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Abstract

Processing and reasoning over long contexts
is crucial for many practical applications of
Large Language Models (LLMs), such as doc-
ument comprehension and agent construction.
Despite recent strides in making LLMs process
contexts with more than 100K tokens, there is
currently a lack of a standardized benchmark to
evaluate this long-context capability. Existing
public benchmarks typically focus on contexts
around 10K tokens, limiting the assessment
and comparison of LLMs in processing longer
contexts. In this paper, we propose coBENCH,
the first LLM benchmark featuring an average
data length surpassing 100K tokens. coBENCH
comprises synthetic and realistic tasks span-
ning diverse domains in English and Chinese.
The tasks in coBENCH are designed to require
an understanding of long dependencies in con-
texts and make simply retrieving a limited num-
ber of passages from contexts not sufficient for
these tasks. Based on coBENCH, we evalu-
ate several state-of-the-art LLMs tailored for
processing long contexts. The experimental re-
sults indicate that existing long-context LLMs
still require significant advancements to pro-
cess 100K+ contexts effectively. Furthermore,
we present three intriguing analyses regarding
the behavior of LLMs processing long context.
Our code and data is released' 2.

1 Introduction

In recent years, large language models (LLMs)
(Brown et al., 2020; Achiam et al., 2023) have
exhibited exceptional performance across a range
of natural language processing (NLP) tasks (Qiu
et al., 2020; Han et al., 2021). LLMs are showing
a promising direction toward generalist task assis-
tance, being capable of aiding users in practical
tasks through conversational interactions. These
Corresponding author: Xu Han and Zhiyuan Liu
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Figure 1: The performance of GPT-4, Kimi-Chat, YaRN-
Mistral, and Claude 2 on coBENCH. A higher value
indicates better performance.

tasks include navigation of web pages (Nakano
et al., 2021), analysis of code repositories (Chen
et al., 2021), and extraction of useful information
from documents (Kocisky et al., 2018), indicating
a step towards artificial general intelligence. For
these LLLM-based scenarios, the ability to process
long contexts is increasingly critical, in addition
to understanding fine-grained semantics and pos-
sessing extensive knowledge (Dong et al., 2023;
Huang et al., 2023). Textual documents, historical
dialogues, complex instructions, and cumbersome
workflows, which constitute the data most directly
processed in daily tasks, must be input to LLMs as
long contexts for effective processing.

Despite this growing importance, LLMs consis-
tently face challenges in processing long contexts,
primarily due to the substantial computational re-
sources required for long sequence training (Dao
et al., 2022; Dao, 2023) as well as the apparent in-
ability to generalize to sequences longer than those
encountered during training (Chen et al., 2023;
Peng et al., 2023b). LLMs are typically trained on
sequences containing no more than 8K tokens (Tou-
vron et al., 2023; Penedo et al., 2023; Biderman
et al., 2023), and thus cannot well handle contexts
exceeding 8K tokens. These limitations largely
restrict most LLMs from being applied to those
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Benchmark \ Avglen En Zh Code Math Novel Dialogue Synthetic
LRA (Tay et al., 2020) ~10K v X X v X X v
LongBench (Bai et al., 2023) ~10K v v v X v v v
L-Eval (An et al., 2023) 4K-60K v X v v X X v
LooGLE (Li et al., 2023) ~20K v X X X X v X
ooBENCH (ours) ~200K v / v v v v v

Table 1: Comparison to existing long-context benchmarks and coBENCH. “En” and “Zh” refer to English and
Chinese tasks. “Code”, “Math”, “Novel”, “Dialogue” indicate whether the domain includes tasks from those
domains, and “Synthetic” indicates whether there are auto-generated tasks.

complex tasks that rely on long-context processing.

Recent advancements in training infrastruc-
ture (Shoeybi et al., 2019; Narayanan et al., 2021;
Dao et al., 2022; Dao, 2023), and efforts to improve
length generalization (Anil et al., 2022; Chen et al.,
2023; Peng et al., 2023b)? have led to rapid devel-
opments in building long-context LLMs. Based on
these improved training infrastructures and length
generalization methods, several LLMs have pur-
portedly managed to process sequences exceeding
100K tokens (Peng et al., 2023b; Achiam et al.,
2023; Young et al., 2024; Hu et al., 2024), with
Claude 2 (Anthropic, 2023) and Kimi-Chat (Al
2023) even claiming to be able to process up to
200K tokens. However, the rapid emergence of
long-context LL.Ms has outpaced the development
of adequate evaluation benchmarks. Present long-
context benchmarks predominantly feature con-
texts averaging around 10K tokens (Bai et al., 2023;
Tay et al., 2020), invariably falling below 100K
tokens. This lag in the advancement of long-
context evaluation methodologies impedes both
the comparative analysis of diverse long-context
LLMs and the pinpointing of potential enhance-
ments in long-context processing.

In this work, we present coBENCH , the first
comprehensive benchmark featuring an average
data length surpassing 100K tokens. coBENCH
includes tasks in different domains (novels, code,
math, etc.) and languages (English and Chinese).
To fully evaluate the performance of long-context
LLMs, coBENCH integrates synthetic tasks that can
be auto-generated for even longer contexts (e.g.,
finding the top-k number in an array) and a set
of realistic tasks. To construct tasks annotated by
humans, we develop 5 annotation pipelines for de-
tailed example annotation. These pipelines undergo
iterative refinement until the examples meet quality
standards. Auto-generated tasks, conversely, can be

Shttps://www.reddit.com/r/LocalLLaMA/comments

/141z7j5/ntkaware_scaled_rope_allows_llama_model
s_to_have/

easily scaled to various lengths. Upon completing
ooBENCH, we assess the performance of several
state-of-the-art (SOTA) long-context LLMs on this
benchmark to gauge its difficulty and evaluate the
effectiveness of these models. The results show
that current SOTA LLMs are not fully equipped to
handle all tasks within coBENCH, highlighting the
ongoing challenge of making LL.Ms process long
contexts effectively. We conduct intriguing analy-
ses on the behavior of LLMs in such long contexts,
including the task length ablation, the absence of
“lost in the middle phenomenon (Liu et al., 2024)”,
and the context recalling prompting techniques.
Our contributions can be summarized as follows:

¢ We construct and release coBENCH, the first
multi-domain bilingual benchmark for evalu-
ating the ability to understand and reason over
contexts surpassing 100K tokens.

* We evaluate SOTA long-context LLMs on
ooBENCH, which reveals severe performance
degradation of these LLMs when scaling con-
text lengths. The experimental results and
analysis also indicate promising directions to
improve long-context LLMs.

2 Related Work

Extending Context Length Transformers, typi-
cally trained on text sequences under 8K tokens due
to self-attention’s quadratic complexity, face chal-
lenges in longer downstream tasks. To address this,
two main strategies have emerged: firstly, the de-
velopment of positional encodings capable of han-
dling longer text sequences (Sun et al., 2023; Press
et al., 2021), and secondly, the refinement of infer-
ence stage techniques to extend current LLMSs post-
training. The primary approach involves modifying
rotary positional encoding (Su et al., 2023) and im-
plementing post-training adjustments to manage
better the increased relative positional distances in
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longer sequences (Zhu et al., 2023a; Peng et al.,
2023b; Chen et al., 2023).

LLMs for 100K+ Tokens Many LLMs have
shown the ability to handle over 100K tokens.
Some popular proprietary 100K+ LLMs include
GPT-4, Claude 2 (Anthropic, 2023), and Kimi-
Chat (AI, 2023). On the other hand, there are
much fewer open-source 100K+ models. Some
notable models include YaRN (Peng et al., 2023b)
and Yi-200K (Young et al., 2024). In this paper, we
benchmark GPT-4, Claude 2, Kimi-Chat, YaRN-
Mistral-7B-128K*, Yi-6B-200K?>, Yi-34B-200K®,
ChatGLM3-6B-128K’, and MiniCPM-2.4B-128Kk®
on coBENCH, which are some of the latest and
strongest LLMs that claim to be able to handle over
100K tokens.

Inference Infrastructure Numerous studies aim
to accelerate self-attention computation. Re-
search primarily concentrates on refining atten-
tion mechanisms through improved 10 manage-
ment (Dao et al., 2022; Dao, 2023), memory op-
timization (Kwon et al., 2023; Shazeer, 2019;
Ainslie et al., 2023), and enhanced paralleliza-
tion in decoding (Dao et al., 2023; Hong et al.,
2023). Approaches like Sliding Window Atten-
tion (Beltagy et al., 2020), LM-Infinite (Han et al.,
2023), and StreamingLLM (Xiao et al., 2023) intro-
duce attention variants for handling infinitely long
sequences without overwhelming computation or
memory overhead. However, these techniques face
challenges in maintaining historical information.

Long Context Benchmarks Several benchmarks
exist for evaluating long-context AI models, no-
tably featuring context lengths of around 10K to-
kens (Lei et al., 2023; Zhu et al., 2023b). L-
Eval (An et al., 2023) and LongBench (Bai et al.,
2023) are prominent examples, aggregating pre-
existing tasks(Kocisky et al., 2017; Dasigi et al.,
2021; Yang et al., 2018; Huang et al., 2021; ?)
into comprehensive benchmarks. LongBench en-
compasses four categories—QA, summarization,
synthetic retrieval, and code—spanning 21 tasks,

4https://huggingface.co/NousResearch/Yarn—Mis
tral-7b-128k, we denote this model by YaRN-Mistral.

Shttps://huggingface.co/@1-ai/Yi-6B-200K, de-
noted Yi-6B.

6https://huggingface.<:o/®1—ai/Yi—34B—200K, de-
noted Yi-34B.

"https://huggingface.co/THUDM/chatglm3-6b-128
k, denoted ChatGLM?3-6B.

8https://huggingface.co/openbmb/MiniCPM—2B—1
28k, denoted MiniCPM-2.4B.
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Figure 2: The statistics of the data in coBENCH. The
radius of each segment indicates the length of input plus
output on the logarithmic scale, and the width (or angle)
indicates the number of examples (proportionally to the
total number of examples).

with four being novel. Conversely, L-Eval incor-
porates 18 tasks across QA, summarization, math,
retrieval, and multiple-choice (MC) domains, in-
troducing three new tasks. Another notable bench-
mark, LooGLE (Li et al., 2023), differentiates be-
tween short and long dependency examples, fo-
cusing on summary and QA tasks; its summary
corpus contrasts with ours, utilizing academic pa-
pers over novels. The Long-Range Arena (LRA)
(Tay et al., 2020) further diversifies with six tasks
in text, image, and math, designed for scalability.
In comparison, coBENCH stands out for its sub-
stantially longer contexts and a broader range of
task domains. Table 1 offers a detailed comparison
of these long-context benchmarks.

3 ooBENCH

ooBENCH encompasses 12 tasks spanning 5 do-
mains: retrieval, code, math, novels, and dialogue.
Two of these tasks are derived from existing lit-
erature(Mohtashami and Jaggi, 2023; Liu et al.,
2024). Among the newly introduced tasks, half are
generated automatically, while the remainder are
annotated by humans.

In total, coBENCH includes 3946 examples, fea-
turing a length beyond 100K tokens (average ap-
proximately 200K). Figure 2 illustrates the distribu-
tion of these tasks. Table 2 details their respective
input and output lengths as well as the number of
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Task | Annotation # Ex. Avg Len
Ret.PassKey Auto 590 122.4K/2
Ret.Number Auto 590 122.4K/4
Ret. KV Auto 500 121.1K/22.7
En.Sum Human 103 103.5K/1.1K
En.QA Human 351 192.6k/4.8
En.MC Human 229 184.4K/5.3
Zh.QA Human 189 2068.6K/6.3
En.Dia Auto 200 103.6K/3.4
Code.Debug Human 394 114.7K/4.8
Code.Run Auto 400 75.2K/1.3
Math.Calc Auto 50 43.9K/43.9K
Math.Find Auto 350 87.9K/1.3

Table 2: Data statistics. The columns indicate whether
the annotation was auto-generated or done by humans,
the number of examples, and the average length (in-
put/output) in tokens.

examples per task.

Next, we illustrate each task in detail. The tasks
can be grouped into two broad categories. The first
involves realistic context collected from real-world
scenarios which has potential practical usage of
long context LLMs. The second depends on syn-
thetic contexts which are created or collected for
testing certain capabilities of long-context LLMs.

3.1 Realistic Context
3.1.1 Novel

We develop novel-based tasks as outlined in Fig-
ure 3, utilizing novels sourced from websites”!’
and are manually filtered. More annotation infor-
mation is in Appendix. D.

In these tasks, models are tasked with reasoning
over entire novels presented during inference. Rec-
ognizing that many novels, along with their movie
adaptations and related discussions, are accessible
online and may have been encountered by LLMs
during training, we adopt key entity replacement
as a countermeasure. This involves substituting
prominent entities determined by annotators, such
as main character names, with unrelated ones, cre-
ating “fake novels”.

Using these altered novels, we design tasks in
three formats: summarization, open-form question
answering (QA), and multiple-choice (MC) ques-
tions, applying key entity replacement to the an-
notations. All English tasks share the same set of
modified novels.

9https ://www. sparknotes.com/
Yhttps://www.cliffsnotes.com/
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Figure 3: The annotation pipelines for the human-
annotated tasks in coBENCH.

En.Sum The En.Sum task requires models
to generate a concise summary of the novel.
Gold standard labels are sourced from the web
and undergo manual filtering to remove non-
summarization content, like comments. Model per-
formance is evaluated using the ROUGE-L-Sum
metric (Lin, 2004).

En.QA & Zh.QA We employ the same anno-
tation pipeline for both En.QA and Zh.QA tasks,
ensuring that the questions necessitate long-range
dependency and reasoning, beyond simple short
passage retrieval. The tasks are primarily catego-
rized into two types of reasoning:

» Aggregation: This involves compiling various
pieces of information scattered throughout the
novel. An example question in coBENCH is
“How much money in total did A spend on
lunch?”

* Filtering: This requires identifying specific
information from a larger set. An example
question in coBENCH is “What color dress
did A wear when A met B for the second
time?”

These tasks test LLMs to locate and process in-
formation within the novel, performing reasoning
through aggregation or filtering to derive answers.

En.MC The En.MC task is annotated similarly
to En.QA, but differs in that the model is presented
with four answer choices. Annotators are instructed
to craft these options to be challenging.

3.1.2 Dialogue

En.Dia The construction process for the En.Dia
task is depicted in Figure 3. We gather movie and
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Task GPT-4 YaRN-Mistral Kimi-Chat Claude2 Yi-6B Yi-34B ChatGLM3-6B MiniCPM-2.4B
Retrieve.PassKey | 100.00 92.71 98.14 97.80 100.00 100.00 92.20 98.31
Retrieve. Number | 100.00 56.61 95.42 98.14 94.92  100.00 80.68 99.83
Retrieve. KV 89.00 0.00 53.60 65.40 0.00 0.00 0.00 9.00
En.Sum 14.73 9.09 17.96 14.50 0.92 1.33 0.84 15.73
En.QA 22.44 9.55 16.52 11.97 9.20 12.17 3.62 16.33
En.MC 67.25 27.95 72.49 62.88 36.68 3843 10.48 29.69
En.Dia 8.50 7.50 11.50 46.50 3.50 4.50 2.50 9.50
Zh.QA 25.96 16.98 17.93 9.64 15.07  13.61 2.50 23.06
Code.Debug 37.06 0.76 17.77 2.28 9.14 13.96 7.36 22.08
Code.Run 23.25 1.25 2.00 2.50 0.75 1.75 0.00 0.00
Math.Calc 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Math.Find 60.00 17.14 12.57 32.29 4.29 25.71 7.71 4.29
Average ‘ 45.68 19.96 34.66 36.99 2287 2596 17.32 27.32

Table 3: Main results. The performance of the baselines in coBENCH. For multiple-choice questions, if the model
does not output one of the options, we regard it as an empty prediction, and thus give it a score of 0.

drama scripts from a designated online database',
focusing on a corpus of long, multi-role dialogues.
Only the English scripts are retained and necessary
cleaning is applied.

In the En.Dia task, random instances of character
names within a script are replaced with $$MASK$$.
The objective is to identify these masked names cor-
rectly. For scripts falling short of 100K tokens, we
augment them by padding with additional scripts.

3.1.3 Code

Code.Debug We develop the task as per the pro-
cess illustrated in Figure 3. Code repositories,
sourced from PyPI'2, undergo a filtering process,
and those outside the 64K to 256K token range
are excluded (tokenization via the tiktoken tok-
enizer(OpenAl, 2023)). Each repository is trans-
formed into a single file, aggregating the content
from all files within, each prefaced by its relative
path to the root directory. Three authors then in-
sert a deliberate and obvious error into one func-
tion per repository. The options are presented in
the Class.Function format. Six methods are em-
ployed for bug insertion: (1) deleting a necessary
variable declaration; (2) using an incorrect number
of arguments in function calls; (3) creating infinite
loops; (4) causing indentation errors; (5) substi-
tuting references with undefined variable/function
names; (6) introducing blatant syntax errors (e.g.,
non-closed brackets).

Initial results indicate that this task is too chal-
lenging for current LLMs (None of the baseline
models can identify the most obvious error such
as non-closed brackets). To mitigate this, we offer

llhttps://imsdb.com/
Zhttps://pypi.org/

four answer choices, one containing the injected
bug and the others are bug-free. Note that this
makes many examples easily solved by external
retrieval preprocess. However, we encourage the
users not to use external retrieval preprocess to
keep the evaluation fair. And we are looking for-
ward to the stage where LLMs can directly solve
the problem without selection options.

3.2 Synthetic Context

A synthetic context characterizes the second cate-
gory of tasks. These tasks, devoid of direct real-
world application or use case, are engineered to
evaluate the capability for processing lengthy con-
texts. We delineate four essential abilities for effec-
tive long-context processing:

1. Location and retrieval. This encompasses all
retrieval tasks.

2. Elevated information resolution.
volves the Retrieve.Number task.

3. State preservation. This incorporates the
Code.Run and Math.Find functions.

4. Sequential processing. This utilizes the
Math.Calc function.

This in-

3.2.1 Retrieve

In retrieval tasks, models retrieve specific charac-
ter sequences from lengthy contexts with predomi-
nantly irrelevant content. Such tests, adaptable for
any context length, can assess the impact of infor-
mation placement on model performance, like the
lost-in-the-middle phenomenon (Liu et al., 2024).
The three retrieval tasks in coBENCH vary in com-
plexity.
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Retrieve.PassKey This task is first proposed
by Mohtashami and Jaggi (2023). Models are
prompted to find a specific <key> called passkey,
which is a random 5-digit sequence. The pass key
is inserted into a lengthy and noisy context, as
shown below. In coBENCH, we generate examples
with 59 different pass key locations that are evenly
distributed in the context. At each location, we con-
struct 10 examples with different pass keys. This
results in 590 examples.

7

There is an important pass key hidden in a lot of
irrelevant text. Find it.

The pass key is <key>. Remember it. The pass key is
<key>

What is the pass key?

\

Retrieve.Number To examine the local atten-
tion of LLMs, we have enhanced the complex-
ity of Retrieve.PassKey by increasing the an-
swer length to 10 digits and incorporating suc-
cessive repetitive digits. For example, a <key>
in Retrieve.PassKey valued 98762, while in Re-
trieve.Number is 9998877762. This modification
aims to assess the local resolution capabilities of
long context models, as our preliminary experi-
ments indicate that LLMs struggle with discerning
repeated numbers.

Retrieve. KV Liu et al. (2024) introduce a
key-value retrieval task within a large JSON
object containing many key-value pairs (e.g.,
30eeal39-b6dd-43fc-bc5d-0d3d17980229 —
bfd36c2b-c57e-41ef-9cc1-b21b4e60e664).
This task demands the model to accurately identify
and retrieve the value corresponding to a specified
key. The complexity of this task is heightened due
to the indistinguishable format of relevant and
irrelevant information.

3.2.2 Code

Code.Run In this task, we evaluate the ability of
LLMs to simulate multi-step function executions
that involve basic arithmetic operations. While
this task is readily solvable using a Python inter-
preter, the focus here is on the long-term state track-
ing required in such tasks. The capability of state
tracking has been demonstrated in GPT-4 (Bubeck
et al., 2023). Specifically, the task involves cre-
ating Python code consisting of multiple simple
functions, incorporating operations such as addi-
tion, subtraction, and nested function calls. The

structural design of these tasks is as follows:

def func_0(x):
return func_1(x) + 4

def func_1(x):
return x - 1

Some functions’ return values are dependent on
other functions (e.g., func_0 invokes func_1). We
define depth as the number of cascading function
calls initiated by a single call. Thus, the depth for
func_1’s call within func_@ is 1. In Code.Run, we
employ depths ranging from 2 to 10, ensuring each
function calls at most one other function. To keep
the simplicity of each step of computation, these
functions are restricted to performing only addition
and subtraction.

3.2.3 Math

Math.Find Math.Find assesses the model’s ca-
pability to identify specific elements within a large
array, requiring comprehensive observation for ac-
curacy. This task also tests the ability to preserve
states while encoding the context. Concretely, the
model receives an extensive list of numbers and is
tasked with locating one of seven key numbers: the
three largest (1st, 2nd, and 3rd), the three smallest
(1st, 2nd, and 3rd), and the median.

Math.Cale To assess sequential processing skills,
Math.Calc prompts the model to compute the re-
sult of a lengthy arithmetic expression featuring
addition and subtraction. Initial experiments in-
dicate that current LLMs struggle to produce the
final answer directly. Hence, we query the LLMs
to provide the intermediate result following each
operator. Model performance is evaluated based
on the number of correct values preceding the first
error.

4 Experiments

We conduct a thorough set of experiments on
ocoBENCH. We will introduce the baselines, ex-
perimental setup, and main results in this section.

4.1 Baselines

ooBENCH generally requires the ability to handle
input contexts longer than 100k. There is a handful
of LLLMs that claim to be capable of handling con-
texts over 100k. We include four baselines. The
first three are proprietary LLMs as we do not have
access to the model, while the last baseline is open-
sourced. Details on evaluation are in Appendix. E.
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GPT-4 GPT by OpenAl is one of the most widely
used and capable LLMs in the market, and a recent
version of GPT-4 (Achiam et al., 2023) can support
128K contexts.

Claude 2 Claude 2 (Anthropic, 2023) is a propri-
etary chat-based LLM released by Anthropic Al
and has shown impressive capabilities. The second
version of the Claude series supports 200K con-
texts. We manually enter each example through the
webpage because we have no access to their APL.

Kimi-Chat Kimi-Chat, a proprietary chat-
oriented LLM developed by Moonshot Al (Al
2023), is designed to process contexts up to 200K.
Due to the lack of API access, we manually input
the test data using their web interface.

YaRN-Mistral YaRN-Mistral is a derivative of
Mistral-7B (Jiang et al., 2023) introduced by Peng
et al. (2023b). The original Mistral-7B is trained
on input lengths up to 8K and shows a reduced
performance in longer contexts. Peng et al. (2023b)
adapt it to 128K contexts by modifying the position
encoding and continued training.

4.2 Experimental Setup

Prompt Templates For each model-task combi-
nation, we craft prompts to optimize model perfor-
mance on short dummy examples. Detailed prompt
templates for each model and task can be found in
Appendix C.

Input Truncation All API-based baselines are
subject to a maximum input length limit and will re-
ject inputs exceeding this threshold. While YaRN-
Mistral is theoretically capable of handling longer
contexts, the authors only claim abilities up to
128K. Therefore, inputs are truncated by removing
the center and joining both ends. This approach is
predicated on the assumption that key information,
such as instructions and book titles, is typically
located at either the start or the end of a prompt.

4.3 Main Result

Table 3 and Figure 1 display the performances of
various baselines on coBENCH. Notably, GPT-4
outperforms other baselines in the retrieval, code,
and math domains, with a considerably higher av-
erage score. However, in the novel-based tasks,
no distinct winner emerges among the proprietary
LLMs. On the other hand, the open-source YaRN-
Mistral lags behind the proprietary models in most
tasks, exhibiting almost random performance in

multiple areas. This aligns with its relatively in-
ferior performance in shorter contexts compared
to these models. Additionally, it is observed that
the baselines generally excel more in retrieval tasks
than in other areas, echoing the relative simplicity
of these tasks for human participants.

S Analysis

We subsequently perform a detailed analysis of
the results, identifying and emphasizing several
notable and interesting phenomena.

5.1 Length Ablation

In line with our benchmark’s goal to assess profi-
ciency in managing lengthy contexts, we verify the
baselines’ capability with shortened context ver-
sions. A subset of the auto-generated tasks is mod-
ified accordingly, and the performance outcomes
are illustrated in Figure 4. It is observed that model
performance generally declines with longer input
lengths compared to shorter ones. This suggests
that while these baselines are technically equipped
to handle extended inputs, their effectiveness di-
minishes significantly under such conditions.

5.2 Lost in the middle

Prior research indicates a performance decline in
some LL.Ms when answers are positioned around
the center of the context (Liu et al., 2024). How-
ever, our findings do not strongly corroborate this.
As depicted in Figure 5, we analyze model perfor-
mance based on answer location in three location-
dependent tasks. We observe no consistent trend
between performance and answer position across
different models. For instance, GPT-4 shows a pref-
erence for early answers in Retrieval. KV but favors
later ones in En.Dia. In contrast, Claude 2’s per-
formance remains relatively unaffected by answer
position on all three tasks, whereas YaRN-Mistral
and Kimi-Chat excel with end-positioned answers
(except that YaRN-Mistral gets zero performance
on all positions on Retrieval. KV).

One plausible reason why we have different ob-
servations from Liu et al. (2024) is that they ex-
periment with different models using at most 16K
length contexts, which is about 8 times shorter than
our setting. The models in their study are also
different from ours. Finally, the tasks are differ-
ent: their experiments involve document question
answering (and their result with Retrieval. KV ar-
guably does not show a very pronounced perfor-
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One function in this repo is deliberately made to
include an obvious error. Find it.

Think step by step and at last give me your answer
for the function with the deliberate error.
<list of options>

One function in this repo is deliberately made to in-
clude an obvious error. Find it.

Locate the functions in the options, repeat their con-
tent, inspect through code, and at last give me your
answer for the function with the deliberate error.
<list of options>

Figure 6: Compared to the first prompt, the second
prompt improves GPT-4’s results on Code.Debug dra-
matically.

mance drop as well). We hypothesize that the phe-
nomenon of “Lost in the middle” is only exhibited
on specific tasks and models. A more thorough in-
vestigation of these differences is beyond the scope
of this paper.

5.3 Context Recalling

We identify an intriguing prompting technique for
tasks involving extended context, termed context
recalling. This technique posits that, although the
information is present in the context and accessible
via direct attention, it may be more effective to first
prompt the model to recall the relevant information
in its generation before engaging in further reason-
ing. In our experiments using Code.Debug, when
we merely instructed GPT-4 to process information
step-by-step, the accuracy was 15.74%. However,
by explicitly directing GPT-4 to repeat the relevant
code before analysis, its accuracy on Code.Debug
markedly improved to 37.06%. This approach of
context recalling warrants additional investigation.

6 Conclusions

We introduce coBENCH, the first benchmark tai-
lored for long contexts exceeding 100K in average
length. Empirical evidence indicates that despite
claims of proficiency with such extensive contexts,
current LLMs demonstrate significant performance
degradation when dealing with them. This finding
highlights the need for advanced methodologies
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to improve LLMs’ efficiency in processing long
context. Additionally, our analysis offers insights
into LLM behavior in long-context tasks, guiding
future research.

Limitations

While our benchmark offers valuable insights into
LLM performance, it may not be sufficiently di-
verse or extensive to provide a comprehensive as-
sessment of model capabilities, a constraint com-
mon to most benchmarks. Additionally, the re-
liance on exact match for scoring, dependent on
prompt templates and answer parsing methods,
may necessitate tailored redesigns for new model
evaluations.

Furthermore, supporting contexts up to 100K
tokens may fall short for applications requiring
analysis of extensive datasets, such as multiple
books or entire databases. Exploring LLMs’ ca-
pacity to handle up to a million tokens or more
presents a promising research avenue. In practi-
cal applications, finetuning models to memorize
context, rather than processing it during inference,
could offer a more efficient alternative, albeit with
significant computational demands.

Ethics Statement

Our human annotators are directed to exclude data
that may raise sensitive ethical issues, such as of-
fensive language or social biases. Nonetheless, the
potential for encountering sensitive content persists,
particularly if the sourced books or code contain
such material. This concern is somewhat mitigated
since the benchmark’s primary focus is on evaluat-
ing the long-context capabilities of LLMs, rather
than influencing their social bias.

The goal of this research is to advance the de-
velopment of LLMs’ proficiency in handling exten-
sive contexts. This could aid in implementing more
effective “guardrails” against misuse by incorporat-
ing detailed specifications prior to user interactions.
However, this approach also potentially increases
the risk of novel prompt injection attacks.
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A RWKYV

RWKYV (Peng et al., 2023a) is an architecture that
combines the power of the transformer architec-
ture (Vaswani et al., 2017) and recurrent neural
network (Hochreiter and Schmidhuber, 1997). Its
training process can be parallelized while the in-
ference procedure is recurrent, enabling O(1) com-
plexity during inference. Hence, the memory usage
does not scale with context length, allowing it to
support arbitrary-length inputs. We use the RKW V-
4-World-7B version of this model series. However,
we should keep in mind that this model was not
trained on inputs of this length.

Model Retrieve.PassKey Acc.
GPT-4 Turbo 100%
YaRN-Mistral 92.71%
Kimi-Chat 98.14%

Claude 2 97.80%
RWKV-4-World-7B 0.00%

Table 4: Results in Retrieve.PassKey with RWKV-4-
World-7B. Since RWKV-4 was only trained on 4k se-
quences, it has zero performance on coBENCH. It out-
puts only unintelligible content in this test.

Table 4 shows the performance of RWKV-4-
World-7 in comparison to our baselines. We
find that RWKV-4-World-7B outputs unintelligible
texts on our benchmark, which causes it to achieve
zero performance on Retrieve.PassKey, which is
the easiest task for other baselines. This is likely
because this model was not trained on inputs of this
length and suffers from train-test domain shift.!3
Therefore, we do not consider testing it on other
tasks in our benchmark.

B Mamba

Mamba (Gu and Dao, 2023) is a kind of structured
state space model'*. The official Mamba models
are trained with a max length of 2k tokens. We test
the series of Mamba models ranging from 130m to
2.8b model sizes on Retrieve.PassKey tasks with
context length from 1k to 16k. As Figure 7 shows,
Mamba models exhibit limited length generaliza-
tion.

We emphasize that this result is not evidence that the
architecture of RWKYV is incapable of handling lengthy inputs.

“https://huggingface.co/collections/state-spa
ces/transformers-compatible-mamba-65e7b40ab87e5
297e45ae406
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Figure 7: The mamba model performance on Re-
trieve.PassKey tasks of 1k to 16k context length.

C Prompt Templates

In the following templates, many tasks have an
<input> part that is provided in each example. Gen-
erally, they are a short question-like text that tells
the model what it is supposed to do. One example
is “What is the pass key?”.

C.1 Retrieve.PassKey

The prompt below applies to GPT-4, Claude 2, and
Kimi-Chat.

There is an important info hidden inside a lot of
irrelevant text. Find it and memorize them. I will
quiz you about the important information there.
<context>

<input>

There is an important info hidden inside a lot of
irrelevant text. Find it and memorize them. I will
quiz you about the important information there.
<context>

<input>

The pass key is

C.2 Retrieve.Number

The prompt below applies to GPT-4, Claude 2, and
Kimi-Chat.

There is an important info hidden inside a lot of
irrelevant text. Find it and memorize them. I will
quiz you about the important information there.
<context>

<input>

The prompt below applies to YaRN-Mistral.

There is an important info hidden inside a lot of
irrelevant text. Find it and memorize them. I will
quiz you about the important information there.
<context>

<input>

The sequence of digits is

C.3 Retrieve. KV

s )

Extract the value corresponding to the specified key
in the JSON object below.

<context>

<input>

C.4 En.Sum

The prompt below applies to GPT-4, Claude 2, and
Kimi-Chat.

Summarize the book below.

<context>

The prompt below applies to YaRN-Mistral.

The prompt below applies to YaRN-Mistral.
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Summarize the book below.

<context>
Summary:
C.5 En.QA

The prompt below applies to GPT-4, Claude 2, and
Kimi-Chat.

Read the book below and answer a question.
<context>
Question: <question>

Be very concise.

The prompt below applies to YaRN-Mistral.

Read the book below and answer a question. Be very
concise in your answer.

<context>
Question: <question>

Answer:

C.6 EnMC

The prompt below applies to GPT-4, Claude 2, and
Kimi-Chat.

Read the book and answer the question.
<context>
Question: <question>

Only one of the following options is correct,
tell me the answer using one single letter (A, B, C, or
D). Don’t say anything else.

A. <OPTION_A>
B. <OPTION_B>
C. <OPTION_C>
D. <OPTION_D>

The prompt below applies to YaRN-Mistral.

Read the book and answer the question.

<context>

Question: <question>

Only one of the following options is correct,
tell me the answer using one single letter (A, B, C, or
D). Don’t say anything else.

A. <OPTION_A>

B. <OPTION_B>

C. <OPTION_C>

D. <OPTION_D>

The correct option is:

C.7 En.Dia

The prompt below applies to GPT-4, Claude 2, and
Kimi-Chat.

Below is a dialogue script where one random
occurrence of a character name is replaced with
$$SMASKS$$, and you should try to guess who that
character is.

The dialogue:

<context>

End of dialogue.

Which character is most likely $$SMASK$$?
Just say the name used by the scriptwriter (before
the colon marks) of one single character and nothing
else.

The prompt below applies to YaRN-Mistral.

Below is a dialogue script where one random
occurrence of a character name is replaced with
$$SMASKS$S$, and you should try to guess who that
character is.

The dialogue:

<context>

End of dialogue.

The name that has been replaced with $$MASKSS$ is
likely:
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C8 Zh.QA

The prompt below applies to GPT-4, Claude 2, and
Kimi-Chat.

TEARYE LA P EE R Z A A - (Read the book

and answer the question.)
<context>
[A]&H: (Question: )<question>

HREMFEMEZ - (Be very concise.)

The prompt below applies to YaRN-Mistral.

TEARYE LA P EERZ A A8 - (Read the book

and answer the question.)
<context>

[A]&H: (Question: )<question>
2. (Answer:)

C.9 Code.Debug

The prompt below applies to GPT-4, Claude 2, and
Kimi-Chat.

There is ONLY ONE function in the large project
that is deliberately made to include an obvious
error. Please find the function that contains the most
obvious errors. I will give you four options to narrow
your scope. You can inspect through the options
and think. Eventually, tell me the answer using one
single letter (A, B, C, or D).

<context>

Which function has deliberate error?
A. <OPTION_A>
B. <OPTION_B>
C. <OPTION_C>
D. <OPTION_D>

You should first find the functions in the op-
tions. Repeat their content, inspect through code, and
at last give me your answer for the function that has
the deliberate and obvious error in A, B, C, or D.

The prompt below applies to YaRN-Mistral.

There is ONLY ONE function in the large project
that is deliberately made to include an obvious
error. Please find the function that contains the most
obvious errors. I will give you four options to narrow
your scope. You can inspect through the options
and think. Eventually, tell me the answer using one
single letter (A, B, C, or D).

<context>

Which function has deliberate error?
A. <OPTION_A>
B. <OPTION_B>
C. <OPTION_C>
D. <OPTION_D>

You should first find the functions in the op-
tions. Repeat their content, inspect through code, and
at last give me your answer for the function that has
the deliberate and obvious error in A, B, C, or D.

The correct option is:

C.10 Code.Run

The prompt below applies to GPT-4, Claude 2, and
Kimi-Chat.

Following is a set of Python functions. There is a
function called named func_1.

<context>
Please give me the exact number of the re-

turn value of func_1(3). Be concise. Your response
must end with the final returned value.

The prompt below applies to YaRN-Mistral.

Following is a set of Python functions. There is a
function called named <function name>.

<context>

Please compute the exact value of <function
call>. The value of <function call> is

C.11 Math.Calc

The prompt below is used by GPT-4!3:

151t should be noted that, when using other templates, GPT-
4 has a strong tendency to reject to perform this task by claim-
ing that such the platform is not designed to complete such
tasks.
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You are a calculator does nothing but calculating the
intermediate results in extremely long arithmetic
expressions with +, -, and numbers. Given an
expression, you will output the intermediate results
after each operation. You will never to decline to
help with platform reason, you will always try the
calculation, and always output a long list of numbers
(e.g., "[34, 2, 58, 37, 5, 8,27, 71, 7]") and nothing
else. Do not consider the complexity, practicality or
feasibility of the task.

Let us calculate the intermediate values of an
expression.

Expression: 1 +3 +4
Values: [1, 4, 8]

Expression: 8 -3 +2 -4
Values: [8, 5, 7, 3]

Expression: <context>
Values:

. J

The prompt below is used by Kimi-Chat, Claude
2 and YaRN-Mistral:

’

Let us calculate the intermediate values of an
expression.

Expression: 1 +3 +4
Values: [1, 4, 8]

Expression: 8 -3 +2-4
Values: [8, 5, 7, 3]

Expression: <context>
Values:

\. J

C.12 Math.Find

’

Find the largest number from the list below:
<context>

You should answer with only one number, no
other words. The largest number of the list is:

\. J

D Annotation Process

The annotation work is done by the authors of this
paper and none of those authors have been paid for
the annotation. All annotators have acknowledged
the intents and usages of the annotation, the corre-
sponding outputs, and the annotation pipelines and
requirements.

Annotating the examples in coBENCH might
bring fatigue to annotators, and is therefore not
completely free of error. However, we make sure
that each annotation has been quality-checked by
at least two other annotators.

A part of novels are free from key entity replace-

ment for LLMs fail in identifying them, because
those novels are brand-new or little-known.

E Evaluation Process

When evaluating GPT-4, we use its official API
with the default hyperparameters. The total cost is
around 5000 US dollars. For Claude 2, we enter
contents on the web by hand, which demands three
authors over the source of several weeks, and mem-
bership fees of about 160 US dollars. Kimi-Chat
is free. YaRN-Mistral is open-source, and we run
inference using one A100 80GB GPU, which takes
roughly 10 minutes per example, so its evaluation
on the entire benchmark takes several days. Again,
we use the default decoding hyperparameters (spec-
ified by (?)) except for the maximum number of
output tokens, which is as shown in Table 5.

Task Max Output Tokens
Retrieve.PassKey 6
Retrieve.Number 12
Retrieve KV 50
En.Sum 1,200
En.QA 40
En.MC 40
Zh.QA 40
En.Dia 40
Code.Debug 5
Code.Run 5
Math.Calc 30,000
Math.Find 3

Table 5: The maximum number of output tokens (a
decoding hyperparameter) for YaRN-Mistral.
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