchmarks that
entail a candidate pool for sample selection, real-
world complex tasks frequently present scenarios
where only a limited and fixed set of demonstra-
tions is available. This particular challenge renders
many existing methods of demonstration selection
impractical in such scenarios. To deal with the
challenges, we choose MMLU (Hendrycks et al.,
2021) and BBH (Srivastava et al., 2023) to extend
the evaluation of Deep-Thinking to more rigorous
and multifaceted scenarios. Concretely, MMLU
encompasses a diverse set of 57 tasks, spanning
elementary mathematics, US history, computer sci-
ence, law, and various other domains. In contrast,
BBH is tailored to address a suite of 23 challenging
tasks within the BIG-Bench framework. In ad-
dressing these challenging benchmarks, we employ
more advanced LLMs, including LLaMA2 (Tou-
vron et al., 2023) (7B and 13B) and Pythia (Bi-
derman et al., 2023) (70M, 410M, 1.4B, 6.9B and
12B) as base models, given their balanced ability
and versatility in handling a wide range of tasks.

4.3 Implementation Details and Evaluation

All experiments are conducted on a single NVIDIA
A100 GPU. For all baselines and Deep-Thinking,
we run each method over ten random seeds and

report the average performance. For conventional
ICL tasks, we follow (Li and Qiu, 2023) that the
number of demonstrations for SST2, SST5, TREC,
MR, and AGNews is 8, 10, 12, 8, and 8, respec-
tively. For MMLU and BBH, the demonstrations
come from the dataset’s inherent demonstrations.
Specifically five demonstrations for MMLU and
three demonstrations for BBH per task. In the
in-context setting without a dev set, we fix the iter-
ation number T at 5, with the gating parameter η
set to 0.01. In the in-context setting with a dev set,
we relax the max iteration number T to 15, using
the dev set to determine the final hyper-parameters.
For the dev set, we randomly select a sample size
identical to the test set and keep it fixed. For evalu-
ation, similar to previous methods, we concatenate
the test input with each candidate’s answer and sub-
mit them to the LLM. The final answer is selected
by summing the probabilities of the tokens belong-
ing to the answer part and choosing the candidate
answer with the highest probability.

4.4 Main Results
Results on Conventional ICL Tasks We first
compare Deep-Thinking with previous methods
on conventional ICL tasks. Table 1 shows that
Deep-Thinking consistently outperforms baseline
methods. In addition, a significant improvement
is observed when comparing its performance with

15464

Model Method SST2 SST5 TREC MR AGNews Average

OPT-125M ICL 55.7 26.7 25.0 50.4 41.7 39.9
Ours 72.0 33.2 47.0 65.8 50.6 53.7

OPT-350M ICL 54.1 26.6 37.2 71.2 42.9 46.4
Ours 79.7 31.8 45.8 73.4 64.3 59.0

GPT2-Medium
355M

ICL 59.6 23.7 33.4 65.0 51.7 46.7
Ours 86.9 38.1 43.6 80.3 80.0 65.8

GPT2-XL
1.5B

ICL 60.3 41.1 34.4 66.7 56.9 51.9
Ours 89.3 43.8 60.6 86.1 82.6 72.5

OPT-2.7B ICL 62.4 45.8 37.0 86.2 77.8 61.8
Ours 72.4 47.7 50.0 89.0 85.8 69.0

GPT-Neo
2.7B

ICL 84.8 39.7 49.6 85.2 71.6 66.2
Ours 88.1 45.5 59.2 89.1 83.5 73.1

LLaMA2
7B

ICL 89.5 46.3 82.8 91.2 84.6 78.9
Ours 90.0 48.1 84.8 92.2 88.9 80.8

LLaMA2
13B

ICL 95.2 46.4 84.8 92.5 87.0 81.2
Ours 96.0 49.9 86.2 94.7 88.8 83.1

Table 2: Experimental results cross different LLMs on conventional ICL tasks. To ensure that any observed
improvement stems exclusively from the Deep-Thinking stage, all variables are held constant across experiments.

and without the utilization of a development set.
Particularly, Deep-Thinking surpasses the Random
baseline by an average margin of 6.2% under the
dev setting. This improvement is solely attributed
to the iterative forward operations, providing empir-
ical evidence of the effectiveness of the proposed
method.

Transferablity across Different LMs In the
aforementioned experiments, we employ the same
LM (GPT-L) as the base model. To assess the
transferability of Deep-Thinking across LMs of
varying scales and pre-trained corpora, we expand
our experimental scope to include diverse settings.
Table 2 validates the transferability and general-
izability of Deep-Thinking across different base
models, maintaining competitiveness even when
applied to stronger models such as LLaMA2.

Results on Challenging Benchmarks Table 3
presents the averaged performance of Deep-
Thinking and vanilla ICL on MMLU and BBH
benchmarks. Notably, the performance boost is
consistent across all selected models, affirming that
Deep-Thinking beneficially impacts a wide spec-
trum of frontier LMs, independent of their specific
designs or training data. This effect is particularly
evident in smaller-sized models such as Pythia,
where the relative performance uplift is significant.
This trend aligns with observations from conven-
tional ICL tasks, further highlighting the broad

applicability and effectiveness of Deep-Thinking in
enhancing models’ in-context learning ability.

4.5 Fine-grained Task Analysis

To investigate whether Deep-Thinking shows
greater advantages in tasks requiring complex rea-
soning, we conduct a detailed analysis as shown
in Figure 3. The MMLU benchmark categorizes
its 57 subtasks into four major classes: STEM, Hu-
manities, Social Science, and Others. STEM tasks
rigorously assess the model’s reasoning abilities,
whereas the other three categories predominantly
serve as tests of knowledge retention. STEM tasks
pose greater challenges for vanilla ICL methods;
however, Deep-Thinking consistently demonstrates
improvements across all categories, indicating a
relatively more substantial gain in STEM. For in-
stance, LLaMA2-7B exhibits a 3.9% increase over
ICL in STEM, while registering improvements of
2.3%, 2.6%, and 2.5% in Humanities, Social Sci-
ence, and Others, respectively. This highlights the
effectiveness of Deep-Thinking in enhancing mod-
els’ capabilities to address complex reasoning and
problem-solving tasks.

4.6 Impact of Hyper-parameters

Impact of Demonstration Numbers As de-
picted in Figure 4, we conducted experiments on
the SST2 and AGNews datasets to explore the im-
pact of increasing the number of demonstrations on

15465

Model
&

Method

LLaMA2 Pythia

7B 13B 70M 410M 1.4B 6.9B 12B

ICL Ours ICL Ours ICL Ours ICL Ours ICL Ours ICL Ours ICL Ours

MMLU 41.9 44.6 45.1 47.6 24.6 29.6 27.0 30.8 30.6 33.6 33.5 37.1 36.2 39.5
BBH 46.1 49.8 49.7 53.6 34.9 39.8 37.5 42.3 38.2 43.8 39.2 43.4 41.1 45.3

Table 3: The results of vanilla ICL and Deep-Thinking on challenging benchmarks, including MMLU and BBH.

STE
M

Hum
anit

ies

Soci
al S

cien
ce

Oth
ers

20.0

22.0

24.0

26.0

28.0

30.0

32.0

A
cc
ur
ac
y

24.2 24.1

25.4 25.0

29.9
28.8

29.6 29.9

Pythia-70M
Conventional ICL
Deep-Thinking

STE
M

Hum
anit

ies

Soci
al S

cien
ce

Oth
ers

25.0

27.5

30.0

32.5

35.0

37.5

40.0

27.7
28.6

32.3

34.8

31.4 31.2

35.2

37.4

Pythia-1.4B

STE
M

Hum
anit

ies

Soci
al S

cien
ce

Oth
ers

30.0

35.0

40.0

45.0

50.0

34.9

44.3
43.2

47.6

38.2

46.6
45.8

50.0

LLaMA2-7B

STE
M

Hum
anit

ies

Soci
al S

cien
ce

Oth
ers

35.0

40.0

45.0

50.0

55.0

37.7

47.0 46.5

51.7

40.4

49.5 48.9

54.0

LLaMA2-13B

1Figure 3: Comparison of model performance across four major classes of the MMLU benchmarks. Due to space
constraints and to ensure clarity in presentation, we solely report the results of four out of the seven models.

2 4 6 8
Number of ICL Demonstrations

60

65

70

75

A
cc
ur
ac
y

SST2

Ours
ICL

4 8 12 16
Number of ICL Demonstrations

40

45

50

55

60

65

A
cc
ur
ac
y

AGNews

Ours
ICL

1

Figure 4: An illustration of the impact of increasing
the number of demonstrations on the effectiveness of
vanilla ICL and Deep-Thinking.

the efficacy of ICL. We perform ten runs of the ex-
periments and calculate the variance. The results in-
dicate that both vanilla ICL and Deep-Thinking ben-
efit from an increase in the number of demonstra-
tions. However, Deep-Thinking consistently out-
performs vanilla ICL, achieving significantly better
results even with a smaller number of demonstra-
tions. Additionally, Deep-Thinking demonstrates
a smaller variance, indicating greater robustness.
This suggests that it is more cost-effective to “think”
more from existing demonstrations than merely in-
creasing the number of demonstrations.

The Sensitivity of Random Seed The random-
ness in vanilla ICL and Deep-Thinking stems
solely from the random selection of demonstra-
tions. To further investigate the robustness of the
methods, we conduct multiple experiments on the

ICL Ours

50

55

60

65

70

75

80

85

Randomness: Seed

ICL Ours
45

50

55

60

65

70

75

80

Randomness: Demonstrations Order

A
cc
ur
ac
y

1
Figure 5: The performance distribution of performance
for vanilla ICL and Deep-Thinking, comparing effects
of random seeds (left) and random orders (right).

SST dataset by randomly choosing eight different
demonstrations, keeping other variables (except
the seed) constant. As illustrated in Figure 5 (left),
vanilla ICL is significantly affected by randomness,
whereas Deep-Thinking achieves stronger perfor-
mance with less variance. Deep-Thinking, by iterat-
ing multiple times, bridges the gap by maximizing
the utility of demonstrations.

The Sensitivity of Demonstrations Orders The
order of demonstrations in ICL is crucial and can
significantly impact performance (Lu et al., 2022a;
Liu et al., 2022). In particular, different orders of
demonstrations can lead to performance close to
the state-of-the-art or merely random guesses. We
examine the effect of demonstration order on ICL
and Deep-Thinking on the SST-2 dataset. As shown
in Figure 5 (right), the results show that vanilla ICL

15466

1 3 5 7 9 11 13 15
50

55

60

65

70

η Sensitivity

η = 0.1

η = 0.01

η = 0.001

1 3 5 7 9 11 13 15
55

58

60

62

65

68

70

72

Dev-Test Performance Alignment

Dev Acc
Test Acc

Iteration Steps (T)

A
cc
ur

ac
y

1

Figure 6: Sensitivity of accuracy to hyperparameter η
and alignment of development (Dev) and test set perfor-
mance over iteration steps (T).

is highly sensitive to the order, with a significant
variance in outcomes indicating large instability.
Deep-Thinking benefits from iterative learning of
demonstrations, overcoming order biases, and thus
shows more consistent performance.

Impact of Gate η and Iteration Steps T The
gate η is crucial in dictating how much of the mem-
ory is retained during the Deep-Thinking stage and
the degree of openness to new information for the
next iteration. A larger η signifies greater changes,
thus requiring fewer iterations T , and vice versa.
To investigate the optimal η, we enumerate val-
ues in [0.001, 0.01, 0.1]. As shown in Figure 6
(left), setting η = 0.01 achieves a balance between
the number of iterations and performance. We can
analogize η to the learning rate and T to the number
of training steps. Inspired by this comparison, as
described in Table 1, we use a dev set to determine
the optimal number of iterations T . Figure 6 (right)
shows that there is a basic alignment between the
dev and test sets.

5 Related Work

In-context learning (ICL) with LLMs has made a
breakthrough and become mainstream in tackling
various tasks (Li et al., 2023; Dong et al., 2022;
Qiao et al., 2023). Recently, great efforts have
been made to improve the performance of ICL from
different perspectives, such as demonstrations se-
lection (Liu et al., 2022; Li and Qiu, 2023), prompt
template design (Wei et al., 2022a), and intermedi-
ate chain-of-thought (CoT) reasoning (Wei et al.,
2022b; Zhang et al., 2023).

For demonstration selection, Liu et al. (2022)
performed demonstration selection through a kNN-
based retriever, choosing the closest example to
test input. Wu et al. (2022) proposed self-adaptive
ICL with a general select-and-rank framework for

demonstration selection. In addition to example se-
lection, Lu et al. (2022b) investigated the sensitivity
of ICL to the permutation of demonstrations and
proposed entropy metrics to determine their order.
The above ICL methods are usually restricted by
the number of demonstrations. To mitigate such a
challenge, Hao et al. (2022) attempted to scale ICL
by grouping demonstrations, which could increase
the number of demonstrations to 1,000.

The formatting function also plays a crucial role
in ICL, especially for tasks requiring complex rea-
soning steps, such as commonsense reasoning. Wei
et al. (2022b) introduced chain-of-thoughts (CoT)
prompting to provide guidance. Zhang et al. (2023)
stimulated the model’s ability for gradual reason-
ing by adding the “Let’s think step-by-step” prefix.
Instead of generating reasoning steps, Press et al.
(2023) investigated the compositional reasoning
abilities by allowing LLMs to generate follow-up
questions. Subsequently, Madaan et al. (2023) in-
troduced a new framework to enhance the initial
outputs generated by LLMs via iterative feedback
and refinement. Meanwhile, some studies (Xie
et al., 2022; Dai et al., 2023; Wang et al., 2023b)
attempt to uncover the underlying working mecha-
nism of ICL. In particular, Xie et al. (2022) showed
that ICL happened via Bayesian inference, where
certain concepts were implicitly predicted before
the final prediction. Subsequently, Dai et al. (2023)
revealed that there are connections between ICL
and explicit fine-tuning and explained LLMs as
meta-optimizers (Irie et al., 2022b).

Unlike existing methods, to the best of our
knowledge, we are the first to decouple ICL into
two stages and focus on how to deeply learn from
fixed demonstrations rather than on demonstration
selection or prompt engineering. This is advanta-
geous for the world situation where provided sam-
ples are scarce, i.e., there is no large candidate set
of demonstrations.

6 Conclusion

In this paper, we introduce a novel two-stage frame-
work aimed at enhancing the ICL capabilities of
LLMs by leveraging iterative forward inferences to
learn from demonstrations. By decoupling the ICL
process into a dedicated Deep-Thinking stage for
demonstration training and a subsequent test stage,
we effectively mimic the decision-making process
of humans by learning from analogy. This ap-
proach aligns with how humans engage in repeated

15467

logical thinking. The empirical evaluations across
conventional ICL benchmarks and more challeng-
ing datasets demonstrate that our Deep-Thinking
strategy significantly outperforms previous ICL ap-
proaches, particularly in scenarios where demon-
stration selection is impractical.

Limitations

While our method has demonstrated promising re-
sults and significant advancements across various
aspects, it is imperative to conduct a thorough anal-
ysis of its limitations. In this section, we explore
the potential constraints of our method. Firstly, ow-
ing to limited computational resources and time
constraints, we were unable to evaluate our method
on larger language models, such as LLaMA2-70B.
This limitation may impact the generalizability of
our findings to larger-scale language models. Sec-
ondly, our evaluation primarily focused on conven-
tional ICL tasks and challenging benchmarks. To
enhance the comprehensiveness of our findings, we
intend to broaden the scope of evaluation to en-
compass a diverse range of dataset types, including
math reasoning, code generation, and open-ended
text generation. This extension aims to provide
further validation of our method’s generalizability.

Acknowledgments

Min Yang was supported by National Key
Research and Development Program of China
(2022YFF0902100), National Natural Science
Foundation of China (62376262), the Natural
Science Foundation of Guangdong Province
of China (2024A1515030166), Shenzhen Sci-
ence and Technology Innovation Program
(KQTD20190929172835662), Shenzhen Basic
Research Foundation (JCYJ20210324115614039).
This work was supported by Alibaba Group
through Alibaba Research Intern Program.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,

USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Yutian Chen, Max Welling, and Alex Smola. 2010.
Super-samples from kernel herding. In Proceedings
of the Twenty-Sixth Conference on Uncertainty in
Artificial Intelligence, pages 109–116.

Cody Coleman, Christopher Yeh, Stephen Mussmann,
Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. 2019. Selection
via proxy: Efficient data selection for deep learning.
In International Conference on Learning Representa-
tions.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming
Ma, Zhifang Sui, and Furu Wei. 2023. Why can GPT
learn in-context? language models secretly perform
gradient descent as meta-optimizers. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 4005–4019. Association for Computa-
tional Linguistics.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yux-
ian Gu, and Furu Wei. 2022. Structured prompting:
Scaling in-context learning to 1,000 examples. arXiv
preprint arXiv:2212.06713.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2015. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceedings
of the First International Conference on Human Lan-
guage Technology Research.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhu-
ber. 2022a. The dual form of neural networks re-
visited: Connecting test time predictions to training
patterns via spotlights of attention. In International
Conference on Machine Learning, pages 9639–9659.
PMLR.

15468

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhu-
ber. 2022b. The dual form of neural networks re-
visited: Connecting test time predictions to training
patterns via spotlights of attention. In International
Conference on Machine Learning, pages 9639–9659.
PMLR.

Rishabh K Iyer and Jeff A Bilmes. 2013. Submodular
optimization with submodular cover and submodular
knapsack constraints. Advances in neural informa-
tion processing systems, 26.

Krishnateja Killamsetty, Ganesh Ramakrishnan, Abir
De, and Rishabh Iyer. 2021. Grad-match: Gradient
matching based data subset selection for efficient
deep model training. In International Conference on
Machine Learning, pages 5464–5474. PMLR.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023. Can LLM already serve as
a database interface? a BIg bench for large-scale
database grounded text-to-SQLs. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Xiaonan Li and Xipeng Qiu. 2023. Finding support
examples for in-context learning. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 6219–6235, Singapore. Association for
Computational Linguistics.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play
compositional reasoning with large language models.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022a. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022b. Fantastically ordered

prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021. Active learning by ac-
quiring contrastive examples. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 650–663, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316–5330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec.
2020. Coresets for data-efficient training of machine
learning models. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 6950–6960. PMLR.

OpenAI. 2023. GPT-4 technical report. arXiv preprint
arXiv:2303.08774.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the 43rd
Annual Meeting of the Association for Computational
Linguistics, pages 115–124.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. In The 2023 Conference on Empirical Meth-
ods in Natural Language Processing.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2023. Reasoning with language
model prompting: A survey. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5368–5393, Toronto, Canada. Association for Com-
putational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

15469

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong
Huang, Uzi Vishkin, Micah Goldblum, and Tom
Goldstein. 2021. Can you learn an algorithm? gen-
eralizing from easy to hard problems with recurrent
networks. Advances in Neural Information Process-
ing Systems, 34:6695–6706.

Ozan Sener and Silvio Savarese. 2018. Active learn-
ing for convolutional neural networks: A core-set
approach. In International Conference on Learning
Representations.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-box tuning for
language-model-as-a-service. In Proceedings of The
International Conference on Machine Learning.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label
words are anchors: An information flow perspective
for understanding in-context learning. In Conference
on Empirical Methods in Natural Language Process-
ing.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark
Steyvers, and William Yang Wang. 2023b. Large
language models are latent variable models: Explain-
ing and finding good demonstrations for in-context
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022b. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2022. Self-adaptive in-context learn-
ing: An information compression perspective for
in-context example selection and ordering. arXiv
preprint arXiv:2212.10375.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In The Tenth
International Conference on Learning Representa-
tions.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 174–184.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, pages 649–657.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

15470

A Data Statistics and Templates For In-context Learning Tasks

We choose five datasets for evaluating in-context learning methods following (Min et al., 2022; Li and
Qiu, 2023). We show the prompting templates and dataset statistics in Table 4.

Task Original Dev Size Test Size Template Labels

SST2 67349 873 Review: {query}
Sentiment: {label}

negative / positive

SST5 8544 2210 Review: {query}
Sentiment: {label}

terrible / negative / neutral / positive /
great

TREC 5452 500 Question: {query}
Type: {label}

Abbreviation / Entity / Description /
Person / Location / Number

MR 8530 1066 Review: {query}
Sentiment: {label}

negative / positive

AGNews 120000 7601 Article: {query}
Category: {label}

World / Sports / Business / Technology

Table 4: The statistics of standard in-context learning tasks, including detailed task sizes, prompting templates, and
labels.

B Data Statistics For MMLU

We obtained the MMLU dataset from the Hugging Face Hub, specifically from the repository cais/mmlu†.
According to the dataset’s card, MMLU encompasses 57 tasks spanning diverse knowledge domains.
Each task includes a minimum of 100 test examples. For in-context demonstrations, five examples per
task provided by original dataset are used. We present detailed statistics for each sub-task, including the
classification scheme, in Table 5.

C Data Statistics For BBH

For the BigBench-Hard (BBH) dataset, we sourced the data from the maveriq/bigbenchhard‡. We
have excluded certain tasks due to their incompatibility with multiple-choice or classification formats.
Specifically, the tasks omitted include: Dyck Languages, Multistep Arithmetic, Object Counting, Word
Sorting, and Reasoning about Colored Objects. Table 6 provides a detailed statistics for each selected
task.

†https://huggingface.co/datasets/cais/mmlu
‡https://huggingface.co/datasets/maveriq/bigbenchhard

15471

https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/maveriq/bigbenchhard

STEM
astronomy: 152, college_physics: 102, conceptual_physics: 235, high_school_physics: 151,
college_chemistry: 100, high_school_chemistry: 203, college_biology: 144,
high_school_biology: 310, college_computer_science: 100, computer_security: 100,
high_school_computer_science: 100, machine_learning: 112, abstract_algebra: 100,
college_mathematics: 100, elementary_mathematics: 378, high_school_mathematics: 270,
high_school_statistics: 216, electrical_engineering: 145

Humanities
high_school_european_history: 165, high_school_us_history: 204, high_school_world_history: 237,
prehistory: 324, formal_logic: 126, logical_fallacies: 163, moral_disputes: 346,
moral_scenarios: 895, philosophy: 311, world_religions: 171, international_law: 121,
jurisprudence: 108, professional_law: 1534

Social Sciences
high_school_government_and_politics: 193, public_relations: 110, security_studies: 245,
us_foreign_policy: 100, human_sexuality: 131, sociology: 201, econometrics: 114,
high_school_macroeconomics: 390, high_school_microeconomics: 238,
high_school_geography: 198, high_school_psychology: 545, professional_psychology: 612

Others (Business, Health, misc.)
global_facts: 100, miscellaneous: 783, professional_accounting: 282, business_ethics: 100,
management: 103, marketing: 234, anatomy: 135, clinical_knowledge: 265,
college_medicine: 173, human_aging: 223, medical_genetics: 100, nutrition: 306,
professional_medicine: 272, virology: 166

Table 5: The number of samples for each subtask in the MMLU benchmark.

BBH
boolean_expressions: 250, causal_judgement: 187, date_understanding: 212,
disambiguation_qa: 247, formal_fallacies: 250, geometric_shapes: 200,
hyperbaton: 250, logical_deduction_three_objects: 250, logical_deduction_five_objects: 250,
logical_deduction_seven_objects: 250, movie_recommendation: 231, navigate: 250,
penguins_in_a_table: 145, ruin_names: 247, salient_translation_error_detection: 250,
snarks: 177, sports_understanding: 250, temporal_sequences: 250, web_of_lies: 250
tracking_shuffled_objects_three_objects: 250, tracking_shuffled_objects_five_objects: 250,
tracking_shuffled_objects_seven_objects: 250

Table 6: The number of samples for each selected subtask in the BBH benchmark.

15472

D Minimal Implementation

The provided minimal implementation code showcases our proposed method, primarily integrating with
the Hugging Face Transformers library.

class GatedOptim:
def __init__(self, step_size=0.01):

self.step_size = step_size

def upd_x(self, old_x, g): return old_x + self.step_size * g
def __call__(self, old_xs, new_xs):

pesudo_gs = [new_x - old_x for old_x, new_x in zip(old_xs, new_xs)]
updated_kv = [self.upd_x(old_x, g) for old_x, g in zip(old_xs, pesudo_gs)]
return updated_kv

class AttnOptimWrapper:
def __init__(self, llm, **optimizer_args):

self.model = llm
self.kv = None
self.update_k = GatedOptim(**optimizer_args)
self.update_v = GatedOptim(**optimizer_args)

def step(self, ctx_ids):
L = len(ctx_ids)
ctx_ids = ctx_ids.unsqueeze(0) # [1, L]
mask = torch.ones_like(ctx_ids).repeat(1, 2 if self.kv else 1)

out = self.model(ctx_ids, mask, past_key_values=self.kv, use_cache=True)
out_kv = out.past_key_values # kv @ (old_ctx + new_ctx)
cur_kv = [[k[:,:,-L:,:], v[:,:,-L:,:]] for k, v in out_kv] # kv @ (new_ctx)

if not self.kv:
self.kv = cur_kv

else:
(old_ks, old_vs), (cur_ks, cur_vs) = zip(*self.kv), zip(*cur_kv)
upd_ks = self.update_k(old_ks, cur_ks)
upd_vs = self.update_v(old_vs, cur_vs)
self.kv = list(zip(upd_ks, upd_vs)) # kv @ (merged_ctx)

return self.kv

def main():
... initialization (dataset, model, tokenizer, logger, etc)
ex_str = load_exemplar()
ex_ids, ex_mask = tokenize(ex_str)
meta_optim = AttnOptimWrapper(model)
for idx in range(args.meta_steps):

ex_kv = meta_optim.step(ex_ids)
for B_query_ids, B_query_mask in inference_loader:

bs = len(B_query_ids)
[B(expanded), L+L'(concat)]
B_merged_mask = torch.cat((ex_mask.expand(bs, -1), B_query_mask), dim=1)
B_kv_shape = (bs, -1, -1, -1)
B_kv = [[k.expand(B_kv_shape), v.expand(B_kv_shape)] for k, v in ex_kv]

B_out = model(B_query_ids, B_merged_mask, past_key_values=B_kv).logits
B_out = F.log_softmax(B_out, dim=-1)
...

15473

