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Abstract

Instruction tuning is critical to improve LLMs
but usually suffers from low-quality and redun-
dant data. Data filtering for instruction tuning
has proved important in improving both the
efficiency and performance of the tuning pro-
cess. But it also leads to extra cost and com-
putation due to the involvement of LLMs in
this process. To reduce the filtering cost, we
study Superfiltering: Can we use a smaller
and weaker model to select data for finetun-
ing a larger and stronger model? Despite the
performance gap between weak and strong lan-
guage models, we find their highly consistent
capability to perceive instruction difficulty and
data selection results. This enables us to use a
much smaller and more efficient model to filter
the instruction data used to train a larger lan-
guage model. Not only does it largely speed up
the data filtering, but the filtered-data-finetuned
LLM achieves even better performance on stan-
dard benchmarks. Extensive experiments vali-
date the efficacy and efficiency of our approach.

1 Introduction

Earlier works of instruction tuning on Large Lan-
guage Models (LLMs) (Brown et al., 2020; Ope-
nAI, 2023; Touvron et al., 2023a; Jiang et al., 2023)
focus on creating large, varied, and high-quality
datasets of various tasks with responses curated
by human experts (Khashabi et al., 2020; Ye et al.,
2021; Wei et al., 2022; Wang et al., 2022; Du et al.,
2022), which can be bottlenecked by the inten-
sive human labor. An alternative is to generate
the data by a powerful teacher LLM (Wang et al.,
2023b; Taori et al., 2023; Xu et al., 2023; Li et al.,
2023a, 2024b,a; Xu et al., 2024) but the quality is
hard to control and largely depends on the teacher.
LIMA (Zhou et al., 2023) finds that a mere 1,000
human-crafted high-quality data could significantly
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Figure 1: Top: Comparison of data filtering for instruc-
tion tuning of a student model. (a) The filter model is
a strong proprietary LLM, e.g. ChatGPT, which can
be time-consuming and expensive but usually performs
promisingly. (b) The filter model is the student model
itself or a similar-sized open-source LLM, which is still
time-consuming but free to use. (c) Weak-to-strong
superfiltering proposed by this paper, which utilizes
a much smaller filter model, e.g. GPT-2, to train a
stronger student LLM. We find it costs much less time
but maintains the performance. Bottom: Comparisons
of two student models finetuned using 5% data selected
by LLaMA2-7B and GPT-2 from the Alpaca dataset. (d)
Both models trained on 5% data outperform the baseline
model trained on 100% data. (e) GPT-2 as the superfilter
speeds up data filtering by ∼ 20 times.

improve an LLM’s instruction-following capability,
based on which they posit that LLMs acquire most
knowledge during the pretraining and thus a few
data suffices for instruction tuning.

To further free the human labor in data curation
and accelerate the instruction tuning process, a line
of recent works apply an extra filter algorithm to
select data from the existing dataset. However, the
model used in the filtering process usually needs to
be as powerful as ChatGPT (Chen et al., 2023b; Lu
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et al., 2023) or requires additional reward data train-
ing (Du et al., 2023; Bukharin and Zhao, 2023), or
is the student model itself (Li et al., 2023b, 2024b),
which leads to additional expensive cost and la-
tency due to the inference on these large filter mod-
els, especially when the original dataset is large
while only a tiny fraction of data needs to be se-
lected. These paradigms are presented in Figure 1
(a) and (b). To reduce the filtering cost, we study
Superfiltering: Can we use a smaller and weaker
model as a filter to select instruction-tuning data
for training a larger and stronger model? This
was first studied for training small classification
models by Coleman et al. (2020) while the effec-
tiveness on the open-domain instruction dataset is
un-explored. Recently, Weak-to-Strong General-
ization (Burns et al., 2023) proposes to utilize a
weaker ChatGPT to generate data used to finetune
a stronger GPT4 model, which shares a similar
spirit with our Superfiltering as depicted in Figure
1(c).

In Superfitering, we find that a smaller and
weaker GPT-2 (124M) (Radford et al., 2019) suf-
fices to replace previously used large filter mod-
els and select high-quality instruction tuning data
used to finetune a much larger LLaMA2 (7B or
13B). This is motivated by our main discovery of
filter models’ consistency on two data statistical
metrics, perplexity and instruction-following dif-
ficulty (IFD) score (Li et al., 2023b). Despite the
differences in scales across different filter mod-
els, their rankings of the same instruction tuning
dataset are surprisingly consistent, as demonstrated
by the large rank correlation coefficients evaluated
on different models and datasets. Our thorough em-
pirical study implies that weaker language models
possess a capability consistent with their stronger
counterparts in comprehending and discerning the
difficulty of diverse instructions, though they may
differ in other skills like reasoning and generaliza-
tion.

In extensive experiments, our Superfiltering strat-
egy using GPT-2 as the filter, as exemplified on
several widely used instruction datasets, brings sig-
nificant speedups to data filtering for instruction
tuning. By utilizing only 5% of the original data
volume, Superfilter allows us to attain LLMs com-
parable, and in some instances superior, to those
achieved by training with full data. Our main con-
tributions can be summarized in three folds:

• Weak-to-Strong Consistency on Data Filter-

Figure 2: Pairwise comparison between each model
finetuned using Superfiltered data (5%, 10%, and
15% of the original dataset) and the full-data (100%)
finetuned model. We report results for two base models
(LLaMA2-7B/13B) and two datasets (Alpaca and
Alpaca-GPT4 datasets). The win-tie-lose is judged by
GPT-4 given two models’ responses to each instruction
from WizardLM test set.

ing: We reveal the strong consistency between
small and large LLMs in perceiving and evalu-
ating the difficulty of instruction tuning data.

• Efficent Superfiltering Strategy: We propose
the first method of Superfiltering that utilizes
a small LM, e.g., GPT-2 (124M), to select data
for instruction tuning, and brings significant
speedups to LLM finetuning pipeline.

• Efficacy of Selected Training Data: Superfilter-
ing is precise in allocating high-quality and infor-
mative data improving LLM instruction tuning.

2 Problem Formulation

2.1 Preliminaries
We define a dataset as D, containing n triplets x =
(Instruction, [Input], Response) as the instruc-
tion tuning data samples. Earlier instructing tun-
ing samples mostly contain separated instruction
and input segments of better controls (Wang
et al., 2022; Longpre et al., 2023b; Taori et al.,
2023), while most of the current datasets directly
merge the inputs to instructions (Zhou et al.,
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2023; Chiang et al., 2023; Xu et al., 2023; Li
et al., 2023a). For simplicity, we define x =
map(Instruction, [Input]) as the complete in-
struction and y as the corresponding response.
The mapping function could be the simple con-
catenation with some control tokens. Thus D =
{(x1, y1), (x2, y2), . . . , (xn, yn)} represents a col-
lection of n instruction-response pairs.

Perplexity In the instruction tuning setting, the
model is trained to maximize the likelihood of re-
sponse given the corresponding instruction as the
condition. Hence, perplexity can be a potential
metric to measure the difficulty. Specifically, the
perplexity of a given sample (xi, yi) is defined as:

PPL(yi|xi) = exp

(
− 1

N

N∑

j=1

log p(yi,j |xi, yi,1, ..., yi,j−1)

)

(1)

where N is the length of response yi and yi,j rep-
resents the jth token in the response yi.

IFD score Li et al. (2023b) firstly proposes a
self-guided method in which no extra models
are utilized but needs to calculate Instruction-
Following Difficulty (IFD) scores based on the pre-
experienced LLM or original pre-trained LLM. The
IFD score is a pure statistical metric, that compares
the losses or perplexities when the model generates
a response yi with and without instructional con-
text x1, measuring how much help the instruction
provides to the generation of the corresponding
response. A higher IFD score, indicating less in-
structional help, suggests a greater difficulty. On
the contrary, the low IFD score represents that the
given instruction can directly benefit the language
model largely even without further training, repre-
senting the easiness and necessity of the instruction.
For a given instruction-following data pair, the IFD
score is calculated as follows:

IFD(yi|xi) =
PPL(yi|xi)

PPL(yi)
(2)

where PPL(yi|xi) and PPL(yi) denote the perplex-
ities of the given model in fitting response yi with
and without the instruction xi, respectively.

2.2 Formulation and Motivations

Superfiltering aims to find a data filtering score (1)
that excels in identifying high-quality and informa-
tive training data, and (2) computed by a small and
low-cost filter model without further training. To

this end, we try to find a data evaluation metric con-
sistent between weak and strong language models.

Given a candidate score, we investigate whether
it is possible to utilize a much weaker language
model, e.g. GPT-2, to calculate for the relatively
stronger student model. We hypothesize that, al-
though the intrinsic abilities between weak and
strong language models vary dramatically, indi-
cated by the discrepancies of perplexities on the
pretraining stage, their ability to perceive instruc-
tion difficulty could be similar. To verify our hy-
pothesis, experiments are conducted and presented
in Section 3.

To verify the hypothesis, we conduct a thorough
empirical study of the consistency of perplexities
computed by different language models on the
same instruction-tuning dataset. In Section 3.1,
we focus on verifying the consistency of perplexity
across weak-to-strong models by comparing their
scale and orderings of samples on each dataset. The
results show that though the scales vary drastically,
the orderings remain consistent, which verifies our
hypothesis. In Section 3.2, we conduct the same
study on IFD scores, on which both the scales and
the orderings are consistent across weak-to-strong
models, indicating IFD score as a more promising
score for Superfiltering than perplexity.

Figure 2 compares each Superfiltering-selected-
data finetuned model and the full-data finetuned
model by using GPT-4 as a judge to decide their
numbers of wins/ties/losses on a test set of instruc-
tions. More details of the evaluation metric can be
found in Section 4.3. Superfiltering-trained mod-
els always outperform the baseline given different
base models, datasets, and selection ratios, demon-
strating the effectiveness of our proposed weak-to-
strong Superfiltering scheme.

3 Weak-to-Strong Consistency

In this section, we delve into the hypothesis that
weak and strong language models share a relatively
consistent capability in perceiving the difficulties
of instruction tuning samples.

3.1 Weak-to-Strong Perplexity Consistency

As mentioned in the previous section, we first
need to have a grasp of to what extent language
models of different sizes are consistent with each
other in understanding instructions and generating
corresponding responses. Thus we calculate the
perplexity scores of several pretrained language
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Figure 3: The distributions of perplexity (top) and IFD score (bottom) computed by five models (left-to-right:
weak-to-strong) on three instruction tuning datasets. Observations: (1) The scale of perplexity varies drastically
across different models, indicating their difference in generation capability; (2) The scale of IFD scores is consistent
across models, indicating their consistency in measuring difficulties.

Dataset Model Rank Correlation ↑ Overlap Ratios ↑
Name Perplexity IFD score 5% 10% 15%

Alpaca

GPT-2 0.726 0.679 0.28 0.41 0.49
GPT-2-large 0.790 0.682 0.26 0.40 0.50
GPT-2-XL 0.802 0.693 0.27 0.40 0.49
GPT-NEO 0.846 0.802 0.38 0.51 0.59
LLaMA2-7B 1.000 1.000 1.00 1.00 1.00

Alpaca-GPT4

GPT-2 0.730 0.788 0.24 0.40 0.51
GPT-2-large 0.795 0.820 0.21 0.36 0.48
GPT-2-XL 0.800 0.818 0.18 0.33 0.45
GPT-NEO 0.842 0.876 0.33 0.52 0.62
LLaMA2-7B 1.000 1.000 1.00 1.00 1.00

Wizard 70k

GPT-2 0.763 0.802 0.42 0.54 0.61
GPT-2-large 0.809 0.848 0.44 0.58 0.65
GPT-2-XL 0.821 0.855 0.44 0.57 0.65
GPT-NEO 0.857 0.893 0.52 0.63 0.69
LLaMA2-7B 1.000 1.000 1.00 1.00 1.00

Table 1: The rank correlation coefficient (Spearman’s ρ)
and overlap ratio (of selected data) between LLaMA2-
7B and smaller language models when applied as filter
models on three widely-used instruction tuning datasets.
When calculating Spearman’s ρ, the samples are sorted
by perplexity or IFD scores calculated by different filter
models. For the overlap ratio, we consider three data
filtering budgets, i.e., when 5%, 10%, or 15% of the
dataset are selected. The large rank coefficient between
LLaMA2-7B and other smaller models indicates the
consistency of different models in perceiving the diffi-
culties of instruction tuning data.

models, including relatively small language models
like GPT-2 (124M), GPT-2-large (774M), GPT-2-
XL (1.5B) (Radford et al., 2019), GPT-NEO (1.3B)
(Black et al., 2021) and recent relatively strong
LLaMA2-7b (Touvron et al., 2023b), on several
instruction-tuning dataset including the Alpaca
(Taori et al., 2023), Alpaca-GPT4 (Peng et al.,
2023), and WizardLM 70k (Xu et al., 2023). The

results are shown in Figure 3 (upper), where each
box presents a perplexity distribution of a given
dataset and language model. A clear tendency can
be found that the stronger the language models are,
the lower the perplexities are, which is consistent
with the common beliefs for LLM pretraining: the
better a language model, the lower this perplexity.

The above experimental results only showcase
the perplexity scales of different models and ne-
glect the potential perplexity ordering/ranking of
different data samples, which is much more vital
for data filtering. Thus to evaluate the similarity
in perplexity ordering on a given dataset between
different models, Spearman’s rank correlation co-
efficient (Spearman’s ρ) is utilized. Spearman’s
ρ is a non-parametric measure used to assess the
strength and direction of the relationship between
two variables that are ranked or ordinal in nature.
For two lists containing the same elements but dif-
ferent ordering, this value measures the similarity
of the ordering in the range of −1 to 1. The closer
the value is to 1, the more consistent the ordering
of these two lists.

Specifically, within each dataset D, we sort the
data samples based on the perplexity scores cal-
culated by different models, resulting in several
lists containing the same data but different orders,
noted as DPPL, GPT-2, DPPL, LLaMA2-7B, etc. Since
most of the fine-tuned experiments in our work are
implemented on the LLaMA2-7B model, we set
DPPL, LLaMA2-7B as our standard sorted list and cal-

14258



culate the Spearman’s ρ between the sorted lists of
small language models and LLaMA2-7B:

ρPPL, GPT-2 = g(DPPL, GPT-2, DPPL, LLaMA2-7B)
(3)

where g is the function of calculating this coef-
ficient. All the resulting values on different in-
struction tuning datasets and different models are
presented in Table 1, the Spearman’s Coefficient-
Perplexity column.

From the results, we can see even the lowest co-
efficient value is still greater than 0.7, calculated
between GPT-2(124M) and LLaMA2-7B, and the
highest coefficient value is greater than 0.85, calcu-
lated between GPT-NEO(1.3B) and LLaMA2-7B.
The values presented in the table are reasonably
high, indicating the consistent capability of differ-
ent models in perceiving instructions. Moreover,
there is also a clear tendency that the stronger the
language models are, the higher the coefficient val-
ues. Comparing the perplexity distributions in Fig-
ure 3 (upper) and the coefficient values in Table 1, a
clear consistency can be revealed: Despite the large
variance in the scales of perplexities generated by
different language models, representing the intrin-
sic abilities of different language models, the high
consistency in the perplexity ordering indicates the
similarity of them to understand instructions. That
is to say, for a given instruction tuning sample, if
the weak language models find it hard to generate
based on the corresponding instruction, the strong
models might probably feel the same way even
though their probability of generating this response
is much larger, and vice versa.

This phenomenon directly provides a glance at
the weak-to-strong perplexity consistency, which
serves as the basis for utilizing weak language mod-
els as the proxies for strong language models.

3.2 Weak-to-Strong IFD Consistency

Though a clear consistency in the perplexities of
different language models is revealed by the above
experiments, the perplexity does not directly rep-
resent the difficulty or quality of the instruction
tuning sample and is thus not able to be used for
the data section. Thus we further extend our find-
ings to the Instruction-Following Difficulty (IFD)
score proposed by Cherry LLM (Li et al., 2023b).
It is used to select a subset of high-quality samples
from the given instruction-tuning dataset to train
an LLM with better performance.

Similarly, we calculate the IFD scores on differ-

ent instruction-tuning datasets with different lan-
guage models and draw their distributions as shown
in Figure 3 (lower). We observe that though the per-
plexity scales vary noticeably between models, the
IFD scales remain similar, indicating its potential
to be the general selection metric for different mod-
els. Furthermore, the IFD-based Spearman’s ρ are
also presented in Table 1 Spearman’s Coefficient-
IFD score column. Similar to the perplexity-based
coefficient values, IFD-based values also remain
high, indicating a strong consistency of IFD rank-
ings calculated on different models. Such a con-
sistency validates the scalability of weaker models
in evaluating instruction difficulty, indicating their
adeptness at identifying complex instructions akin
to their stronger counterparts. Another interest-
ing phenomenon is that the IFD-based coefficient
values are greater than perplexity-based values on
high-quality datasets, e.g. Alpaca-GPT4 and Wiz-
ardLM 70k, indicating an even higher consistency
in IFD scores for these datasets.

To provide an even further apparent glance at this
consistency, we calculate the overlap ratio when uti-
lizing IFD scores to select the high-quality subset.
The performances of the LLMs could be slightly
estimated by the overlap ratio due to the previous
success of this metric. As the percentage thresh-
old increases from 5% to 15%, there is a signifi-
cant and growing overlap in the samples identified
by the weaker models and strong models like the
LLaMA2-7B model. Although the overlap is not
complete, it is substantial, this increasing overlap
with higher thresholds reinforces our hypothesis,
affirming a consistent and scalable capability in in-
struction evaluation across models of varying sizes.

This weak-to-strong IFD consistency directly
verifies our hypothesis that language models with
different sizes possess similar capabilities in un-
derstanding the difficulty of the instructions, even
though their intrinsic abilities are varied. It means
that the difficult instruction tuning samples defined
by the IFD scores are probably “generally” diffi-
cult no matter what language model is utilized for
the calculation. This phenomenon directly makes
it possible to utilize weak language models as the
proxies for strong language models for calculating
the IFD scores, and thus, to select data for instruc-
tion tuning.

3.3 Superfiltering
From the above section, we observe that the IFD
score is a highly consistent metric when calculat-

14259



ing based on different instruction-tuning datasets
and varied-size language models. Thus we pro-
pose “Superfiltering”, the first approach utilizing
only small language models, i.e. GPT-2 (124M)
(Radford et al., 2019) to filter data for the instruc-
tion tuning of modern LLMs. Superfiltering uses
smaller, less resource-intensive models (referred
to as “weak” models) as effective substitutes for
larger models (referred to as “strong” models) in
the data evaluations. For the first time, making this
process so efficient as to put it into practical usage.
Specifically, following Li et al. (2023b), for the
given instruction-tuning dataset, the GPT-2 model
is directly used to calculate the IFD score of each
sample. Then the top k-percent samples with the
highest IFD scores under 1 are selected for faster
instruction tuning.

4 Experimental Setup

4.1 Datasets

The Alpaca dataset (Taori et al., 2023) is devel-
oped by Stanford University, comprises 52,000
instruction-following samples, and was created us-
ing the self-instruct paradigm (Wang et al., 2023b).
This dataset was generated by leveraging OpenAI’s
text-davinci-003 model. The Alpaca dataset repre-
sents a classical dataset with moderate qualities, to
further verify our method on the originally high-
quality dataset, we also implement our method on
the Alpaca-GPT4 dataset (Peng et al., 2023), which
contains the responses generated by GPT4.

4.2 Implementation Details

We utilize the prompt and code base from Vicuna
(Chiang et al., 2023) and flash attention (Dao et al.,
2022) while the overall training arguments are
aligned with the common training configuration.
The Adam optimizer (Kingma and Ba, 2017), with
a 2×10−5 learning rate for the LLaMA2-7B model
(Touvron et al., 2023b) and a 1 × 10−5 learning
rate for the LLaMA2-13B model, and a batch size
of 128, steer the training across three epochs with a
max length of 2048. The warmup rate is set to 0.03.

4.3 Evaluation Metrics

4.3.1 Automatic Evaluation

To evaluate the effectiveness of our method, we uti-
lize 3 commonly used automatic evaluation metrics,
including (1) Pair-wise Comparison, (2) Open

LLM Leaderboard and (3) Alpaca Eval. 1

4.3.2 Human Evaluation
To further validate the effectiveness of our method,
we conducted a further human study to evaluate the
effectiveness of our method. Specifically, we ran-
domly sample 100 instructions from the WizardLM
test set to form a new instruction set. Then 3 hu-
man participants are given the task of comparing
the responses generated by the comparing models
with the criteria same as the previous pair-wise
evaluation, i.e. Helpfulness, Relevance, Accuracy,
and Level of Detail. For each comparison, 3 op-
tions are given (Win, Tie, and Loss) and the final
results are determined by the majority voting of
the participants. The human studies are conducted
based on LLaMA2-7B on two models: (1) Alpaca
5% VS. Alpaca 100%. (2) Alpaca-GPT4 5% VS.
Alpaca-GPT4 100%.

5 Experimental Result

5.1 Main results

In this section, we present the evaluation results of
three different evaluation settings as described in
the previous section as shown in Table 5. The Pair-
Wise Winning Score indicates the result directly
comparing with the corresponding model trained
with full data. These values that are greater than
1.0 represent better responses generated by our Su-
perfiltering models than full data models. The de-
tailed win-tie-lose numbers are presented in Figure
2. Moreover, the performance of our models and
baseline models on the Huggingface Open LLM
Leaderboard and the AlpacaEval Leaderboard
are also presented in Table 5 where we can see our
models using 5%, 10%, 15% data outperform the
models trained with full data on both benchmarks
on both LLaMA2-7B and LLaMA-13B settings.
These results further showcase the effectiveness
of our Superfiltering. Moreover, the usefulness of
Superfiltering on the high-quality Alpaca-GPT4
dataset further shows the potential of our method,
which is astonishing that a weak language model
like GPT-2 is able to filter the data responses gen-
erated by GPT-4.

For the human evaluation, we compare the per-
formances between models trained with 5% Super-
filtring data and full data based on LLaMA2-7B
models, on Alpaca and Alpaca-GPT4 Datasets. In

1Detailed description of evaluation metrics can be found
in Appendix B.
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Dataset/ Superfilter Pairwise ↑ Huggingface Open LLM Leaderboard ↑ AlpacaEval ↑
Base Model Ratio(Size) Winning Score Average ARC HellaSwag MMLU TruthfulQA Win Rate

Alpaca/ 100% 1.000 55.25 54.35 78.65 47.02 40.98 27.75
LLaMA2-7B 5%(2,600) 1.133 55.67 56.57 80.15 45.21 40.74 33.04

10%(5,200) 1.101 56.97 58.02 80.57 47.16 42.14 -
15%(7,800) 1.193 56.61 56.23 80.29 46.73 43.21 -

Alpaca/ 100% 1.000 58.78 57.59 81.98 54.05 41.49 35.00
LLaMA2-13B 5%(2,600) 1.174 60.96 61.60 83.84 55.79 42.63 45.71

10%(5,200) 1.069 61.11 62.12 83.74 55.09 43.50 -
15%(7,800) 1.142 60.90 60.92 83.58 55.24 43.86 -

Alpaca-GPT4/ 100% 1.000 58.71 54.69 80.05 47.89 52.21 71.32
LLaMA2-7B 5%(2,600) 1.014 59.66 56.74 81.19 46.80 53.92 72.13

10%(5,200) 1.064 59.80 57.42 81.79 45.67 54.33 -
15%(7,800) 1.078 60.02 57.00 81.21 46.15 55.72 -

Alpaca-GPT4/ 100% 1.000 60.81 57.94 82.22 54.84 48.25 77.86
LLaMA2-13B 5%(2,600) 1.041 63.29 62.29 84.96 55.78 50.13 78.15

10%(5,200) 1.046 63.65 62.63 84.51 55.39 52.06 -
15%(7,800) 1.078 63.65 62.88 84.32 55.35 52.05 -

Table 2: Comparison of Superfiltering with four data selection ratios (5%, 10%, 15%, 100%) when finetuning
two LLMs (LLaMA2-7B/13B) on two datasets (Alpaca and Alpaca-GPT4). The finetuned models are evaluated by
the pair-wise winning score (comparison to the baseline model finetuned on 100% data), Open LLM Leaderboard,
and AlpacaEval. In the parathesis are the ratio of data being used and its exact number. The winning score is
calculated as (Num(Win)−Num(Lose))/Num(All) +1, where the win-tie-lose numbers are reported in Figure 2.
The consistent improvement on all the three evaluation benchmarks demonstrates the effectiveness of Superfitering.

Ablation Pairwise Winning Score ↑
Data Selection Budget 5% 10% 15%

Strategy: Random 0.936 0.968 0.977
Diversity 0.927 0.977 0.982
Perplexity 0.261 0.569 0.610

Filter: GPT-2-large 1.165 1.046 1.193
GPT-2-XL 1.064 1.165 1.128
GPT-NEO 1.096 1.197 1.156
LLaMA2-7B 1.303 1.330 1.294

Superfilter (IFD, GPT-2) 1.133 1.101 1.193

Table 3: Ablation study of data selection strategies
and filter models on finetuning LLaMA2-7B using the
Alpaca dataset. The pairwise winning score compares
each finetuned model with the full-data finetuned model
and computes (Num(Win)−Num(Lose))/Num(All) +1.
All the comparisons are performed by GPT-4 on the
WizardLM test set.

the comparison (1) Alpaca 5% VS. Alpaca 100%,
our model wins on 50 out of 100 instruction, ties on
18, and losses on 32 instructions. In the compari-
son (2) Alpaca-GPT4 5% VS. Alpaca-GPT4 100%,
our model wins on 49 out of 100 instruction, ties
on 5, and losses on 46 instructions. This human
evaluation of Superfiltering further validates our
method.

5.2 Comparison with Other Methods

In this subsection, we compare our method with
three other widely accepted instruction-tuning data
selection methods on LLaMA2-7B using the Al-
paca Dataset, in terms of performance and effi-
ciency. “ChatGPT score” represents utilizing Chat-
GPT to evaluate the quality of the Alpaca data
samples proposed by Chen et al. (2023b). “Reward-
model score” represents utilizing extra reward mod-
els to rate the given data samples, in this exper-
iment, “OpenAssistant/reward-model-deberta-v3-
large-v2” is utilized following Bukharin and Zhao
(2023); Du et al. (2023). “IFD score” represents
directly utilizing the base model to be trained to cal-
culate the Instruction-Following Difficulty scores
proposed by Li et al. (2023b).

As shown in the Table 4. Superfiltering outper-
forms ChatGPT and Reward-model scores in terms
of winning scores and filtering efficiency. Com-
pared with Superfiltering, utilizing ChatGPT for
selection needs further costs on utilizing API mod-
els, and its efficiency is largely constrained by the
rate limits set by the API company. Utilizing out-
side reward models is a cost-free method, while
the efficiency can not be guaranteed: it is 175×
slower than our Superfiltering. Directly calculating
IFD scores based on the base model is a promising
method as it is the only method that has a better
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Comparison Pairwise Winning Score ↑ Time

Data Selection Budget 5% 10% 15% (min)

Superfiltering (ours) - - - 8
vs. ChatGPT score 1.028 1.174 1.170 120
vs. Reward score 1.280 1.096 1.147 1400
vs. IFD score (LLaMA2-7B) 0.853 0.761 0.927 161

Table 4: Comparison with Other Methods in terms
of performance and efficiency. The Pairwise Winning
Scores are calculated between models using our method
and other methods. All the comparisons are performed
by GPT-4 on the WizardLM test set and the values that
are greater than 1.0 represent our models are better and
vice versa. The time shown represents the time used
for data filtering.

performance than our Superfiltering, as it selects
the data that best matches the model. However, our
Superfilrtering is 20× faster. From the comparison,
it is observed that our model largely reduces the
time used for data filtering, and we are the only
method that makes the filtering time shorter than
the later training time, making this process feasible
in practical usage. Moreover, our filtering method
can be implemented on consumer-level GPUs with
much smaller graphic memories like 6 GB since
we only utilize the GPT-2 model, while all other
methods require large industry-level GPUs.

5.3 Ablation Study

In this subsection, extensive ablation experiments
are conducted to validate the effectiveness of our
Superfiltering. The experiments are performed on
the LLaMA2-7B model using the Alpaca dataset.
Our focus is on two aspects: the impact of different
data selection strategies and the effect of using
various language models for data selection. All
models are trained under the same settings.

As shown in Table 3, in addition to our method
“Superfiltering (GPT-2)”, we also try several
baseline strategies: “Random” represents the
models trained with randomly selected data.
“Diversity” represents the models trained with
data considering only diversity, by utilizing the
k-means algorithm. “Perplexity” represents the
models trained with data based on the perplexity
calculated on GPT-2. Moreover, the lower part
of the table lists the models using the IFD score
to select the training subset, powered by other
language models. The performances of models are
assessed by the pair-wise winning score, which is
calculated as (Num(Win)−Num(Lose))/Num(All)
+1, and all the comparisons are performed by

GPT4 on the WizardLM test set.
As shown in Table 3, compared with other strate-

gies, models trained with our method consistently
outperform the models trained on the full dataset,
indicating the efficacy of our method. Regarding
the impact of different language models, whichever
language model is utilized to calculate the IFD
scores, the corresponding models would surpass the
baseline model, indicating the strong consistency
and transferability of the IFD score as the selection
metric. Moreover, the models using LLaMA2-7B
reasonably achieve the highest performance, due
to the consistency between the model to calculate
the IFD scores and the model to be trained.

6 Further Discussion

6.1 “Plug-and-Play” without Additional
Training

Our Superfiltering introduces a transformative ad-
vantage: the unnecessity of training for even weak
language models and the unnecessity of the extra
hold-out sets.

Traditional proxy-based methods like Coleman
et al. (2020) and Nguyen et al. (2022) are
required to further train weak models to bridge
the performance gap with stronger models. In the
context of instruction tuning data selection, model
training or a hold-out set is always necessary if
no extra strong models like ChatGPT or other
trained reward models are utilized. Lu et al. (2023)
utilizes chatGPT to tag the instruction datasets and
train LLMs for tagging instruction samples based
on these data. Li et al. (2023d) requires a holdout
test set as the indicator for the data improvement.
Cao et al. (2023) proposes to train several models
based on losses on unseen datasets and obtain a
regression model to estimate data qualities.

However, our study reveals that pre-trained weak
models are naturally effectively capable of acting
as proxies for strong models when utilizing the IFD
for data selection. These models do not necessitate
fine-tuning on specific datasets, thereby reducing
the risk of out-of-distribution issues. This innova-
tive approach not only simplifies the data selection
process but also revolutionizes the efficiency and
applicability of such methods in large language
model instruction tuning.

6.2 Sperfiltering as Dataset Assessment

Our finding, the consistency of perplexity-based
metrics across weak and strong language models,
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might push forward the usage of small language
models as proxy models, not only in the area of
data selection. Moreover, our finding provides an
efficient and general way to assess the instruction
data of the whole dataset.

As illustrated in Figure 3, a preliminary assess-
ment of the dataset can be made by examining the
violin plots of the Instruction Followed Difficulty
(IFD) scores. The classic Alpaca dataset, known
for its relatively lower quality, exhibits a violin
plot with wide upper and lower sections, indicat-
ing significant variance in data quality. The Wiz-
ardLM dataset, generated by prompting ChatGPT
3.5, displays complex instructions but is affected
by generation noise, reflected by its violin plot
which is wide at the top and has a long, narrow
tail. In contrast, the Alpaca-GPT4 dataset, created
using GPT-4, demonstrates a higher quality lower
bound, as evidenced by its violin plot with a more
compressed lower section, indicating fewer low-
quality instructions. To our knowledge, there is
no visualization that can represent the quality of a
dataset with different characteristics, (some work
might draw the distribution of verb-noun pairs, but
it only represents the diversity and can not reflect
the overall quality of the dataset).

6.3 Why Weak-to-Strong Consistent?

We hypothesize this Weak-to-Strong consistency
can be explained from (1) the perspective of Per-
plexity and (2) the perspective of String Pattern,
presented in Appendix D.

6.4 Superfiltering with Diversity

We further incorporate the diversity metric into the
Superfiltering, which further reduces the data used
for training, presented in the Appenix A.

7 Related Work

7.1 Instruction Tuning Data Selection

Instruction tuning (Wei et al., 2022; Sanh et al.,
2022; Longpre et al., 2023a; Liu et al., 2023a) is a
widely-used training paradigm to equip LLMs with
the instruction-following ability. To further select
the data for more efficient instruction tuning, exist-
ing automatic data selection methods mainly utilize
extra LLMs for the selection. Lu et al. (2023) uti-
lizes proprietary chatGPT to tag the instruction
data to ensure diversity and complexity. Chen et al.
(2023b) utilizes proprietary LLMs chatGPT and
Claude2 to assess the quality of the instruction

data, generating both ratings and explanations. Du
et al. (2023) and Bukharin and Zhao (2023) uti-
lize an extra reward model to assess the quality
of data and utilize these scores as a part of their
method. Li et al. (2023b) firstly proposes a self-
guided method in which no extra LLMs are utilized
but still needs to calculate Instruction-Following
Difficulty (IFD) scores based on the original pre-
trained LLM. Though effective, these methods
overly rely on large language models and are too
time-consuming to put into practical use.

7.2 Small Model Proxies for Large Models

The use of proxy models is increasingly recognized
in machine learning, particularly when resources
are constrained or there is a limited understanding
of the original model’s architecture. Chen et al.
(2023a) and Hase et al. (2020) demonstrate the
utility of lightweight proxy models in evaluating
free-text rationales. Similarly, Puigcerver et al.
(2021) leverages embeddings from expert models
with a k-nearest neighbors classifier to simplify the
training of more complex systems. Coleman et al.
(2020) and the FAMIE (Nguyen et al., 2022) ap-
ply downscaled proxy models in fields like image
classification and information extraction, utilizing
techniques such as layer removal and knowledge
distillation for aligning these proxies with larger
models. Burns et al. (2023) explores the concept of
enhancing larger models through weak supervision,
and training on weaker model labels.

8 Conclusion

In this paper, we reveal the consistency between
weak and strong language models in perceiving
instruction difficulties. Based on the consistency,
we present “Superfiltering”, a novel and efficient
approach for data filtering in the instruction tuning
of LLMs. By effectively utilizing weaker mod-
els as proxies for evaluating instructional data, we
achieve a significant leap in efficiency, accelerat-
ing the data filtering process largely. The experi-
mental results affirm that our method considerably
reduces computational overhead while maintain-
ing or even improving the instruction tuning per-
formance of LLMs. It is astonishing that a weak
language model like GPT-2 is able to filter the data
responses generated by GPT-4. Our Superfiltering
marks a substantial contribution by offering a scal-
able, resource-efficient, and effective strategy for
the advancement of AI technologies.
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Limitations

Our study introduces “Superfiltering” as an inno-
vative approach to enhance the instruction tuning
process of LLMs through efficient data selection
using smaller models. While we have observed
promising results, several areas warrant further ex-
ploration: (1) Superfiltering primarily utilizes IFD
scores to select data, focusing on instruction diffi-
culty. Future enhancements should include addi-
tional dimensions such as data diversity. (2) There
are 3 datasets and 2 LLaMA2 base models are in-
volved, further research is recommended to explore
its effectiveness with a broader array of LLMs and
Datasets.
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A Superfiltering with Diversity

Though Superfiltering shows promising perfor-
mance with great efficiency, it can also be im-
plemented together with other dimensions such
as data diversity. Motivated by recent work that
further includes Diversity metrics in the data se-
lection process, we introduce an extended ver-
sion of Superfiltering, Superfiltering with Diversity
(Superfiltering.D).

We hypothesize that the diversity metrics work
better when implemented on a high-quality data
subset than the whole dataset with mixed quality.
Thus we propose to first utilize Superfiltering to
select a subset with relatively high quality, then fur-
ther utilize Facility Location Function 2 to further
compress the selected data. Compared with other
diversity metrics, the Facility Location Function
can strike a balance between capturing diversity
and ensuring the representation of different clus-
ters or regions within the data, it ensures a global
view of the given high-quality subset.

To further preserve the efficiency of our Super-
filtering.D, we utilize “sentence-transformers/all-
MiniLM-L6-v2” (Reimers and Gurevych, 2019) as
the encoder, which only has approximately 80M
parameters. In our preliminary experiments on the
Alpaca and Alpaca-GPT4 dataset, where we first
select 20% of the data by Superfiltering, then uti-
lize the Facility Location Function to further select
2% of the data. The models trained with 2% of the
data have a comparable or better performance than
full data models.

2https://apricot-select.readthedocs.io/en/
latest/functions/facilityLocation.html
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Dataset/ Superfiltering Pairwise ↑ Huggingface Open LLM Leaderboard ↑
Base Model Ratio(Size) Winning Score Average ARC HellaSwag MMLU TruthfulQA

Alpaca/ 100% 1.000 55.25 54.35 78.65 47.02 40.98
LLaMA2-7B 2%(1,040) 1.028 55.43 55.97 79.89 45.51 40.34

Alpaca-GPT4/ 100% 1.000 58.71 54.69 80.05 47.89 52.21
LLaMA2-7B 2%(1,040) 1.078 58.70 56.48 80.30 45.23 52.79

Table 5: Comparison between Superfiltering.D with 2% data and full data model on two datasets (Alpaca and
Alpaca-GPT4). The finetuned models are evaluated by the pair-wise winning score (comparison to the baseline
model finetuned on 100% data) and Open LLM Leaderboard. In the parathesis are the ratio of data being used and
its exact number.
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B Evaluation Metric

B.1 Pair-wise comparison

Evaluating responses generated by Large Language
Models (LLMs) like GPT-4 remains a complex
and ongoing research area, particularly for open-
domain questions where establishing a clear ground
truth is challenging. Traditional methods often fall
short in assessing the instruction-following abil-
ity of these models. Recent trends, however, in-
volve using LLMs themselves, such as GPT-4, as
evaluators, a practice that has gained widespread
acceptance in the field (Touvron et al., 2023b; Chi-
ang et al., 2023; Dettmers et al., 2023; Liu et al.,
2023b). Previous studies (Zheng et al., 2023; Li
et al., 2023c; Sottana et al., 2023) have shown that
GPT4’s evaluations are consistent with human eval-
uations. We utilized the testing instruction set from
WizardLM (Xu et al., 2023) and Vicuna (Chiang
et al., 2023) which contain 218 and 80 diverse
human-curated instructions respectively.

Our study adopts the evaluation strategy as out-
lined by Chen et al. (2023b); Li et al. (2023b,a),
involving a detailed rating system for model-
generated responses. Each response is scored re-
flecting various dimensions such as the accuracy
and relevance of the response. This method is in
line with previous research efforts to assess the ef-
fectiveness of language models more accurately.
Moreover, to address the issue of positional bias,
as discussed in the works of Ko et al. (2020); Wang
et al. (2023a), we present the responses generated
by the model in two separate sequences for eval-
uation by the LLM judge. This approach aims to
ensure a more balanced and unbiased assessment
of the model’s performance. Then for each instruc-
tion, we compare the responses by "Win-Tie-Loss".

B.2 AlapcaEval Leaderboard

The AlpacaEval Leaderboard, utilizing the Alpaca-
Farm (Dubois et al., 2023; Li et al., 2023c) eval-
uation dataset, is an automated, efficient, and re-
liable evaluation tool for LLMs. It benchmarks
LLMs’ performance in following generic user in-
structions by comparing their outputs with those
from Davinci003, demonstrating high alignment
with human expert annotations. AlpacaFarm, un-
derlying AlpacaEval, is a cost-effective simulator
for research on learning from human feedback,
significantly reducing the time and cost tradition-
ally associated with such studies. While AlpacaE-
val offers valuable insights, it primarily focuses

on simpler instructions and does not encompass
safety evaluations or complex tasks, and its evalua-
tion may correlate win rates with response lengths.
These tools represent significant advancements in
LLM evaluation and development, enabling more
accessible and diverse research. Considering our
budget, we only run the evaluation on 5% settings.

B.3 Open LLM Leaderboard
The Huggingface Open LLM Leaderboard, incor-
porating the evaluation method from the Eval Har-
ness (Gao et al., 2021), serves as a comprehen-
sive framework for evaluating generative language
model capabilities. It focuses on four critical
benchmarks: ARC (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), MMLU (Hendrycks et al.,
2021), and TruthfulQA (Lin et al., 2022). These
benchmarks test the models on various aspects,
such as reasoning, common-sense understanding,
and factual accuracy. The leaderboard offers an
effective platform for comparing different LLMs,
providing valuable insights into their performance
across these diverse and challenging tasks
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C Prompt for Evaluation

The detailed pair-wise comparison prompt for the
pair-wise comparison is in Figure 4.

Prompt for Performance Evaluation

System Prompt
You are a helpful and precise assistant for checking
the quality of the answer.

User Prompt
[Question]
Question
[The Start of Assistant 2’s Answer]
Answer 2
[The End of Assistant 2’s Answer]
[The Start of Assistant 2’s Answer]
Answer 2
[The End of Assistant 2’s Answer]

We would like to request your feedback on the per-
formance of two AI assistants in response to the
user question displayed above.
Please rate the helpfulness, relevance, accuracy,
level of details of their responses. Each assistant re-
ceives an overall score on a scale of 1 to 10, where
a higher score indicates better overall performance.
Please first output a single line containing only two
values indicating the scores for Assistant 1 and
2, respectively. The two scores are separated by
a space. In the subsequent line, please provide
a comprehensive explanation of your evaluation,
avoiding any potential bias and ensuring that the
order in which the responses were presented does
not affect your judgment.

Figure 4: The prompt we used to request ChatGPT or
GPT4 to evaluate the responses.
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D Why Weak-to-Strong Consistent?

In this section, we provide the hypothesis on why
this Weak-to-Strong consistency exists on two per-
spectives.

From the perspective of Perplexity: The con-
sistency between IFD scores is built on the consis-
tency of perplexities since it is the ratio between
two kinds of perplexities. As for the reason why
the rankings of perplexities are consistent between
small and large language models, we hypothesize
that both small and large language models are
trained on similar corpus (almost all the existing
data corpus), which means they’re exposed to the
same underlying distribution of language. Even
though larger models can capture more nuances
and details due to their increased parameter count,
both sizes of models are ultimately trying to ap-
proximate the same underlying language structure.

From the perspective of String Pattern: We
also examined verb-noun pairs of the data sam-
ples filtered by IFD scores on both weak (GPT-
2) and strong (LLaMA2-7B) language models on
the Alapca dataset and found a strong consistency
in these verb-noun pairs. The results are listed
in Table 6. From the table, we can find out that
the language models tend to assign higher IFD
scores to those data that require a lot of cre-
ativity, thinking skills, and deep understanding
while assigning lower IFD scores to those data
that are more about following rules and need
less creativity. This holds true for both small and
large language models.
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LLaMA2-7B (Top 5% IFD) GPT2 (Top 5% IFD)

Verb Noun Count Verb Noun Count

write story 119 write story 117
generate list 104 generate story 84
generate story 89 create story 52
write essay 61 generate list 47
create list 44 write essay 39
write post 41 create list 29
write article 39 write paragraph 26
create story 36 write post 25
generate recipe 34 generate recipe 19
create recipe 31 give example 17

LLaMA2-7B (Least 5% IFD) GPT2 (Least 5% IFD)

Verb Noun Count Verb Noun Count

rewrite sentence 140 rewrite sentence 124
edit sentence 56 edit sentence 74
classify sentence 51 classify sentence 30
change sentence 42 replace word 24
convert sentence 33 change sentence 23
arrange word 29 construct query 20
rearrange word 27 convert sentence 20
categorize sentence 26 arrange word 17
find word 24 find word 17
classify text 18 classify animal 16

Table 6: Verb-noun pairs of the top and least 5% IFD scores calculated by LLaMA2-7B and GPT2 on the Alpaca
dataset.
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