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Abstract

This paper explores the impact of extending
input lengths on the capabilities of Large Lan-
guage Models (LLMs). Despite LLMs advance-
ments in recent times, their performance con-
sistency across different input lengths is not
well understood. We investigate this aspect by
introducing a novel QA reasoning framework,
specifically designed to assess the impact of in-
put length. We isolate the effect of input length
using multiple versions of the same sample,
each being extended with padding of differ-
ent lengths, types and locations. Our findings
show a notable degradation in LLMs’ reason-
ing performance at much shorter input lengths
than their technical maximum. We show that
the degradation trend appears in every version
of our dataset, although at different intensities.
Additionally, our study reveals that the tradi-
tional metric of next word prediction correlates
negatively with performance of LLMs’ on our
reasoning dataset. We analyse our results and
identify failure modes that can serve as use-
ful guides for future research, potentially in-
forming strategies to address the limitations
observed in LLMs.

1 Introduction

Recent advancements in Large Language Models
(LLMs) show impressive performance across a
range of tasks (OpenAI, 2023; Anil et al., 2023;
Jiang et al., 2024), including answering correctly
complex questions requiring multiple reasoning
steps (Kojima et al., 2022; Wei et al., 2022). These
models also claim to support increasingly longer
inputs. This development underscores the need to
examine their performance on the longer inputs
they are now technically supporting.

A reasonable assumption is that support for long
inputs would transfer across tasks and enable a
model adept at solving a task when presented in a

*These authors contributed equally to this work.

500 1000 1500 2000 2500 3000250
Input length (# tokens)

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Reasoning over input text

CoT

Normal

GPT3.5

GPT4

Gemini Pro

Mistral Medium

Mixtral 8x7B

Figure 1: Reasoning performance drops as input grows,
across a variety of tasks. Inputs are composed of text
containing information relevant to the task (in red),
and irrelevant text (grey) which is drawn from various
sources and extended incrementally. Two separate text
spans are required to answer correctly, and are located
randomly in the input. Each point reflects the perfor-
mance across 600 samples.

short input prompt, to perform the same task when
it is embedded within a longer prompt. Does this
assumption hold? Recent studies that benchmark
models over tasks that involve longer inputs, in-
cluding reasoning tasks, indicate that indeed mod-
els often struggle with reasoning over long inputs
(Shaham et al., 2023; Li et al., 2023; Bai et al.,
2023). However, these studies do not properly con-
trol their variables, and vary both the input length
and the associated tasks to be performed. This
makes it it hard to say if the degraded performance
is due to the requirement to work with longer input,
or due to the task being generally harder.

In this work, we study the effect of increasing the
input length on model performance, while keeping
other factors as constant as possible.

We employ a methodology to measure model
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performance trends as a function of input length,
by isolating it as a variable, while keeping the un-
derlying task intact (§2).

To that end, we introduce Flexible LENgth
Question Answering dataset (FLenQA) 1, a QA
dataset for text-based reasoning (§3). For each
sample, composed of a True/False question over
two pieces of information required to answer it
(the context), we create multiple versions of differ-
ent lengths by embedding the context parts within
longer, irrelevant texts. To ensure that models uti-
lize their entire input, the dataset is composed of
tasks for which both pieces of information must
reasoned over together in order to correctly answer
the question. At the same time, we keep the tasks
simple enough such that models answer most of
them correctly when the information pieces are pre-
sented on their own, with no additional padding.

We show that LLMs quickly degrade in their
reasoning capabilities, even on input length of 3000
tokens, which is much shorter than their technical
maximum (on average over all tested models, a
drop in accuracy from 0.92 to 0.68).

Additionally, we explore the effect of embed-
ding the information pieces in various locations
within the context, as well as with two kinds of
contexts: similar to the information pieces, or dis-
similar to them (§4). We find that regardless of
the experimental setting, there are similar trends of
degradation.

We also show that next-word prediction perfor-
mance of models on long inputs is uncorrelated
with their performance on downstream tasks of rea-
soning on long inputs (§5).

Furthermore, we find that while Chain-of-
Thought (CoT) prompting (Kojima et al., 2022; Wei
et al., 2022) increases performance in short inputs,
in most models it does not mitigate the degradation
of performance when inputs are longer: while CoT
prompting increases the accuracy over non-CoT
prompting, the amount of increase is roughly con-
sistent across context lengths, and is far from clos-
ing the performance drop due to long context (§6).
The only exception to that is GPT42, in which the
gap between CoT and normal prompting increases
as the input is longer.

Finally, we analyse our results and identify sev-
eral failure modes in model responses (§7). We find
that with longer inputs models tend not to follow

1https://github.com/alonj/Same-Task-More-Tokens
2we refer to the models gpt-4-1106-preview, gpt-3.5-turbo-

1106 as GPT4 and GPT3.5 accordingly.

specific instructions in the input, either providing
no answer, or - in the case of CoT prompting -
presenting the final answer before outlining the
reasoning steps. We also observe a bias towards an-
swering "false", as well as a decline in the models’
ability to incorporate relevant information in their
responses, as input length increases.

2 Desired Data Properties

Our goal is to understand how input length affects
LLMs reasoning capabilities over text, given that
the relevant information remains the same. We thus
use question answering tasks that require models
to reason over a given text. For the investigation
to be applicable to both open and closed models,
we chose a behavioral approach that relies on input
intervention (Holtzman et al., 2023).

We aim for our data to satisfy the following re-
quirements:

Ensuring models reason over the input. To ex-
amine the performance of models on long inputs,
we require that the task can only be solved correctly
by drawing conclusions from evidence in the text
(Huang and Chang, 2022).

1. Each data sample should contain several rel-
evant text spans that are both necessary and
sufficient to correctly solve the task.

2. All relevant spans must be consulted jointly
to reach a successful solution. Some tasks,
like text summarization, can be solved using a
"divide-and-conquer" approach (Gidiotis and
Tsoumakas, 2020; Liu et al., 2022; Wolhan-
dler et al., 2022), where each relevant span is
individually identified, and then paraphrased
and added to the output. We wish to avoid
such decomposable tasks, as they do not re-
ally require reasoning over long inputs.

3. The question and supporting relevant spans
should consist of novel facts not seen in train-
ing. Ensuring that a task requires reasoning
across multiple text spans is a stronger re-
quirement then a task that requires multi hop
reasoning. It was shown that models can an-
swer existing reasoning dataset when given
one some of the parts that were claimed to be
required for the task (Chen and Durrett, 2019;
Min et al., 2019). To avoid model reliance
on parametric knowledge when we expect a
reasoning process to be done (i.e to avoid data
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contamination (Jacovi et al., 2023; Sainz et al.,
2023)), we desire that an evaluation aimed to
test reasoning capabilities will require reason-
ing over texts that were not previously avail-
able.

Isolating the length factor. To isolate the effect
of length, we impose the following requirements:

1. The required reasoning should be indepen-
dent of the length of the sample: the relevant
spans should remain the same in all length
variations.

2. The added material (a.k.a “padding”, text that
is added to control the samples’ length) should
not contradict or interfere with the reasoning
over the relevant text spans.

3. The location of each relevant span within the
input should be controllable.

Maintaining natural-looking inputs. The input
should reflect something a user may naturally use
in an LLM prompt. For example, a sequence of
unrelated sentences is not natural. In contrast, a
sequence of unrelated paragraphs but where each
paragraph is cohesive is more natural, as such an
input may result from collecting relevant informa-
tion from multiple sources. To best maintain the
naturality of the inputs while changing an input’s
length, we require that the input should be cohesive
at least at the level of paragraphs.

3 FLenQA

We introduce the Flexible LENgth Question
Answering dataset (FLenQA), which follows the
requirements set in §2.

FlenQA is composed of three reasoning tasks:
Monotone Relations (a new task), People In Rooms
(a new task) and a simplified version of Ruletaker
(Clark et al., 2021) (§3.2). Each task consists of
100 base instances, from which we create variations
of different lengths, different background texts, and
different dispersion of facts within the background
texts (§3.3).

Each task is completely balanced in its label
distribution (“True" and “False"), and we ensure
that most base-instances within it will be solved
correctly by the LLMs when presented in their un-
expanded forms (§3.4).

We release the dataset and the code to generate it
from scratch to support future studies of reasoning

and long input performance. Generating the dataset
from scratch can be used to prevent data contami-
nation in future evaluation. Details and statistics of
the tasks appear in Appendix A.

3.1 Base instances.

Each base-instance consists of (1) an optional pre-
fix (for example introducing the task or supporting
facts); (2) two key paragraphs, each of which is the-
matically coherent and starts with a key sentence
needed for solving the task; and (3) an optional
suffix (for example, asking a question about the pre-
ceding context).3 For each instance, the different
parts are joined by newlines and fed to the LLM.

Throughout the text, key paragraphs are typeset
in red, the supporting sentences within them in
darker red, and the optional prefixes and suffixes in
black. The full prompts used for each dataset are
in Appendix B.

Deriving the key paragraphs Each task re-
lies on two facts, expressed as simple sentences.
Each of these sentences is then expanded to a
thematically-coherent paragraph, in order to en-
sure the naturality requirement. This expansion is
performed using GPT-4, which we prompt to ex-
tend the sentences without adding new information,
followed by a manual verification of the results by
the authors.

3.2 The tasks

Monotone relations (MonoRel) Each key sen-
tence is comparing two person names on monotone
scale, e.g. “X is larger than Y”, “Y is larger than
Z”. The suffix is a True/False question that asks
about a relation between two entities that appear
in different sentences (they are not explicitly com-
pared in the text). The relations are transitive and
monotone in nature.

MonoRel Example:
Julie Baker is younger than Julian Barton.

This is a fact that remains constant,

unchanging like the northern star. It’s a

truth that is as clear as day that she ...

Samantha Arnold is younger than Julie Baker.

It means that Samantha Arnold has experienced

fewer birthdays than Julie Baker. ...

Is Samantha Arnold younger than Julian Barton?

3The optionality is at the task level, either all instances in
the task have a prefix/suffix, or they don’t.
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This data is inspired by different monotonic rela-
tions describing kinship, introduced by Sinha et al.
2018. We define a new set of relation types in this
work. Following the requirements in §2, answer-
ing the question requires reasoning over both key
sentences. The data is created programmatically
by randomly drawing names from Faker python
library (Faraglia and Contributors, 2012) and a re-
lation from a list of hand-crafted relations.

People In Rooms (PIR) In each sample in the
task, in one key sentence person is said to be lo-
cated in a named room (“X is in the old library"),
and the other key sentence describes the room to
have a certain property (“the old library has wooden
floors”). The task is then to infer whether the given
person is located in a room with the given property.

PIR Example:
John’s living room is marble-floored, a

reality that is as intrinsic to the building

as its very foundations. The moment ...

Ethan Washington is in John’s living room, a

fact that has become as much a part of the

place as the walls and the ceiling. The truth

that Ethan Washington is in John’s living ...

Is Ethan Washington in a marble-floored room?

This dataset is inspired by the bAbI set of tasks
(Weston et al., 2016), where reasoning is conducted
on paths taken by one or more agents. PIR is a sim-
plification of the task, involving just one agent. The
names of people in the task are drawn randomly
(Faraglia and Contributors, 2012). Rooms and prop-
erties were hand selected to be mutually exclusive
(for example, a room is either blue-walled or red-
walled), so no ambiguous examples are created.

Simplified Ruletaker We employ the task for-
mulation from Ruletaker (Clark et al., 2021), a
benchmark designed for theorem proving within
texts that present explicit logical theories in natu-
ral language. Each instance consists of a logical
rule, two sentences each introducing a fact, and a
question over the rule and facts.4

4Initial experiments revealed that most LLMs still struggle
with instances involving multiple rules or more than two facts.
Our Simplified Ruletaker task consists of generated samples
that fit these criteria.

Simplified Ruletaker Example:
Facts:

Erin is furry. Erin is known for his furriness.

He has a lot of fur and ...

Erin is good. Erin was always known for how

good he is. His goodness appears on all

matters of life ...

Rule:If X is big and X is good then X is tall.

Question: can the statement "Erin is tall" be

derived from the rule and the facts?

3.3 Length Variations

We expand each base instance to input lengths
of roughly 250, 500, 1000, 2000, and 3000 to-
kens.5 To extend the inputs to those targets we add
background text that is irrelevant to the question
(“padding”, §2). For each basic-instance and length
pair we create different versions that differ in their
source of background text: either duplicate, similar
or different than the key paragraphs of the instance.
For each of these, we also vary the dispersion of
the key-paragraph within the background text.

3.3.1 Background Texts

Duplicate. To evaluate the extreme case where
the length changes but the information remains the
same, we perform an experiment where the each
length text consists of multiple copies of the key
paragraph. We duplicate each key paragraphs with-
out any modification to achieve the target length of
the input. The two duplicated paragraphs appear
in alternating order until the desired sample length
is achieved. In this case, of the two sub-tasks of
QA reasoning - identifying the key information and
reasoning over it, the first sub-task is trivial.

Similar: resampling from the same task. To
get background text that is similar to the key para-
graphs, we pad using paragraphs sampled from
other base instances of the same task. To avoid
creating contradictions, we exclude paragraphs that
contain entities appearing in the key paragraphs.
This padding therefore does not produce adversar-
ial or ambiguous versions of the samples. This type
of padding creates an input that resembles the RAG
setup, where the input is composed of independent
texts from a similar source (Mao et al., 2020).

5We consider a sample to be of length N if its token count
as measured by the GPT4 tokenizer is in (N − 70, N + 70).
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Figure 2: Inputs construction. Key sentences (dark
red), are expanded to key paragraphs (light red) which
are dispersed in controlled locations among padding text
(grey) which is irrelevant to the task.

Different: Book Corpus. To get background text
that differs from the key paragraphs, we use text
from the Books Corpus (Zhu et al., 2015). We sam-
ple a random (continuous) text from the Book Cor-
pus, and inject each of the key paragraphs within
it, while respecting sentence boundaries.

3.3.2 Location of key paragraphs in the text
We consider four distinct ways in which the key
paragraphs are dispersed within the background
text: in the first three cases the key paragraphs
appear adjacent to each other, while in the fourth
the key paragraphs are separated by intervening
text of various lengths.

(1) Key paragraphs first: The key paragraphs
appear at the beginning of the text followed by
padding;

(2) Key paragraphs middle: Half of the padding
is affixed before and half after the key paragraphs,
but not between them (the key paragraphs are ex-
actly in the middle);

(3) Key paragraphs last: The key paragraphs ap-
pear at the end of the text, with padding prepended
before them as a prefix;

(4) Random placement: padding is added before,
between and after the paragraphs, with random
intervals.

A visual representation is provided in Figure 2.

3.4 Base instances are answerable

We estimate the baseline accuracy by evaluating
the LLMs on the minimal text of each sample in
the dataset that includes only the question and the
key paragraphs relevant to it. The results of the
base instances are brought in 3.4. We found that
even when using non-CoT prompting, four out of
the five models achieve high accuracy (>0.89). The
lowest performing model (GPT3.5) achieve high
enough accuracy for degradation to be observable
(0.77).

Model Prompt MonoRel PIR Ruletaker*

GPT3.5 Direct 0.77 0.81 0.74
CoT 0.86 0.88 0.88

GPT4 Direct 1.00 1.00 0.98
CoT 1.00 1.00 0.97

Gemini Pro Direct 0.84 1.00 0.92
CoT 0.88 0.96 0.97

Mistral 70B Direct 0.99 1.00 0.73
CoT 1.00 1.00 0.89

Mixtral 8x7B Direct 0.92 0.97 0.80
CoT 0.86 0.97 0.93

Table 1: Minimal length accuracy. The evaluated mod-
els have high accuracy on the tasks in our dataset when
evaluated on the minimal text (250 tokens). CoT im-
prove performance across almost all tasks and models.

4 Main Experiments

We report average accuracies over all three tasks,
and maintain the same setup (prompt, temperature,
etc.) over all input lengths. We evaluate five re-
cent capable LLMs: GPT4, GPT3.5, Gemini-Pro,
Mistral Medium and Mixtral 8x7B. We consider
an output where no answer was mentioned (e.g "I
don’t know") as incorrect. See Appendix C for a
detailed breakdown of our setup parameters.

4.1 Impact of Length and Location

We start by validating the impact of input length on
LLM reasoning performance (Figure 1) in various
experimental settings.

No irrelevant paragraphs We first look into the
extreme case where only relevant tokens are added
(“duplicate padding”). Shi et al. (2023) Demon-
strate that appending irrelevant texts to the input of
a reasoning task (GSM-8K (Cobbe et al., 2021)) re-
duces model performance substantially. We isolate
the effect of relevance by testing a setting in which
the padding is duplications of the exact text of the
key paragraphs. In this setup, the LLMs are not
required to “search" the input to find the key para-
graphs, so any bias towards any position becomes
irrelevant (Liu et al., 2023b). Also, any difficulty
that might be imposed by the distance between the
key paragraphs also becomes irrelevant. Hence, we
expect that there will be no degradation in perfor-
mance. The Results shown in Figure 3, reveal that
even in this setup length does play a factor, and
accuracy decreases with length for all models. We
consider these results surprising: duplicated texts
are an artificial setup which is arguably the best
case scenario of long inputs, as the information
is constantly repeated and there is no distracting
text. In more natural cases, most of the input is
irrelevant to question asked. We test this setup in
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Figure 3: The relevance of padding is a factor, but it is
distinct from the effect of length itself. Some models
degrade in reasoning performance. Note, both GPT3.5
and GPT4 are less affected by length when the added
tokens are relevant. Each point reflects 300 samples.

the next section.

Adjacent paragraphs surrounded by irrelevant
ones We now move to the more realistic case
where the prompt includes the key paragraphs as
well as additional irrelevant ones. In the first set of
experiments, we keep the key paragraphs adjacent
to each other: the LLM just needs to focus and
operate on a single area of the input, ignoring the
rest. Liu et al. (2023b) Found that in the task of ex-
tractive QA, the position of the answer in the text
affects the ability of models to answer correctly.
We thus experiment with the three scenarios: po-
sitioning both key paragraphs at the start, end or
middle of the text. In all cases we average over
both types of irrelevant padding.

500 1000 1500 2000 2500 3000250
Input length (# tokens)

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

key paragraph locations

First Last Middle Random

Mistral Medium accuracy on different

Figure 4: Accuracy decreases as input length grows
regardless of where the key paragraphs are placed within
the input. Each point reflects 300 samples. Results for
all models appear in Appendix C

The results in Figure 4 show a significant drop

in accuracy as length increase beyond 500 tokens.
For most models, adjacency of key paragraphs
produces higher accuracy, and when the key para-
graphs appear last, accuracy is often highest (sug-
gesting recency bias). We also find that some mod-
els perform worse when the key paragraphs are
in the middle, similarly to what was found in the
extraction task studied recently (Liu et al., 2023b).

Non-adjacent relevant paragraphs. Finally, we
test the scenario in which the relevant facts needs
to be collected from two non-adjacent locations
within the text.

Here, the results in Figure 1 show a very large
drop in performance as length increases, indicating
that reasoning tasks becomes significantly harder
for LLMs when they need to collect evidence from
two distinct locations in a large-ish context length.

4.2 Kind of irrelevant material

We now focus only on the non-adjacent key-
paragraphs case, and explore the effect of the kind
of irrelevant text. We consider two scenarios: when
the irrelevant paragraphs are similar to the relevant
ones (taken from the same task), and when they are
different (taken from the books corpus).
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Figure 5: Performance degrade in both types of padding.
Books padding impact is much greater in most models.
Each point reflects the performance across 300 samples.

Our initial expectation was that the setup in
which the irrelevant paragraphs are different from
the relevant ones will be easier for the model, as
the irrelevant paragraphs will be easier to discard,
aiding focusing on the relevant ones. However, the
results (Figure 5) show the that is not case: the drop
for the different setup is mostly larger than for the
similar one.
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5 Correlation with Next Word Prediction

Perplexity is used as the main benchmark to show
that models utilize their entire input (Anil et al.,
2023; Jiang et al., 2024; Ding et al., 2024). How-
ever, it was shown that performance on downstream
tasks does not necessarily correlate with model per-
plexity (Liu et al., 2023a; Xia et al., 2022; Tay
et al., 2022). Here, we will use the flexibility of
our dataset to understand the correlation between
perplexity and reasoning accuracy.

In closed models we lack access to full vocabu-
lary token probabilities so model perplexity cannot
be measured, therefore we resort to measuring next
word accuracy on our data. We prompt models to
complete the next word in a given text, and the out-
put is correct if it is an exact match to the true next
word. We use the samples in our dataset (without
the questions) as the text and compare the results
to the reasoning performance on the same samples.

Our method finds similar trends on the next word
prediction task to those shown in other works (Anil
et al., 2023; Jiang et al., 2024), namely accuracy
increases as input is longer. However, as shown in
Figure 6, next word accuracy correlates negatively
with reasoning on FlenQA 6.
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Figure 6: Next word accuracy correlates negatively with
the reasoning accuracy on FlenQA. Each point reflects
the performance across 300 samples. Gemini-Pro is not
included as it answered empty replies to the next word
prediction task at any length.

This implies that measuring next word predic-
tion and, similarly, perplexity, cannot substitute
downstream task evaluation on long inputs.

6ρPearson = −0.95, p = 0.01

6 Does Chain of Thought Help?

Chain of Thought (CoT) prompting, introduced by
Kojima et al. (2022); Wei et al. (2022), is a tech-
nique by which the LLM is pushed to produce a
text comprising of reasoning steps before conclud-
ing the correct answer for a question. Zhou et al.
(2022) found that a more specific and optimised
instruction ("Let’s work this out in a step by step
way to be sure we have the right answer.").

The CoT technique was shown to significantly
improve the accuracy on many reasoning-based
question-answering setups. Will using it change
the trend and allow the LLMs to perform effectively
on longer inputs? We experiment with CoT using
the elicitation string of Zhou et al. (2022).

The results show (Figure 1) that CoT has differ-
ent effects on different LLMs, and overall does not
mitigate the drop in performance due to length. In
most cases (GPT4, Mixtral 8x7B, Mistral Medium
and GPT3.5) it improves performance, but only in
GPT4 it has an increased effect as length increases,
making it a limited mitigation technique. In the
case of Gemini-Pro, we see that CoT decrease per-
formance as input length is increased, even though
it increase performance on short length.

The full results of the CoT prompting over all
tasks and setups can be found in Appendix C.

7 Length-induced Failure modes

We find in the results four failure modes:7 consis-
tent patterns that correlate with incorrect responses.

Failure to answer All of the samples in the
dataset can be answered with either "True" or
"False", as instructed in our prompts (Appendix
B). However, some of LLMs responded with a
refusal answer the question, often preceded by a
sentence such as "There is not enough information
in the text". This tendency grows as the input
length increases, indicating a failure to comply to
the instruction that specified a clear choice between
"True" and "False". The trend is demonstrated in
figure 7, and results over all models in Appendix
C.

Label bias As discussed in §3, our dataset is
completely balanced in the label distribution. We
find that certain LLMs tend to favour one of the
labels, typically "false", as the input length grows.
Results for all models are in Appendix C.

7All failure modes can be measured automatically using
the code in our repository.
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Figure 7: The models exhibit two types of input-length
dependent biases: (a) They tend to generate "False"
more often than "True", and (b) they ignore instructions
and generate answers which do not contain neither.

Answer first, reason later When using Chain-
of-Thought prompting, some LLMs were much
more likely to output the final true/false answer
before the expected reasoning steps, as inputs grow
longer. In recent work, Kojima et al. 2022 found
that when models are elicited to provide the rea-
soning steps after the answer their performance
does not increase (as expected when using auto-
regressive models that only attend to earlier tokens).
This can be viewed as a case of failing to follow
prompt instructions (see prompt instructions in Ap-
pendix B) as the length increases. In testing, we
found that incorrect responses are statistically de-
pendent on the occurrence of answers before the
reasoning steps8.
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Figure 8: Most of the models tend to generate an answer
before the reasoning steps, in a zero-shot CoT prompt
setting, and do so more as input length increases.

8Corresponding odds-ratio is 3.643 with p < 0.001 ob-
tained through Fisher exact test.

Chain-of-Thought lack of coverage All the
tasks in FlenQA require the LLM to: (1) locate
the relevant texts within the input; and (2) perform
the relevant reasoning over them. Ideally, the CoT
prompt would elicit the LLM to first locate each of
the relevant texts and copy them to the “steps” part,
hence avoiding the effect of long input on reason-
ing. However, we find that as input length grows,
LLMs ability to do this degrades (Figure 9).
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Figure 9: CoT coverage of relevant facts. As input
grows, all models fail more often in outputting the task-
relevant information at the CoT reasoning steps stage.

We measure this by computing the coverage of
the relevant text (the key sentences in each sample)
in the models’ “steps" part of the outputs (details
in Appendix B.4). We find that in most models, the
ability to locate the relevant text within the input
decreases as the input length gets longer. We found
incorrect responses were statistically dependent on
the incomplete coverage of the facts9.

8 Related Work

The evaluation of LLMs on long inputs has fol-
lowed two distinct pathways: benchmarks of down-
stream tasks and next word prediction. In the realm
of benchmarks, studies proposed datasets of long
input samples that can be used to evaluate models
(Shaham et al., 2023, 2022; An et al., 2023b,a; Bai
et al., 2023). Those datasets are curated over inputs
of different, but fixed, length. This approach, while
straightforward, limits our ability to inputs of vary-
ing lengths, posing a challenge in understanding
the true impact of input length on model perfor-
mance. On the other hand, next word prediction
evaluations do offer an insights into how models
handle inputs of different lengths (like done in Anil

9Corresponding odds-ratio is 3.138 with p < 0.001 ob-
tained through Fisher exact test.
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et al. 2023; Jiang et al. 2024). However, the correla-
tion of this task with downstream performance was
found not consistent (Liu et al., 2023a; Xia et al.,
2022; Tay et al., 2022). In this paper we reproduce
this finding with respect to extended length.

This study builds upon prior research that exam-
ined different aspects through input intervention,
studying the semantic content (theme) of a task
(Dasgupta et al., 2022), prompting strategies (Ko-
jima et al., 2022; Yao et al., 2023; Jin et al., 2024)
and various properties of the QA task (Levy et al.,
2023). Our investigation focuses on input length,
isolating it, to reveal its impact on performance.

9 Discussion

We study the effect of input length on reasoning
performance of current Large Language Models
(LLMs). Our findings reveal a significant drop
in performance with longer inputs, occurring well
before reaching the models’ maximum input-length
capacity. Our experiments relied on FLenQA, a
dataset we constructed that allows to isolate the
length factor, by adjusting the parts in the input that
are irrelevant to the task. We show that regardless
of how we adjust the samples, there is still a strong
effect of length on reasoning performance.

Finally, we identified specific failure modes, in-
cluding difficulties in following extended instruc-
tions and biases towards less relevant information.
Our analysis reveals specific failings, providing
possible directions for future studies to address and
rectify the weaknesses found in LLMs.

In conclusion, our work indicates that evaluat-
ing a model’s performance based on a single input
length does not provide a full picture, and more
nuanced evaluation is required. We argue that for
a model to be considered capable at long range,
it must maintain its performance at any length it
technically supports.

Limitations

Because of the nature of behavioral testing, the
observed drop in performance with varying input
lengths remains unexplained; because of lack of
access to many of the models, we suspect this di-
rection will continue to be limited. Secondly, our
approach aimed to create a universally applicable
test across different LLMs, leading to the selec-
tion of tasks that cater to the lowest common de-
nominator. This approach potentially overlooks
the nuanced performance differences in more com-

plex reasoning tasks (e.g 5 key paragraphs), where,
for instance, stronger models might exhibit perfor-
mance degradation at shorter input lengths com-
pared to what our findings suggest. We focused on
a subset of reasoning task types which may differ
behaviourally from other types. Moreover, in order
to extend the key sentences to key paragraphs, we
employed GPT4 which may introduced some level
bias to the text that surrounded the text required
to the reasoning task (that was generated without
GPT4). Finally, our study did not test the distance
between key paragraphs, leaving an aspect of LLM
performance unexplored that we leave for future
research.
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We conclude that parametric knowledge should
be accounted for when evaluating text-based rea-
soning capabilities. In this work we introduced
FlenQA, which is composed of novel generated
data to make sure that reasoning over the input is
required.

A Datasets

Each task of the following contains 100 base in-
stances. In each sample, there are two paragraph-
length texts (key paragraphs). To achieve para-
graphs of similar length, we edit them by truncat-
ing sentences beyond a specific length, resulting in
an average paragraph length of 125 tokens.

A.1 Ruletaker
The key paragraphs in the task are as evidence
for the reasoning task, a rule and a question. In
the original data (Clark et al., 2021), the samples
contain different number of reasoning steps. In this
study, we generate new, simpler samples of the task:
each sample is composed of only two facts and one
logical rule. The samples we generate are of similar
flavor to those that exist in the original Ruletaker
data, but are generated with new statements, rules
and facts. The key paragraphs and the padding
apear as the facts of each sample.

Padding Target Input Mean Number
Type Length Tokens

Books

250 249.8
500 508.78

1000 1009.56
2000 2009.64
3000 3008.38

Same

250 249.8
500 503.535

1000 1004.41
2000 2005.51
3000 3005.125

Figure 10: Summary of statistics of the Ruletaker* task
data.

A.2 MonoRel
The key paragraphs in the task act as evidence for
the reasoning task, and a question. Both key para-
graphs describe a monotonic relation between two
people, where one person is shared between both.
The key paragraphs are embedded in padding text
to create a text mixture.

Padding Target Input Mean Number
Type Length Tokens

Books

250 238.06
500 490.84

1000 991.41
2000 1990.34
3000 2990.95

Same

250 238.06
500 491.69

1000 991.43
2000 1991.31
3000 2991.44

Figure 11: Summary of statistics of the MonoRel task
data.

A.3 People in Rooms (PIR)
One key paragraph describes the location of an
individual, and the other describes some attribute
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of that location. The key paragraphs are embedded
in padding text to create a text mixture.

Padding Target Input Mean Number
Type Length Tokens

Books

250 305.36
500 491.85

1000 989.91
2000 1992.00
3000 2988.67

Same

250 305.36
500 484.63

1000 985.82
2000 1985.04
3000 2984.80

Figure 12: Summary of statistics of the People In Rooms
(PIR) task data.

B Full Evaluation Setup

B.1 Prompts

Ruletaker prompt - Normal:
Answer whether the statement {statement} can

be derived from the rule and the facts. Answer

with either "True" or "False".

Rule: {rule}

Facts: {facts + padding}

Answer with either "True or "False".

Ruletaker prompt - CoT:
Answer whether the statement {statement} can

be derived from the rule and the facts.

Show your steps then answer with either "True"

or "False".

Rule: {rule}

Facts: {facts + padding}

Answer with either "True or "False". Let’s

work this out in a step by step way to be sure

we have the right answer.

PIR prompt - Normal:
{facts + padding}

True/False Question: {question}

Answer only True or False.

PIR prompt - CoT:
Show your steps then answer with ’true’ or

’false’.

{facts + padding}

True/False Question: {question}

Let’s work this out in a step by step way to

be sure we have the right answer.

MonoRel prompt - Normal:
Here are some facts. Answer the exact

following question based on the text:

{question} Answer the question as it appears

exactly. {facts + padding}

{question}

Answer only True or False.

MonoRel prompt - CoT:
Here are some facts. Answer the exact

following question based on the text:

{question} Answer the question as it appears

exactly.

Show your steps then answer with ’true’ or

’false’.

{facts + padding}

{question}

Let’s work this out in a step by step way to be

sure we have the right answer. Show your work

and finally answer with ’true’ or ’false’. The

final step should include the exact text of

the question and the answer.

B.2 Parameters
All models were evaluated with a temperature of
0 and "top p" of 0 where available to make re-
sults as reproducible as possible. Additionally, We
configured Gemini Pro to ignore safety guardrails
("HARM_CATEGORY" configurations) to over-
come its blank answers in some samples.

B.3 Locating the answer in models’ replies
To identify the models’ answers in their responses,
we searched for the occurrences of "false" or "true,"
disregarding case sensitivity. In cases where these
words appeared multiple times, only the last in-
stance was considered relevant. We tested the re-
liability of this method by manually examining a

15350



random sample of 100 responses and confirmed its
accuracy in all instances.

B.4 Evaluating the coverage of key facts in
CoT

Coverage of the key facts that are relevant to the rea-
soning task in CoT outputs, was done by searching
for (case-insensitive) match of the key sentences
in the key paragraphs, within the output of each
model. Full coverage means that both key sen-
tences from the input appear in the CoT output. We
verified the reliability of this method manually on
a sample of 100 responses.

C Full results
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Figure 13: Full results for the Ruletaker dataset.
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Figure 14: Full results for the MonoRel dataset.
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Figure 15: Full results for the People In Rooms (PIR)
dataset.
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positions of key paragraphs in input. Averaged over
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