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Abstract

While large language models have achieved
remarkable performance on various code gen-
eration benchmarks, there have been growing
concerns regarding potential contamination of
these benchmarks as they may be leaked into
pretraining and finetuning data. While recent
work has investigated contamination in natural
language generation and understanding tasks,
there has been less extensive research into how
data contamination impacts the evaluation of
code generation, which is critical for under-
standing the robustness and reliability of LLMs
in programming contexts. In this work, we
perform a comprehensive study of data contam-
ination of popular code generation benchmarks,
and precisely quantify their overlap with pre-
training corpus through both surface-level and
semantic-level matching. In our experiments,
we show that there are substantial overlap be-
tween popular code generation benchmarks and
open training corpus, and models perform sig-
nificantly better on the subset of the bench-
marks where similar solutions are seen during
training. We also conduct extensive analysis
on the factors that affects model memorization
and generalization, such as model size, prob-
lem difficulty, and question length. We release
all resulting files from our matching pipeline
for future research1.

1 Introduction

The compute requirements (encompassing both
model size and data volume) for training large lan-
guage models (LLMs) has grown significantly over
the years, correlating with consistent observed en-
hancements in model performance in both language
(Kaplan et al., 2020; Hoffmann et al., 2022) and
code (Ni et al., 2023) generation tasks. Larger
models trained on larger training corpora tend to
lead to an increased risk of data contamination

1Code and data available at https://github.com/
yale-nlp/code-llm-contamination

(a) Data contamination on the MBPP benchmark.

(b) Data contamination on the HumanEval benchmark.

Figure 1: Quantifying data contamination for the PILE
and STARCODERDATA corpus on two popular bench-
marks, MBPP and HumanEval. “Top-1 Score” denotes
the similarity score between the gold solution and the
most similar program found in the training corpus.

of the expected output, which we refer to as in-
stances of evaluation benchmark data appearing
within the data used during the training of mod-
els. LLMs tend to perform better on evaluation
samples that resemble the documents and instances
encountered during training (Kandpal et al., 2022a;
Razeghi et al., 2022; Magar and Schwartz, 2022),
and are more likely to emit memorized training data
when they have seen it multiple times (Kandpal
et al., 2022b; Carlini et al., 2023). Recent papers
have also shown evidence that LLMs are possibly
contaminated (Golchin and Surdeanu, 2023; Yang
et al., 2023), which limits our understanding of
their generalization capabilities to unseen inputs.

Despite significant research into data contamina-
tion in natural language (NL) benchmarks (Golchin
and Surdeanu, 2023; Chang et al., 2023; Blevins
and Zettlemoyer, 2022; Dodge et al., 2021; Deng
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et al., 2023), there’s been relatively little explo-
ration into how this issue affects the evaluation of
code generation capabilities in LLMs. We posit
that the fundamental disparities between NL and
programs warrant a deeper examination. Recent
studies, such as work by Karmakar et al. (2022);
Ranaldi et al. (2024), suggest that code-based
LLMs may demonstrate patterns of memorization,
underscoring the need for scrutiny into their gener-
alization capabilities to unseen cases. Key distinc-
tions between code and NL include the critical role
of syntax and the variable requirements for naming
functions and variables across different programs.
These differences lead us to argue that traditional
surface-level comparisons might not be adequate
for identifying contaminated data points.

In this paper, we propose a pipeline to measure
the overlap between code generation benchmarks
and pretraining corpus of code LLMs, incorpo-
rating both surface-level and semantic-level code
matching. As a result of the exhaustive search
amoung the training corpus with our pipeline, we
provide a precise quantification of the examples
whose solutions are seen during training, for popu-
lar code generation benchmarks as MBPP (Austin
et al., 2021) and HumanEval (Chen et al., 2021).
We study two open pretraining corpus which con-
tain code, the PILE (Gao et al., 2020) and STAR-
CODERDATA (Li et al., 2023), as well as three
model series trained on either corpora, StarCoder-
Base (Li et al., 2023), Pythia (Biderman et al.,
2023) and CodeGen-NL (Nijkamp et al., 2023).
Our results show severe contamination of the
widely used MBPP and HumanEval benchmarks
within the PILE and STARCODERDATA corpora,
as shown in Fig. 1, with models performing signifi-
cantly better on questions that the models have seen
the same or similar program solutions to. We per-
form thorough analysis on factors that may affect
model memorization and generalization such as
model sizes and difficulty of the questions. We also
include a case study on outliers, to provide a more
comprehensive understanding of model behavior
given different levels of exposure to test data.

2 Methodology

To quantify data contamination for code LLMs, we
first introduce methods used to measure program
similarity from surface- and semantic-level in § 2.1.
Next, in § 2.2 we describe how to combine similar-
ity measurements to identify the overlapping pro-

grams in the training data and test benchmarks as
well as introduce how to quantify data contamina-
tion based on the similarity scores and the number
of appearances of similar programs seen during the
course of training.

2.1 Measuring Program Similarity
While most popular code generation benchmarks
focus on generating functions, the training data
are often chunked by files, which may contain
multiple functions or classes. This means that
document-level deduplication techniques (e.g., Al-
lamanis, 2019) cannot be used effectively, as other
programs within the document may add too much
noise. Thus we opt to perform substring-level
matching, which is much more computationally
heavy but also more accurate than methods used by
previous work (Lee et al., 2022; Peng et al., 2023;
Kandpal et al., 2022a). More specifically, we use a
sliding window to scan the training data character-
by-character and compute its similarity scores with
gold solutions in the benchmarks. To maximize
the recall of possible contaminated examples in
coding benchmarks, we employ both surface- and
semantic-level similarity measurements.

Surface-Level Similarity. To measure surface-
level similarity between programs, we use the
Levenshtein similarity score (Sarkar et al., 2016),
which is the Levenshtein edit distance (Levenshtein,
1965) normalized by the length of both the source
and target strings. We selected the Levenshtein sim-
ilarity score as the first step in our pipeline because
it is an easy-to-compute and intuitive measure-
ment that can handle surface-level fuzzy matches
between two programs. While the Levenshtein
edit distance has been used before to deduplicate
datasets at a file level (Chowdhery et al., 2022), we
perform it on a substring level. An example of this
can be found in Fig. 2.2

Semantic Similarity. While the surface-level
similarity metrics can easily capture similar pro-
grams in surface form, two semantically similar
or even identical programs can have very differ-
ent surface form due to different identifiers (e.g.,
variable names) or whitespace characters. There-
fore, finding semantically similar programs is also
crucial for measuring contamination and under-
standing the generalization capabilities of the mod-

2we use the rapidfuzz python library to calcu-
late the similarity score https://pypi.org/project/
rapidfuzz/.
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Write a python function to find the
minimum number of squares whose sum
is equal to a given number.

(a) Problem Description.

1 def get_Min_Squares(n):
2 if n <= 3:
3 return n;
4 res = n
5 for x in range(1,n + 1):
6 temp = x * x;
7 if temp > n:
8 break
9 else:

10 res = min(res,1 +
get_Min_Squares(n - temp))

11 return res;

(b) Gold Program

1 def getMinSquares(n):
2 # if n <= 3:
3 # return n
4 # res = n
5 # for x in range(1, n+1):
6 # temp = x * x
7 # if temp > n:
8 # break
9 # else:

10 # res = min(res, 1 +
getMinSquares(n - temp))

(c) Matched program in STARCODERDATA. Surface-
level similarity = 91; semantic-level similarity = 0.

Figure 2: Example where surface-level matching works
better than semantic-level. Because most of the program
is commented out, the semantic-level similarity score is
0 despite the programs being otherwise identical.

els. To measure semantic similarity between pro-
grams, we adopt the Dolos toolkit (Maertens et al.,
2022), which is a source code plagiarism detec-
tion tool for education purposes. Dolos first uses
tree-sitter3 to tokenize and canonicalize the
program into representations of abstract syntax
trees (ASTs), then computes a similarity score rep-
resenting the semantic-level similarity based on the
k-gram matching between source and target pro-
grams. Since Dolos measures similarities based
on the ASTs, non-semantic changes that greatly
decrease the Levenshtein similarity scores, such as
indentations and variable/function names, will not
affect the scores calculated by Dolos. An exam-
ple of this can be found in Fig. 4. Dolos was also
used in previous works for detecting intellectual
property violations (Yu et al., 2023).

3https://tree-sitter.github.io/tree-sitter/
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(b) Top-1 Score.

Figure 3: Distribution of different similarity scoring
methods on the MBPP dataset. Similar results for Hu-
manEval are shown in Fig. 11.

2.2 Quantifying Data Contamination

For each problem and its gold solution in the test
benchmark (e.g., MBPP), we would like to deter-
mine the most similar programs that the models
have seen during training. However, this would re-
quire us to perform a pair-wise comparison with all
programs in the training data using the similarity
score metrics mentioned in §2.1. Because training
data is usually on the scale of hundreds of giga-
bytes to terabytes, it is computationally expensive4

to run surface-level matching methods; running the
code-specific semantic matching methods on the
entire training dataset is even more computationally
prohibitive.

Aggregating Similarity Scores. We use a two-
stage process to analyze test examples and their
correct (gold standard) program solutions. First,
we measure the surface-level similarity by calculat-
ing Levenshtein scores. This involves comparing
all substrings of the same length as the gold solu-
tion across all relevant files in specific subsets of
our dataset (see § 3.1 for details). We keep the top
500 programs5 with the highest Levenshtein simi-
larity scores for each test example for the next step.
The similarity scores found by searching the PILE

and STARCODERDATA for gold programs from the
MBPP benchmark are shown in Fig. 3, along with
a comparison between results found using only the
top score and those found using an average of the
top 10 scores.

4We estimate that it will take 5.2∗105 CPU hours to search
just the Python files from STARCODERDATA for MBPP.

5This is determined by a combination of automatic and
manual inspection. For example, at the 500th most similar
program from STARCODERDATA for MBPP, 95% of them
have a similarity score < 72, which is no longer relevant by
human inspection.
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Write a python function to determine
whether all the numbers are
different from each other or not.

(a) Problem description.

1 def test_distinct(data):
2 if len(data) == len(set(data)):
3 return True
4 else:
5 return False;

(b) Gold Program.

1 def is_simple(graph):
2 if len(graph) == len(set(graph)):
3 return 1.0
4 else:
5 return 0.0

(c) Matched program in STARCODERDATA. Surface-
level similarity = 79; semantic-level similarity = 93.

Figure 4: Example where semantic-level similarity
works better than surface-level. The ASTs of two pro-
grams are identify despite different variable names.

With the top 500 programs with the highest Lev-
enshtein similarity scores from the training data,
we further compute the semantic similarity scores
with the gold programs using Dolos. Then the ag-
gregated similarity score is computed as the maxi-
mum of the surface-level similarity score (Ssurface)
and semantic similarity score (Ssemantic) similarity
scores:

S(p, p∗) = max(Ssurface(p, p
∗), Ssemantic(p, p

∗))

This aggregated similarity score is a simple and
intuitive way to reflect how programs can be similar
both from their surface form and semantics.

3 Experimental Setup

We select two of the most popular public pretrain-
ing corpora for general LLM and code LLMs,
namely the PILE (Gao et al., 2020) and STAR-
CODERDATA (Li et al., 2023), and three series
of popular open-source models, i.e., Pythia (Bider-
man et al., 2023), CodeGen-NL (Nijkamp et al.,
2023) and StarCoderBase6(Li et al., 2023). For the
coding benchmark, we opt to study MBPP (Austin
et al., 2021) and HumanEval (Chen et al., 2021)
due to their popularity. We introduce them in more
detail in the following subsection.

6StarcoderBase refers to the models originally trained on
STARCODERDATA (Li et al., 2023). These models were fur-
ther finetuned on Python code to create the Starcoder models.

3.1 Models and Pretraining Data
We select the models by the following criteria:
1) The pretraining data for the models must be
publicly available; 2) To ensure non-trivial perfor-
mance on the coding benchmarks, such models
must have Python code in their pretraining data; 3)
Additionally, we do not consider any models that
are instruction-tuned, or trained with reinforcement
learning from human feedback (i.e., RLHF), as it
is hard to quantify the effect of such instruction-
tuning/human preference data along with the pre-
training corpus. Based on these criteria, we study
the following three model series in this work:

The PILE and Pythia. Pythia (Biderman
et al., 2023) is a suite of 16 LLMs intended to
facilitate research in many areas. All models are
trained on the PILE dataset (Gao et al., 2020), with
their size ranging from 70M to 12B parameters.
We used the 1.4B, 2.8B, 6.9B, and 12B models for
this study. We use the GitHub split of the training
dataset, which has a raw size of 95.16 GiB.

The PILE and CodeGen-NL. Another series
of models that are trained with PILE is CodeGen-
NL (Nijkamp et al., 2023), and we study the 350M,
2B, 6B, and 16B versions of it. Though stronger
CodeGen models are available via further training
on more code data, the exact copy of such data is
not publicly released thus we choose to study the
CodeGen-NL series. Due to the overlap of training
data, we use the results of searching through the
GitHub split that we did for the Pythia models.

STARCODERDATA and StarCoderBase.
We use the 1B, 3B, 7B and 15.5B StarCoderBase
models (Li et al., 2023) that were trained on the
STARCODERDATA dataset (Li et al., 2023). Due
to the size of the training data, we only search
through 60.40 GB within the Python split of its
training dataset. The STARCODERDATA dataset
is a subset of the STACK (Kocetkov et al., 2022),
created by filtering the STACK and applying
additional decontamination. The STACK was
created from permissively-licensed source code
files, and was open-sourced to make the training of
code LLMs more reproducible.7

3.2 Benchmarks
We measure the data contamination issues for the
following two popular coding benchmarks:

7It is worth noticing that STACK went through a string-
matching-based decontamination process for MBPP and Hu-
manEval, but we are still able to find traces of contamination
for these two datasets.
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Benchmark Models Top-1 Score=100 Top-1 Score>90 Top-1 Score>80
Acco % Rm Accd % Rm Accd % Rm Accd

MBPP
StarCoderBase-15.5B 41.6 20.8 33.8 (-18.8%) 32.2 32.5 (-22.6%) 50.8 29.7 (-28.6%)
Pythia-12B 17.8 3.6 17.0 (-4.5%) 6.9 16.6 (-6.7%) 11.4 15.8 (-11.2%)
CodeGen-NL-16B 19.6 3.6 18.4 (-6.1%) 6.9 17.4 (-11.2%) 11.4 16.5 (-15.8%)

HumanEval
StarCoderBase-15.5B 30.5 18.9 22.6 (-25.9%) 39.6 15.2 (-50.2%) 63.4 20.0 (-34.4%)
Pythia-12B 9.8 12.2 4.2 (-57.1%) 15.9 2.9 (-70.4%) 29.9 1.7 (-82.7%)
CodeGen-NL-16B 14.6 12.2 8.3 (-43.2%) 15.9 5.8 (-60.3%) 29.9 3.5 (-76.0%)

Table 1: Measuring the de-contaminated accuracy (Accd) by removing potentially contaminated subsets of MBPP
and HumanEval w.r.t. different thresholds. “Acco” denotes original model accuracy and “% Rm” denotes the
percentage of the dataset removed. The relative accuracy degradation after de-contamination is shown in brackets.

Models MBPP HumanEval
⇑10% ⇓10% ∆⇕ ⇑10% ⇓10% ∆⇕

StarCoderBase 72.0 22.0 50.0 75.0 31.3 43.7
Pythia 40.0 8.0 42.0 56.3 0.0 56.3
CodeGen-NL 48.0 6.0 42.0 62.5 0.0 62.5

Table 2: We show the performance gap (∆⇕) between
the top 10% (⇑10%) and bottom 10% (⇓10%) of pro-
grams based on the average of the top-10 aggregated
similarity scores. Only the largest models are shown for
each model series, full results available in Tab. 4.

MBPP (Austin et al., 2021) is a benchmark con-
taining 974 short, crowd-sourced Python program-
ming problems. We use the 500 questions within
its test split.

HumanEval (Chen et al., 2021) is a benchmark
consisting of 164 hand-written problems. Each
problem contains a gold solution.

Notably, these two benchmarks come with gold
program solutions, which we use to search the pre-
training data as a query. To obtain the model per-
formance and predictions on each of the dataset
examples, we use the evaluation framework and
model outputs from L2CEval (Ni et al., 2023).

4 Results

In this section, we first present our main results in
§4.1, then with several analysis on how the length,
difficulty and model sizes affects the our findings
in §4.2, and finally we present a case study in §4.3.

4.1 Main Results
3.6% to 20.8% of the solutions are likely seen
during training. For an example in the test data
(i.e., those of MBPP or HumanEval), we note it as
“seen” if the aggregated similarity score is 100, i.e.,
a perfect match exists on the surface- or semantic-
level. Results in Fig. 1 show that 12.2% of the
solutions in HumanEval have been seen by models

trained on the PILE and 18.9% have been seen by
models trained on STARCODERDATA. For MBPP,
3.6% of it can be found in the PILE while as much
as 20.8% have been seen by models trained on
STARCODERDATA. Much less overlap is found
for the PILE, as 3.6% of MBPP, but 20.8% of the
solutions on MBPP problems have been seen for
models trained on STARCODERDATA. These re-
sults suggest that a non-trivial part of both MBPP
and HumanEval have been seen for the models
trained on either the PILE or STARCODERDATA,
suggesting a high contamination rate.

Models perform significantly better when sim-
ilar solutions are seen during training. To ob-
serve the effect that having seen a solution during
training has on a model, we conduct three different
sets of experiments: 1) We first removed potentially
contaminated questions from the dataset, and eval-
uated the models performance on the new dataset,
as seen in Tab. 1. 2) We also highlight the dif-
ference in performance that models have between
questions which they have seen similar solutions
and questions which they have not. We use the per-
formance gap Razeghi et al. (2022) between the top
10% and bottom 10% of programs based on aggre-
gated similarity scores to do this. The performance
gap of the largest models from the chosen model
series is shown in Tab. 2, where it can be observed
that all three models perform significantly better
on questions in the top 10% of compared to ques-
tions in the bottom 10%. StarCoderBase-15.5B,
which achieves an accuracy of 72% on the top 10%
of questions and an accuracy of 22% on the bot-
tom 10% of questions of the MBPP benchmark.
The range of similarity scores for each model and
benchmark can be found in Fig. 3. 3) Lastly we
discuss the effect of models having seen the so-
lution in §4.2, where we provide an analysis on
decoupling memorization and question difficulty.

14120



40 50 60 70 80 90 100
Minimum Average of top 10 Aggregate Scores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy
1B
3B
7B
15.5B

0

100

200

300

400

500

Nu
m

be
r o

f P
ro

gr
am

s

Number of Programs

(a) StarCoderBase on MBPP

40 50 60 70 80 90 100
Minimum Average of top 10 Aggregate Scores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

1.4B
2.8B
6.9B
12B

0

100

200

300

400

500

Nu
m

be
r o

f P
ro

gr
am

s

Number of Programs

(b) Pythia on MBPP
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(c) CodeGen-NL on MBPP
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(d) StarCoderBase on HumanEval
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(e) Pythia on HumanEval
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(f) CodeGen-NL on HumanEval

Figure 5: Accuracy of different model series evaluated on a subset of examples with increasing overlap with the
model’s pretraining data. Each subset was obtained by using the x-axis as a threshold for the minimum score
obtained by taking the average of the top-10 aggregated similarity scores. We note that as the number of examples
decreases, it becomes more likely for the lines to overlap, as can be seen in Fig. 5b.

De-contaminated results. In an attempt to show
the impact of seen questions on model perfor-
mance, we remove potentially contaminated ques-
tions from each benchmark, showing the results
in Tab. 1. We observe that removing not only
questions that have been seen, but also questions
where programs similar to the gold program have
been seen during training has an adverse effect
on model performance. Moreover, from the de-
contaminated results, the performance gap between
different models could be much smaller. For ex-
ample, the original accuracy (Acco) gap between
StarCoderBase-15.5B and Pythia-12B is 23.8%,
and after de-contamination, the performance gap
is decreased to 13.9%. This indicates that a large
part of the performance gap between different mod-
els may due to data contamination. While we do
not find the performance rankings of the models
to change with de-contaminated results, a study
with more models might be needed for deriving
any general conclusions.

4.2 Analysis

Ablations on model size. We show how model
size affects accuracy in regard to the aggregate
score in Fig. 5. We observe that larger models tend
to perform better than smaller models in their fam-

ily, indicating that they are not only better at gener-
alization, but also at memorization. We believe that
the Pythia and CodeGen-NL models show similar
trends in these graphs due to being trained on the
same training data. We also note that the noise
in each graph grows as there are fewer programs
being evaluated on, explaining the 0% accuracy
that some models show when evaluated on only
questions they have seen 10 or more times during
training.

Decoupling memorization and difficulty. We at-
tempt to show that the model performance on seen
questions is not just outlying questions that are
easier than the remaining questions in the bench-
marks. To do so, we compare the overall perfor-
mance of models on the MBPP and HumanEval
benchmarks against their performance on differ-
ent subsets of questions based on seen and unseen
questions in Tab. 3a. We show that while Star-
CoderBase models perform better on the subset of
questions in MBPP that they have seen than on the
unseen questions, Pythia and CodeGen-NL mod-
els generally perform worse on the same subset of
questions. We also provide the sizes of each subset
in Tab. 3b, and note the significant overlap between
questions in HumanEval that have been seen by
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Models MBPP HumanEval
DS DS− DP DP− DS DS− DP DP−

StarCoderBase-7B 63.5 30.3 33.3 37.3 64.5 23.3 75.0 25.0
StarCoderBase-15.5B 71.2 33.8 55.6 41.1 64.5 22.6 80.0 23.6

CodeGen-NL-6B 11.5 16.9 38.9 14.9 29.0 3.8 45.0 3.5
CodeGen-NL-16B 11.5 21.7 50.0 18.5 48.4 6.8 60.0 8.3

(a) Model performance on different subsets of MBPP and HumanEval.

|D| |DS | |DP | |DS∩P |
MBPP 500 104 18 2
HumanEval 164 31 20 16

(b) The number of questions seen by mod-
els trained on STARCODERDATA (DS ) or
the PILE (DP ), and the number of pro-
grams in both subsets (|DS∩P |).

Table 3: Decoupling memorization and difficulty. DS denotes the subset that overlaps with STARCODERDATA,
and DS− denotes the complement set (i.e., DS− = D −DS ). We define DP and DP− similarly for the PILE. The
better performance amount the two disjoint subsets (i.e., D∗ and D∗− ) are in bold.

STARCODERDATA or the PILE as compared to the
MBPP benchmark. The improved performance of
models in the StarCoderBase family on familiar
questions in the MBPP benchmark does not appear
to result from these questions being easier than
those they haven’t encountered during training. For
example, CodeGen-NL-16B has an overall accu-
racy of 19.6% on the MBPP benchmark, but has
an accuracy of only 11.5% on the 104 questions
that StarCoderBase has seen. This indicates that
models having seen a solution to a question during
training significantly increases the performance of
models on these questions.

Effect of program length on similarity scoring.
One possible concern is that the size of the gold
programs could affect the similarity score. Longer
strings can have more differences between one an-
other without affecting their aggregated similarity
score as much as in shorter strings. To analyze this,
we plot the length of every gold program within the
MBPP benchmark against the aggregated similarity
score of the most similar string within the training
dataset used for the StarCoderBase model family
in Fig. 6. There does not appear to be a correlation
between the length and the aggregated similarity
score, or length and accuracy.

4.3 Case Study

Here we present a case study, by showing exam-
ples where the models have seen the gold solutions
to 10 or more times but still fails to produce a
correct solution at test time. Two representative
examples are shown as Fig. 7 and Fig. 8. For the
first example (Fig. 7), although programs that are
similar to the gold program appears multiple times
in the pretraining data, understanding the problem
description is arguably harder part of the problem.
As for the second example (Fig. 8), the gold pro-
gram is quite simple thus it is not surprising that
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Figure 6: Gold solution length vs. overlap with
training data vs. model prediction correctness, for
StarCoderBase-15.5B on MBPP. Similar results for Hu-
manEval are shown in Fig. 12.

Write a function to calculate the sum of
the positive integers of n+(n-2)+(n

-4)... (until n-x =< 0).

(a) Problem Description

1 def sum_series(n):
2 if n < 1:
3 return 0
4 else:
5 return n + sum_series(n - 2)

(b) Gold Program.

1 def sum_series(n):
2 sum = 0
3 for i in range(n):
4 sum += i
5 return sum

(c) Program generated by StarCoderBase.

Figure 7: Example where despite similar solutions ap-
pearing 10 or more times in the training corpus, Star-
CoderBase still fails at test time.

multiple matches in the training corpus are found,
but it may also make it difficult for the model to
associate such program with any specific natural
language description.
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Write a function to find the closest
smaller number than n.

(a) Problem Description

1 def closest_num(N):
2 return (N - 1)

(b) Gold Program.

1 def closest_num(n):
2 if n % 10 == 0:
3 return n - 1
4 else:
5 return n - (n % 10)

(c) Program generated by StarCoderBase.

Figure 8: Another example where despite similar solu-
tions appearing 10 or more times in the training corpus,
StarCoderBase still fails at test time.

5 Related Work

Measuring contamination. Our study on the ef-
fect of contaminated test questions on accuracy
are similar to the work done by Carlini et al.
(2020); Henderson et al. (2017); Jiang et al. (2024);
Thakkar et al. (2020); Thomas et al. (2020), but in-
stead of perturbing the training dataset, we search
through the training datasets for the the gold so-
lutions to the benchmarks. Another line of work
in studying memorization is to find documents re-
lated to the output within a training dataset (Lee
et al., 2022; Peng et al., 2023; Kandpal et al., 2022a;
Magar and Schwartz, 2022). These works search
the training dataset for documents relevant to a
string and report the number of relevant documents.
While we directly the effects of training data in
model outputs, other approaches exist in using
the model’s weights to find the parts of the train-
ing dataset that influenced the model (Han and
Tsvetkov, 2022; Grosse et al., 2023). While this
paper focuses on searching for contamination in
open source models, many models are released
without disclosing their training data. To search
for contamination in these models, recent papers
(Shi et al., 2023; Oren and Meister, 2023; Ranaldi
et al., 2024; Deng et al., 2023) use the probabilities
of model outputs to observe contamination. This
style of approach seems to work primarily when
there are multiple copies within the training dataset,
and is unreliable at detecting duplication rates of
1 (Oren and Meister, 2023). More recently, Dong
et al. (2024) identifies contamination by measuring
the peakedness of each model’s output distribution

via sampling, which works for black-box LLMs but
provides less certainty compared with our method.
Plagiarism detection. Plagiarism detection is re-
lated to finding similar documents, and some work
has already been done on evaluating the similarity
of generated programs. Yu et al. (2023) uses two
methods, JPlag (Prechelt and Malpohl, 2003) and
Dolos (Maertens et al., 2022) to calculate similar-
ity scores between programs. Using the maximum
score from the two methods, they determined any
two programs with a similarity score greater than
or equal to 0.5 to be potential plagiarism. Here, we
only use Dolos, due to JPlag’s restrictive license.

6 Discussions

Measuring contamination on the outputs. For
a generation task, both the input and output are a
sequence of tokens, allowing for the contamination
of either the input sequence, the output sequence,
or their coexistence within the training data to be
measured. Given that language models only use
the input as context and do not attempt to generate
it, we believe it is unlikely that seeing the input dur-
ing training would help them generate better code
at test time. Instead we choose to measure data
contamination of the outputs only. We believe that
this is a reasonable and arguable the most effective
strategy for code generation for the following rea-
sons: 1) It is common to include the function name
and signature in the task description for code gen-
eration tasks. After the model copies the function
signature, having seen the function during training,
it is easy for the model to reproduce the function
body at test time. 2) Since programs are formal
languages with strict grammar rules, it is easier
to measure the semantic similarity between pro-
grams with different surface forms. In our work,
we measure the semantic similarity between pro-
grams based on their abstract syntax trees. Such
semantic comparison would be much harder and
more prone to false-negatives for natural language
(i.e., the input), as illustrated by recent work (Yang
et al., 2023). 3) We find during our case study that
while the models may struggle to reproduce gold
programs that they have seen during training due to
a misunderstanding of the natural language Fig. 7,
there were only a few instances of this found. 4)
While it is indeed the case that the model still needs
to associate the natural language description with
the code it has seen during training, our results
(Tab. 1 and Fig. 1) suggest that there is a strong
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correlation between output side contamination and
model performance, suggesting that having seen
the similar code outputs at test time does provide
an unfair advantage to the models.

Suggestions for future work. The issue of con-
tamination poses a significant challenge for the
future evaluation of large language models’ capa-
bilities. Our research suggests that acknowledg-
ing the potential for contamination is crucial, espe-
cially when utilizing datasets known to be affected,
such as HumanEval and MBPP. When creating new
datasets, while it is advised to follow our pipeline to
decontaminate against the popular pretraining cor-
pus (e.g., GitHub), our results also suggest that it is
possible to decouple complexity and memorization
by cross referencing the results from models pre-
trained with different corpus (i.e., results in Tab. 3).
Beyond mere surface-level matching, we advocate
for a more nuanced approach to decontamination
that incorporates understanding the semantics of
code when creating pretraining data and new LLMs.
Furthermore, model developers should ideally in-
clude analyses on the effect of contamination on
their evaluations. Given the increasing scale and
complexity of state-of-the-art models and dataset
used to train these models, developing evaluation
benchmarks that are both relevant and completely
unseen by models during training seems critical,
yet increasingly challenging.

7 Limitations

False negative and positives. Due to the flexibility
of programs, there can be multiple correct ways to
solve a problem using Python. What we are search-
ing for is only one possible solution presented as
the gold solution, and as such we present our find-
ings on the minimum number of questions to which
models trained on the PILE and STARCODERDATA

have been exposed to. Another source of false
negatives (examples we falsely believe to be un-
contaminated) is from the search itself. To reduce
compute costs, we had to limit our search to rel-
evant splits of the training corpus, which is the
GitHub split for the PILE and the Python split for
STARCODERDATA. It is possible for the models
to see more of similar solutions in other parts of
the pretraining corpus (e.g., similar programs in
Java for STARCODERDATA). On the other hand,
while performing semantic-level comparison helps
with the general recall of similar programs, it is
possible for it to flag a program as being similar to

the gold program despite being quite different, cre-
ating false positive example. We present the results
for all programs found to be perfect matches to the
gold program in § A.4, and some of examples show
that false positives do exist.
Different training stages. As mentioned in § 3.1,
while we only study the “base” models and their
pretraining data in this work, current models
are typically trained in multiple stages, includ-
ing supervised-finetuning, instruction-tuning and
RLHF. However, the same methodology should be
applicable to training data from these stages as well.
At the same time, the size of such data is often sev-
eral magnitudes smaller than the pretraining data,
thus less likely to contain sources of contamination
on the example-level. For example, an inspection
on the instruction-tuning data for Octocoder (Muen-
nighoff et al., 2023) shows that none of the MBPP
examples has a similarity score above 80.
Scarcity of open data. We only include two bench-
marks and three models for this study. This is due
to the scarcity of commonly used benchmarks that
provide a gold program for every question, and
models that have an open source training dataset.
We hope more open models with open data will be-
come available in the future to fuel further research
in this domain.
Inability to retrain model. Ideally, to observe the
effect that having seen the answers to questions
have on models, we would remove the answers
from the training dataset, retrain the model, and
compare with the original model. This approach
is unfortunately prohibitively expensive given our
compute constraints.

8 Conclusion

In this work, we quantify the data contamination is-
sues for two popular code generation benchmarks,
namely MBPP and HumanEval. We use both
surface-level and semantic similarity to exhaus-
tively search among the pretraining data using gold
solutions for these benchmarks. By studying three
series of models trained on two different corpus,
the PILE and STARCODERDATA, we find that sig-
nificant portions of the benchmarks have solutions
leaked into the pretraining data. Further analysis
shows that models perform much better when simi-
lar solutions are seen during training, and such cor-
relation is independent of the difficult and length
of the problems.
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A Additional Examples and Results

A.1 All Model Series

In Tab. 2 we present the results on the largest ver-
sions of the StarCoder-Base, Pythia and CodeGen-
nl model series. In Tab. 4 we show results on four
model versions from each model series.

A.2 Relevant Info for Models on the
HumanEval Benchmark

We provide versions of Fig. 3 and Fig. 6 for the
HumanEval benchmark in Fig. 11 and Fig. 12 re-
spectively.

A.3 Examples of Similarity Scores

In Fig. 9 and Fig. 10 we provide examples of pro-
grams found within the training data and the rele-
vant similarity score returned for them. A similarity
score of 70 typically represents a program that is
no longer similar to the gold program.

Prompt: Write a python function to count
positive numbers in a list.

(a) Problem Description

1 def pos_count(list):
2 pos_count= 0
3 for num in list:
4 if num >= 0:
5 pos_count += 1
6 return pos_count

(b) Gold Program

1 def num_sym_points(sv):
2 count = 0
3 for v in sv:
4 if v <= 0:
5 count += 1
6

7 return count

(c) Matched program in STARCODERDATA. Semantic-
level similarity score = 100

1 def get_degree(d):
2 count = 0
3 for key in d:
4 if d[key] > 0:
5 count += 1
6 return count

(d) Matched program in STARCODERDATA. Semantic-
level similarity score = 72.73

Figure 9: Examples of different programs and their
corresponding Dolos scores when compared to a gold
program from the MBPP benchmark.
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Prompt: Write a function that takes two
lists and returns true if they have
at least one common element.

(a) Problem Description

1 def common_element(list1, list2):
2 result = False
3 for x in list1:
4 for y in list2:
5 if x == y:
6 result = True
7 return result

(b) Gold Program

1 atches
2

3 def compare_lists(list1,list2):
4 result = False
5 for x in list1:
6 for y in list2:
7 if x == y:
8 result = True
9 return result

(c) Matched program in STARCODERDATA. Surface-
level similarity score = 92

1 #def two_data(list1, list2):
2 # result = False
3 # for x in list2:
4 # if i == x:
5 # result = True
6 # return result
7 #print(two_data([3,4,

(d) Matched program in STARCODERDATA. Surface-
level similarity score = 81

1 def top_ingredients(self, n):
2 res = {}
3 for a in self.items:
4 for i in a.ingredients:
5 try:
6 res[i] += 1
7 exce

(e) Matched program in STARCODERDATA. Surface-
level similarity score = 70

Figure 10: Examples of different programs and their
corresponding Levenshtein scores when compared to a
gold program from the MBPP benchmark.
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(b) Top-1 Score.

Figure 11: We show the similarity scores for both The
PILE and STARCODERDATA found by searching for
answers to the gold programs in the HumanEval bench-
mark. We compare the similarity scores from different
techniques, as well as the difference between using the
top-1 score and the top-10 scores.
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Figure 12: Length of gold programs in the HumanEval
benchmark plotted against the average aggregated sim-
ilarity score of the top-10 scores within the training
dataset used for the StarCoderBase model family.

A.4 Perfect Matches
We provide lists of every question that was seen 10
or more times during training for models trained
on a specific dataset. These can be found in Tab. 5
through Tab. 13.
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Models MBPP HumanEval
Acco ⇑10% ⇓10% (∆⇕) Acco ⇑10% ⇓10% (∆⇕)

StarCoderBase-1B 23.4 54.0 4.0 (-50.0) 16.5 56.6 18.8 (-37.5)
StarCoderBase-3B 29.8 64.0 8.0 (-56.0) 22.0 75.0 25.0 (-50.0)
StarCoderBase-7B 37.2 70.0 18.0 (-52.0) 31.3 68.8 31.3 (-37.5)
StarCoderBase-15.5B 41.6 72.0 22.0 (-50.0) 30.5 75.0 31.3 (-43.7)

Pythia-1.4B 4.4 18.0 0.0 (-18.0) 4.9 25.0 0.0 (-25.0)
Pythia-2.8B 12.0 30.0 2.0 (-28.0) 7.3 31.3 0.0 (-31.3)
Pythia-6.9B 12.6 34.0 2.0 (-32.0) 6.7 43.8 0.0 (-43.8)
Pythia-12B 17.8 40.0 8.0 (-32.0) 9.8 56.3 0.0 (-56.3)

CodeGen-NL-350M 2.2 8.0 0.0 (-8.0) 3.0 12.5 0.0 (-12.5)
CodeGen-NL-2B 12.7 36.0 4.0 (-32.0) 7.9 37.5 0.0 (-37.5)
CodeGen-NL-6B 15.8 42.0 6.0 (-36.0) 8.5 37.5 0.0 (-37.5)
CodeGen-NL-16B 19.6 48.0 6.0 (-42.0) 14.6 62.5 0.0 (-62.5)

Table 4: We show the performance gap (∆⇕) between the top 10% (⇑10%) and bottom 10% (⇓10%) of questions
for the MBPP and HumanEval benchmarks compared against "Acco" the original model accuracy. This is the full
version of Tab. 2, showing results for four models in each model series.

Natural Language Question Gold Program Found 100% Matches

Write a function to find the closest
smaller number than n.

def closest_num(N):
return (N - 1)

def parent(i):
return (i - 1)

Write a python function to count true
booleans in the given list.

def count(lst):
return sum(lst) def average(lst):

return sum(lst)

Write a python function to find
smallest number in a list.

def smallest_num(xs):
return min(xs)

def min_usecase3(x):
return min(x)

Table 5: All questions flagged as being seen by models trained on the PILE 10 or more times within the MBPP
benchmark
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Natural Language Question Gold Program Found 100% Matches

Write a function to find the n-th
rectangular number.

def find_rect_num(n):
return n*(n + 1)

def get_sum(n):
return n * (n + 1)

Write a python function to find the
last digit of a given number.

def last_Digit(n) :
return (n % 10)

def shift_right(b):
return (b << 1)

Write a function to find the closest
smaller number than n.

def closest_num(N):
return (N - 1) def percentage(x):

return (x - 1)

Write a python function to find
smallest number in a list.

def smallest_num(xs):
return min(xs) def smallest(l):

return min(l)

Write a python function to count
positive numbers in a list.

def pos_count(list):
pos_count= 0
for num in list:
if num >= 0:

pos_count += 1
return pos_count

def array_count9(nums):
count = 0
for num in nums:

if num == 9:
count += 1

return count

Write a function to swap two numbers. def swap_numbers(a,b):
temp = a
a = b
b = temp
return (a,b)

def swap(a,b):
tmp = a
a = b
b = tmp
return a,b

[link text](https:// [link text](
https:// [link text](https://)))
write a function to convert a
string to a list.

def string_to_list(string):
lst = list(string.split(" "))
return lst

def String_to_list (
Strings):
list1=list(Strings.
split(" "))
return l

Write a python function to find the
minimum of two numbers.

def minimum(a,b):
if a <= b:

return a
else:

return b

def minimum(a, b):
if a <= b:

return a
else:

return b

def

Write a function to check whether an
element exists within a tuple.

def check_tuplex(tuplex,tuple1):
if tuple1 in tuplex:
return True

else:
return False

def check_for_tag(ele,
tag):
if tag in ele:

return True
else:

return False

Write a python function to count true
booleans in the given list.

def count(lst):
return sum(lst)

def mean(lst):
return sum(lst)

Table 6: All questions flagged as being seen by models trained on STARCODERDATA 10 or more times within the
MBPP benchmark (Part 1)
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Natural Language Question Gold Program Found 100% Matches

Write a python function to find the
largest negative number from the
given list.

def largest_neg(list1):
max = list1[0]
for x in list1:

if x < max :
max = x

return max

def minimum( list ):
min = list[ 0 ]
for i in list:

if i < min:
min = i

return min

Write a function to convert the given
decimal number to its binary
equivalent.

def decimal_to_binary(n):
return bin(n).replace("0b","") def decimal_to_binary(n

):
return bin(n).
replace("0b", "")

Write a python function to find the
maximum of two numbers.

def maximum(a,b):
if a >= b:

return a
else:

return b

def maximum(a, b):

if a >= b:
return a

else:
return b

Write a function to extract every
specified element from a given
two dimensional list.

def specified_element(nums, N):
result = [i[N] for i in nums]
return result

def _get_mean(names,
table):
x = [table[name]
for name in names]
return su

Write a function to find the nth
hexagonal number.

def hexagonal_num(n):
return n*(2*n - 1)

def hexagonal(n):
return n * (2*n - 1)

Write a function to remove all
elements from a given list
present in another list.

def remove_elements(list1, list2):
result = [x for x in list1 if x
not in list2]
return result

def intersection(lst1,
lst2):
lst3 = [value for
value in lst1 if
value not in lst2]
return l

Write a function to calculate the sum
of the positive integers of n+(
n-2)+(n-4)... (until n-x =< 0).

def sum_series(n):
if n < 1:
return 0

else:
return n + sum_series(n - 2)

def sum_series(n):
if n < 1:
return 0

else:
return n +
sum_series(n - 2)

Table 7: All questions flagged as being seen by models trained on STARCODERDATA 10 or more times within the
MBPP benchmark (Part 2)
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Natural Language Question Gold Program Found 100% Matches

from typing import List def
filter_by_prefix(strings: List[
str], prefix: str) -> List[str]:
""" Filter an input list of
strings only for ones that start
with a given prefix. >>>
filter_by_prefix([], ’a’) [] >>>
filter_by_prefix([’abc’, ’bcd’,
’cde’, ’array’], ’a’) [’abc’, ’
array’] """

return [x for x in strings if
substring in x]

return [tag for tag
in tags if substr
in tag]

def greatest_common_divisor(a: int, b
: int) -> int: """ Return a
greatest common divisor of two
integers a and b >>>
greatest_common_divisor(3, 5) 1
>>> greatest_common_divisor(25,
15) 5 """

while b:
a, b = b, a % b

return a

while b:
a, b = b, a % b

return a

from typing import List def
concatenate(strings: List[str])
-> str: """ Concatenate list of
strings into a single string >>>
concatenate([]) ’’ >>>
concatenate([’a’, ’b’, ’c’]) ’
abc’ """

return ’’.join(strings) return ’’.join(
strings)

from typing import List def
filter_by_prefix(strings: List[
str], prefix: str) -> List[str]:
""" Filter an input list of
strings only for ones that start
with a given prefix. >>>
filter_by_prefix([], ’a’) [] >>>
filter_by_prefix([’abc’, ’bcd’,
’cde’, ’array’], ’a’) [’abc’, ’
array’] """

return [x for x in strings if x.
startswith(prefix)]

return [i for i in
tests if i.
startswith(prefix)
]

def encode_cyclic(s: str): """
returns encoded string by
cycling groups of three
characters. """ # split string
to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i +
3), len(s))] for i in range((
len(s) + 2) // 3)] # cycle
elements in each group. Unless
group has fewer elements than 3.
groups = [(group[1:] + group
[0]) if len(group) == 3 else
group for group in groups]
return "".join(groups) def
decode_cyclic(s: str): """ takes
as input string encoded with
encode_cyclic function. Returns
decoded string. """

return encode_cyclic(
encode_cyclic(s))

return encodedValue
(encode(value));

def add(x: int, y: int): """Add two
numbers x and y >>> add(2, 3) 5
>>> add(5, 7) 12 """

return x + y return x + y

Table 8: All questions flagged as being seen by models trained on the PILE 10 or more times within the HumanEval
benchmark (Part 1)
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Natural Language Question Gold Program Found 100% Matches

def same_chars(s0: str, s1: str): """
Check if two words have the
same characters. >>> same_chars
(’eabcdzzzz’, ’
dddzzzzzzzddeddabc’) True >>>
same_chars(’abcd’, ’dddddddabc’)
True >>> same_chars(’dddddddabc
’, ’abcd’) True >>> same_chars(’
eabcd’, ’dddddddabc’) False >>>
same_chars(’abcd’, ’dddddddabce
’) False >>> same_chars(’
eabcdzzzz’, ’dddzzzzzzzddddabc’)
False """

return set(s0) == set(s1) return set(l1) ==
set(l2)

def multiply(a, b): """Complete the
function that takes two integers
and returns the product of
their unit digits. Assume the
input is always valid. Examples:
multiply(148, 412) should
return 16. multiply(19, 28)
should return 72. multiply(2020,
1851) should return 0. multiply
(14,-15) should return 20. """

return abs(a % 10) * abs(b % 10) return abs(fa - f0)
< abs(fb - f0)

Table 9: All questions flagged as being seen by models trained on the PILE 10 or more times within the HumanEval
benchmark (Part 2)
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Natural Language Question Gold Program Found 100% Matches

def strlen(string: str) -> int: """
Return length of given string
>>> strlen(’’) 0 >>> strlen(’abc
’) 3 """

return len(string) return len(string)

def flip_case(string: str) -> str:
""" For a given string, flip
lowercase characters to
uppercase and uppercase to
lowercase. >>> flip_case(’Hello
’) ’hELLO’ """

return string.swapcase() return string_.
swapcase()

def sort_third(l: list): """This
function takes a list l and
returns a list l’ such that l’
is identical to l in the
indicies that are not divisible
by three, while its values at
the indicies that are divisible
by three are equal to the values
of the corresponding indicies
of l, but sorted. >>> sort_third
([1, 2, 3]) [1, 2, 3] >>>
sort_third([5, 6, 3, 4, 8, 9,
2]) [2, 6, 3, 4, 8, 9, 5] """

l = list(l)
l[::3] = sorted(l[::3])
return l

l = list(str(n))
s = sorted(l)
return s != l

def fizz_buzz(n: int): """Return the
number of times the digit 7
appears in integers less than n
which are divisible by 11 or 13.
>>> fizz_buzz(50) 0 >>>
fizz_buzz(78) 2 >>> fizz_buzz
(79) 3 """

ns = []
for i in range(n):

if i % 11 == 0 or i % 13 ==
0:

ns.append(i)
s = ’’.join(list(map(str, ns)))
ans = 0
for c in s:

ans += (c == ’7’)
return ans

fizzy = []
for i in range(1, n
+1):

if i % 3 == 0
and i % 5 == 0:

fizzy.
append(’FizzBuzz’)

elif i % 3 ==
0:

fizzy.
append(’Fizz’)

elif i % 5 ==
0:

from typing import List, Optional def
longest(strings: List[str]) ->
Optional[str]: """ Out of list
of strings, return the longest
one. Return the first one in
case of multiple strings of the
same length. Return None in case
the input list is empty. >>>
longest([]) >>> longest([’a’, ’b
’, ’c’]) ’a’ >>> longest([’a’, ’
bb’, ’ccc’]) ’ccc’ """

if not strings:
return None

maxlen = max(len(x) for x in
strings)
for s in strings:

if len(s) == maxlen:
return s

if not strings:
return ’’

prefix = strings[0]
for s in strings:

if len(s) < len
(prefix):

prefix =
prefix[:len(s

def how_many_times(string: str,
substring: str) -> int: """ Find
how many times a given
substring can be found in the
original string. Count
overlaping cases. >>>
how_many_times(’’, ’a’) 0 >>>
how_many_times(’aaa’, ’a’) 3 >>>
how_many_times(’aaaa’, ’aa’) 3
"""

times = 0

for i in range(len(string) - len(
substring) + 1):

if string[i:i+len(substring)]
== substring:

times += 1

return times

result = 0
for i in range(len(
string) - len(
sub_string) + 1):

if string[i:i+
len(sub_string)]
== sub_string:

result += 1
return res

Table 10: All questions flagged as being seen by models trained on STARCODERDATA 10 or more times within the
HumanEval benchmark (Part 1)
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Natural Language Question Gold Program Found 100% Matches

from typing import List def
sort_numbers(numbers: str) ->
str: """ Input is a space-
delimited string of numberals
from ’zero’ to ’nine’. Valid
choices are ’zero’, ’one’, ’two
’, ’three’, ’four’, ’five’, ’six
’, ’seven’, ’eight’ and ’nine’.
Return the string with numbers
sorted from smallest to largest
>>> sort_numbers(’three one five
’) ’one three five’ """

value_map = {
’zero’: 0,
’one’: 1,
’two’: 2,
’three’: 3,
’four’: 4,
’five’: 5,
’six’: 6,
’seven’: 7,
’eight’: 8,
’nine’: 9

}
return ’ ’.join(sorted([x for x
in numbers.split(’ ’) if x], key
=lambda x: value_map[x]))

nine
number_map = {

’zero’: 0,
’one’: 1,
’two’: 2,
’three’: 3,
’four’: 4,
’five’: 5,
’six’: 6,
’seven’: 7,
’eight’: 8,
’nine’: 9

}

# Override the init
method and use

the kwarg "name"
to set a string
that will be sl

def tri(n): """Everyone knows
Fibonacci sequence, it was
studied deeply by mathematicians
in the last couple centuries.
However, what people don’t know
is Tribonacci sequence.
Tribonacci sequence is defined
by the recurrence: tri(1) = 3
tri(n) = 1 + n / 2, if n is even
. tri(n) = tri(n - 1) + tri(n -
2) + tri(n + 1), if n is odd.
For example: tri(2) = 1 + (2 /
2) = 2 tri(4) = 3 tri(3) = tri
(2) + tri(1) + tri(4) = 2 + 3 +
3 = 8 You are given a non-
negative integer number n, you
have to a return a list of the
first n + 1 numbers of the
Tribonacci sequence. Examples:
tri(3) = [1, 3, 2, 8] """

if n == 0:
return [1]

my_tri = [1, 3]
for i in range(2, n + 1):

if i % 2 == 0:
my_tri.append(i / 2 + 1)

else:
my_tri.append(my_tri[i -

1] + my_tri[i - 2] + (i + 3) /
2)
return my_tri

= len(my_list)
if list_len == 0:

return None

bool_list = []
for i in range(
list_len):

if my_list[i] %
2 == 0:

bool_list.
append(True)

else:
bool_list.

append(False)
return (bool_list)

def check_if_last_char_is_a_letter(
txt): ’’’ Create a function that
returns True if the last
character of a given string is
an alphabetical character and is
not a part of a word, and False
otherwise. Note: "word" is a
group of characters separated by
space. Examples:
check_if_last_char_is_a_letter("
apple pie") -> False
check_if_last_char_is_a_letter("
apple pi e") -> True
check_if_last_char_is_a_letter("
apple pi e ") -> False
check_if_last_char_is_a_letter
("") -> False ’’’

check = txt.split(’ ’)[-1]
return True if len(check) == 1
and (97 <= ord(check.lower()) <=
122) else False

prefix = re.split(
r’[\.\_]’, id)[0]

return True if
len(prefix) == 6
and int(prefix) >
101000 else False

def can_arrange(arr): """Create a
function which returns the
largest index of an element
which is not greater than or
equal to the element immediately
preceding it. If no such
element exists then return -1.
The given array will not contain
duplicate values. Examples:
can_arrange([1,2,4,3,5]) = 3
can_arrange([1,2,3]) = -1 """

ind=-1
i=1
while i<len(arr):

if arr[i]<arr[i-1]:
ind=i

i+=1
return ind

i = 1
while i < len(arr):

if arr[i-1] <
arr[i]:

i += 1
elif arr[i

Table 11: All questions flagged as being seen by models trained on STARCODERDATA 10 or more times within the
HumanEval benchmark (Part 2)
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Natural Language Question Gold Program Found 100% Matches

def is_equal_to_sum_even(n): """
Evaluate whether the given
number n can be written as the
sum of exactly 4 positive even
numbers Example
is_equal_to_sum_even(4) == False
is_equal_to_sum_even(6) ==
False is_equal_to_sum_even(8) ==
True """

return n%2 == 0 and n >= 8 5
return n2 == 7 and
n1 >=

def car_race_collision(n: int): """
Imagine a road that’s a
perfectly straight infinitely
long line. n cars are driving
left to right; simultaneously, a
different set of n cars are
driving right to left. The two
sets of cars start out being
very far from each other. All
cars move in the same speed. Two
cars are said to collide when a
car that’s moving left to right
hits a car that’s moving right
to left. However, the cars are
infinitely sturdy and strong; as
a result, they continue moving
in their trajectory as if they
did not collide. This function
outputs the number of such
collisions. """

return n**2 return n**2

def reverse_delete(s,c): """Task We
are given two strings s and c,
you have to deleted all the
characters in s that are equal
to any character in c then check
if the result string is
palindrome. A string is called
palindrome if it reads the same
backward as forward. You should
return a tuple containing the
result string and True/False for
the check. Example For s = "
abcde", c = "ae", the result
should be (’bcd’,False) For s =
"abcdef", c = "b" the result
should be (’acdef’,False) For s
= "abcdedcba", c = "ab", the
result should be (’cdedc’,True)
"""

s = ’’.join([char for char in s
if char not in c])
return (s,s[::-1] == s)

)
s = ’’.join([char
for char in s if
char not in dashes
])
return s.lower()

def minSubArraySum(nums): """ Given
an array of integers nums, find
the minimum sum of any non-empty
sub-array of nums. Example
minSubArraySum([2, 3, 4, 1, 2,
4]) == 1 minSubArraySum([-1, -2,
-3]) == -6 """

max_sum = 0
s = 0
for num in nums:

s += -num
if (s < 0):

s = 0
max_sum = max(s, max_sum)

if max_sum == 0:
max_sum = max(-i for i in

nums)
min_sum = -max_sum
return min_sum

max_sum,
sub_sum = nums[0],
nums[0]

for num in nums
[1:]:

s = num
if sub_sum

> 0:
s +=

sub_sum
max_sum =

max(s, max_sum)
sub_sum = s

return max_sum

Table 12: All questions flagged as being seen by models trained on STARCODERDATA 10 or more times within the
HumanEval benchmark (Part 3)

14136



Natural Language Question Gold Program Found 100% Matches

def max_fill(grid, capacity): import
math """ You are given a
rectangular grid of wells. Each
row represents a single well,
and each 1 in a row represents a
single unit of water. Each well
has a corresponding bucket that
can be used to extract water
from it, and all buckets have
the same capacity. Your task is
to use the buckets to empty the
wells. Output the number of
times you need to lower the
buckets. Example 1: Input: grid
: [[0,0,1,0], [0,1,0,0],
[1,1,1,1]] bucket_capacity : 1
Output: 6 Example 2: Input: grid
: [[0,0,1,1], [0,0,0,0],
[1,1,1,1], [0,1,1,1]]
bucket_capacity : 2 Output: 5
Example 3: Input: grid :
[[0,0,0], [0,0,0]]
bucket_capacity : 5 Output: 0
Constraints: * all wells have
the same length * 1 <= grid.
length <= 10^2 * 1 <= grid[:,1].
length <= 10^2 * grid[i][j] -> 0
| 1 * 1 <= capacity <= 10 """

return sum([math.ceil(sum(arr)/
capacity) for arr in grid])

return sum(int(
math.ceil(ntasks))
for ntasks in

rows)

def add(x: int, y: int): """Add
two numbers x and y >>> add(2,
3) 5 >>> add(5, 7) 12 """

return x + y return x + y

def do_algebra(operator, operand):
""" Given two lists operator,
and operand. The first list has
basic algebra operations, and
the second list is a list of
integers. Use the two given
lists to build the algebric
expression and return the
evaluation of this expression.
The basic algebra operations:
Addition ( + ) Subtraction ( - )
Multiplication ( * ) Floor
division ( // ) Exponentiation (

** ) Example: operator[’+’,
’*’, ’-’] array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5 => result
= 9 Note: The length of
operator list is equal to the
length of operand list minus one
. Operand is a list of of non-
negative integers. Operator list
has at least one operator, and
operand list has at least two
operands. """

expression = str(operand[0])
for oprt, oprn in zip(operator,
operand[1:]):

expression+= oprt + str(oprn)
return eval(expression)

result = str(self.
operand[0])
for operator,
operand in zip(
self.operator,
self.operand[1:]):
result += ’ {}

{}’.format(
operator, operan

def encode(message): """ Write a
function that takes a message,
and encodes in such a way that
it swaps case of all letters,
replaces all vowels in the
message with the letter that
appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters. Examples:
>>> encode(’test’) ’TGST’ >>>
encode(’This is a message’) ’
tHKS KS C MGSSCGG’ """

vowels = "aeiouAEIOU"
vowels_replace = dict([(i, chr(
ord(i) + 2)) for i in vowels])
message = message.swapcase()
return ’’.join([vowels_replace[i]
if i in vowels else i for i in

message])

vovels = "
aeiouAEIOU"

stack = []
for ch in s:

if ch in
vovels:

stack.
append(ch)

result = []
for i in s:

if i in
vovels

Table 13: All questions flagged as being seen by models trained on STARCODERDATA 10 or more times within the
HumanEval benchmark (Part 4)
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