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Abstract

Large language models (LLMs) have shown
remarkable capabilities in various natural lan-
guage understanding tasks with a few demon-
stration examples via in-context learning. Com-
mon strategies to boost such “in-context” learn-
ing ability are to ensemble multiple model de-
coded results and require the model to generate
an explanation along with the prediction. How-
ever, these models often treat different class
predictions equally and neglect the potential
discrepancy between the explanations and pre-
dictions. To fully unleash the power of expla-
nations, we propose EASE, an Explanation-
Aware Soft Ensemble framework to empower
in-context learning with LLMs. We design two
techniques, explanation-guided ensemble, and
soft probability aggregation, to mitigate the ef-
fect of unreliable explanations and improve the
consistency between explanations and final pre-
dictions. Experiments on 10 NLU tasks and 4
varying-size LLMs demonstrate the effective-
ness of our framework.

1 Introduction

Recent advancements in Natural Language Process-
ing (NLP) have witnessed the remarkable capabil-
ities of Large Language Models (LLMs) (Brown
et al., 2020; Anil et al., 2023; Touvron et al., 2023;
OpenAl, 2023). These LLMs can rapidly adapt to
new tasks by learning only on a few input-output
pairs (a.k.a. demonstrations) in context (Wei et al.,
2022a). Yet, beyond those demonstrations, a sig-
nificant facet of human learning revolves around
explanations. These explanations', typically in the
form of a few keywords or sentences, reveal the
underlying principles connecting the input and out-
put (Zaidan et al., 2007; Narang et al., 2020). Con-
sequently, integrating free-text explanations into
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LLM prompting holds great potentials to further
enhance in-context learning performance.

Recent studies have examined how to incorpo-
rate free-text explanations into LLM in-context
learning scheme. For instance, the Predict-then-
Explain pipeline (Lampinen et al., 2022) proposes
to generate the explanation after making the pre-
diction. Consequently, the predictions from LLM
won’t directly benefit from their corresponding ex-
planations. In contrast, the Explain-then-Predict
pipeline (a.k.a “Chain-of-Thought”) (Wei et al.,
2022b) generates explanations before making pre-
dictions via greedy sampling. When the LLM-
generated explanations are unreliable, predictions
from this approach will be largely distracted and de-
fective (Ye and Durrett, 2022; Turpin et al., 2023).
To mitigate this issue, (Wang et al., 2023d) im-
proves the “Chain-of-Thought” pipeline by gener-
ating multiple predictions with different explana-
tions using temperature sampling and aggregating
them via majority voting. However, this approach
can be sub-optimal as (1) temperature sampling
increases the inconsistency between generated ex-
planations and their associated class predictions,
and (2) majority voting treats predictions associ-
ated with explanations of varying qualities equally.
How to robustly leverage free-text explanations for
LLM in-context learning remains challenging.

In this work, we present an Explanation-aware
Soft Ensemble framework, named EASE, to as-
sist LLM in-context learning with explanations.
Our technique integrates explanations into the en-
semble procedure and employs soft probability to
mitigate discrepancies between explanations and
predictions. The key module of the EASE frame-
work hinges upon the idea of weighted ensemble:
As shown in Figure 1, instead of treating all pre-
dictions equally, we assign a score to each predic-
tion based on the contextual relevance and inherent
quality of its associated explanation, which will be
used as a weight during the final ensemble stage.
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Figure 1: The overview of EASE framework, where we introduce two strategies to better harness explanations for

LLM in-context learning.

While several works have studied scoring the LLM-
generated text (Wang et al., 2023b; Khalifa et al.,
2023; Jiang et al., 2023), these models typically re-
quire massive training labels on downstream tasks
or intermediate reasoning annotations. To facilitate
explanation scoring with under the few-shot setting
studied in this work, we realize this explanation-
aware ensemble stage with an LLM — after gener-
ating explanations and predictions using tempera-
ture sampling for each test instance, we prompt the
LLM to weight all class predictions based on their
associated explanations in an in-context manner.
While the LLM offers great promise for the weight-
ing purpose, it is crucial to provide sufficient super-
vision signals as demonstrations to guide the LLM
scoring, yet the primary constraint for this step
lies in the absence of negative explanations from
few-shot demonstrations. To construct negative ex-
amples, we first use LLM to generate explanations
for few-shot demonstrations, then select explana-
tions associated with incorrect predictions as the
negative samples. In this way, the LLM scorer can
be readily applied to perform explanation-aware
ensembling without any additional annotation.

Beyond explanation-aware ensembling, EASE
incorporates an additional technique named soft
probability aggregation, which helps to mitigate
the inconsistency between explanations and predic-
tions, given the sampling process may inevitably
infuse noises into the final prediction. Specifi-
cally, it employs probabilities across various class-
indicative verbalizers in place of the original one-
hot predictions. This design, although conceptually
simple, can effectively reduce the discrepancies
between explanations and predictions and further
improve the final predictions accuracy.

Our contributions can be summarized as follows:

* We propose the EASE framework to better fa-

cilitate in-context learning for large language
models with natural language explanations.

* We begin with an analysis of the limitations in
current in-context learning methods, leading to
the development of explanation-aware ensem-
ble and soft probability aggregation techniques.
These techniques aim to prioritize high-quality
explanations and minimize inconsistencies be-
tween explanations and predictions, without re-
quiring large amounts of additional annotation.

* We conduct experiments on seven natural lan-
guage understanding (NLU) datasets spanning
between natural language inference (NLI) and
question answering (QA), and our method out-
performs state-of-the-art approaches using 4 dif-
ferent LLMs as the backbone. Our analysis fur-
ther justifies the advantage of EASE for dealing
with unreliable explanations as well as mitigat-
ing inconsistent predictions.

2 Related Work

Two prevalent explanation types exist for interpret-
ing NLP models: (1) extraction-based explanations
that highlight important segments of the original
input (DeYoung et al., 2020; Paranjape et al., 2020;
Zhou et al., 2020; Yin and Neubig, 2022) and (2)
free-form explanations that craft prediction ratio-
nales directly using natural language text (Rajani
et al., 2019; Sun et al., 2022; Wiegreffe et al., 2021,
2022; Wang et al., 2023a; Ludan et al., 2023; Shen
et al., 2023; Zhang et al., 2024). Beyond aiding in
model interpretation, recent studies have demon-
strated that these explanations can also enhance the
few-shot reasoning capabilities of large language
models. For example, (Wei et al., 2023b) use task-
level explanations to assist the test-time adaptation
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for LLMs. (Krishna et al., 2023) leverage the ex-
tracted keywords tokens as additional input to assist
LLM in-context learning, but requires a white-box
LLM. (Wei et al., 2022b; Zelikman et al., 2022) pro-
pose to prepend explanations before the answers
while (Lampinen et al., 2022) suggest adding post-
answer explanations. Given that these explana-
tions are often derived during the LLM decoding
stage and may contain noise, (Wang et al., 2023d,
2022b) advocate for generating multiple candidate
explanations with predictions, followed by aggre-
gating these predictions via majority voting. In
our study, we focus on free-form explanations and
explore how to better aggregate these predictions
with explanations in a weighted ensemble. Using a
bootstrapped LLM, we evaluate each explanation
to enhance in-context learning.

Another line of research related to our study
is automated explanation quality evaluation (Sun
et al., 2022; Wang et al., 2022a; Joshi et al., 2023;
Chen et al., 2023a,b). (Ye and Durrett, 2022) uti-
lize lexical features to measure the faithfulness of
explanations without considering their semantics.
(Chen et al., 2021; Li et al., 2023b) leverage a NLI
fine-tuned model to verify the reliability of expla-
nations. (Fu et al., 2023; Liu et al., 2023; Qin
et al., 2023; Jiang et al., 2023) also study how to
use LLM to build a generic text quality scorers
for NLP tasks. These studies rely on ground-truth
labels and human annotations, making them less
suitable when the labels for test instances are un-
known. Besides, several works attempt to build
up a scoring model (Wang et al., 2023b; Khalifa
et al., 2023) and rely on a large training set for
scoring model training, yet such labeled data can
be infeasible to obtain under the true few-shot set-
ting. In contrast, our research focuses more on ef-
fectively leveraging model-generated explanations
to improve LLM in-context learning with a few
demonstrations only.

3 Method

In this section, we first give a brief introduction
to the problem definition. Then, we present our
approach with two designs, namely explanation-
aware ensemble and soft probability aggregation,
with the goal of leveraging the generated explana-
tions to improve the final prediction performance.

3.1 Problem Definition

We are given an LLM M parameterized by 6, a set
of few-shot demonstrations D = {(x;, e;, yz)}fil
on a target classification task?, where K is the num-
ber of demonstrations, x;, y; are the input and label
for the i-th example, and e; is the ground-truth ex-
planation for x;. For each example x € Diey, we
use M and D to predict its label. Our primary goal
is to improve the prediction accuracy on Dyegt.

3.2 Recap of Self-consistency Pipeline

Here we give an introduction to self-consistency
(Wang et al., 2023d) for LLM in-context learn-
ing. For each test example © € Dy, it first
forms the prompt for few-shot demonstrations as
P = {T,shuffle(|X(z;, €, v;))}, where T is
the prompt template, and shuffle (||2£, (z;, €;,y;))
is a permutation of K demonstrations. Then, it
generates [V candidate explanations together with
predictions (denoted as (e;, p;)) via sampling from
the LLM with non-zero temperature as

(e,pi)j=1 ~ po (e,p | P, ). (1

Finally, it aggregates these /N candidates into
the final prediction via majority voting as y =
argmax, Z;V: 1 I(p; = y). Self-consistency en-
hances the standard explain-then-predict pipeline
by utilizing multiple predictions derived from var-
ied explanations. Despite its strong performance,
through our examination, we’ve pinpointed two
primary bottlenecks within the self-consistency
pipeline, listed as follows:

* Explanation-agnostic ~ Ensembling: Self-
consistency uniformly weights all predictions
and aggregates them via majority voting. It over-
looks the variance in explanation quality, which
can be problematic when certain predictions
stem from flawed reasoning paths evident in
poor-quality explanations (Agarwal et al., 2024).

* Explanation-Prediction Inconsistency: During
its prediction, self-consistency employs temper-
ature sampling to draw samples from the LLM.
This sampling step can introduce noise, leading
to predictions that are inconsistent with their cor-
responding explanations (Ye and Durrett, 2022).

The identified limitations necessitate the need to
better harvest intermediate explanations for obtain-
ing the final prediction. Towards this goal, we

2Qur main focus is on classification tasks, but our frame-
work can also be extended to generative tasks (section 4.7).
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propose EASE, a framework tailored to tackle the
aforementioned challenges. EASE is comprised
with two techniques, explanation-aware ensemble
and soft probability aggregation, to optimize the
LLM’s prediction accuracy when deriving final out-
comes from multiple candidate explanations.

3.3 Explanation-guided Ensemble

LLMs typically produce multiple explanations
along with their predictions through a sampling
process. Due to the intrinsic randomness of this
sampling, the quality of these predictions can fluc-
tuate. To address the potential pitfalls where erro-
neous explanations results in inaccurate predictions,
we introduce the explanation-aware ensemble tech-
nique. This method estimates the significance of
each class prediction based on its corresponding
explanation. Consequently, our explanation-aware
ensemble technique ensures that predictions linked
with better explanations carry greater weight during
the final prediction aggregation phase.
LLM as Few-shot Explanation Scorer To evalu-
ate various explanations, past research either mea-
sured the lexical overlap between the explanation
and the input (Ye and Durrett, 2022) or employed
models fine-tuned on NLI tasks (Chen et al., 2021;
Li et al., 2023b). In contrast to them, which ei-
ther overlook the deep semantics of explanations or
require extra human annotations, our explanation
scorer is developed based on the LLM M, directly
harnessing its inherent reasoning capabilities.
Given the original task input x and one explana-
tion e, we use the verbalizer vpos(vneg) to represent
the class of this explanation being “positive” (“neg-
ative”). A “positive” explanation means this ex-
planation can help the model reach correct answer
and a “negative” explanation means the other way
around. Then, we craft a supplementary prompt
Tscore = “Can this explanation be used to help the
model answer the question?” for LLM prompting.
With the verbalizers and prompts, we recast the
problem of explanation scoring into determining
the conditional probability of producing the verbal-
izer aligned with the positive label vy, as

we =po (y = Upos | Tscore, z,€) . 2)

In this way, the score w, is normalized between 0
and 1 and a higher score indicates the explanation
with better quality.

Bootstrapped LLM Scorer Although the above
approach can already produce scores for each pre-
diction, the score generated with the LLM M can

Explanation 1: Soda Bottles
are made by renewable
resources can be used again.
Answer 1: B

Initial Demonstration
Example

Question: What can be used
more than one time?
A. coal B. soda bottle

C.gas D. oil

Explanation: Renewable S = ©

resources can be used over © O
again. Coal, gas, oil are S
considered as unrenewable LLM
resources. Soda Bottles are
made by renewable resources
can be used again.

\ Answer: B /

Positive Negative
Demonstration Demonstration

Explanation 2: renewable
resources such as Soda Bottles
can be used over again.
Answer 2: B

Explanation 3: Soda is
commonly available in plastic
bottled, which can be recycled
and reused to other purposes.
Answer 3: B

Explanation N: gas is a
continuous supply and can be
used as long as it is available

® © © &

through the gas utility service
Answer N: C

Figure 2: Bootstrapped LLM Scorer.

still be biased and less precise (Wang et al., 2023c),
especially under the zero-shot scenario where no
demonstrations are provided. To mitigate the bias
and generate reliable scores, we propose to pro-
vide additional examples to serve as “positive” and
“negative” explanations to facilitate LLM scoring
using the original few-shot demonstrations in D.
For each original demonstration instance, it is
straightforward to obtain “positive” examples from
the ground-truth explanation. Obtaining “nega-
tive” examples, on the other hand, can be more
challenging as they are not explicitly provided.
To tackle this issue, we exploit the assumption
based on the utility of explanations: an ideal ex-
planation should guide the model towards the ac-
curate prediction of ground-truth labels (Wiegr-
effe et al., 2021). Consequently, it’s reasonable
to classify explanations leading to erroneous pre-
dictions as "negative". In practice, for every in-
stance (z;,y;) € D, we randomly select £ (8 in
this work) exemplars from the training set and then
use these as demonstrations and generate a set of
candidate pairs C; = {(e;;, pij)}év:l via sampling
from the LLM. Then, if the explanation-prediction
pair (e;j, pij) from C; satisfies y; # p;;, we select
ei; as the negative explanation set N; for z; as
Ni = {(eij,pis) € Ci | yi # pis}- ©)
For every instance, a random “negative” explana-
tion is chosen from the candidate set. This produces

a balanced demonstration set for LLM explanation
scoring without requiring extra human annotations.

3.4 Soft Probability Aggregation

In the preceding step, the primary objective is to
assign a score to each prediction based on its as-
sociated explanation through the LLM M. This
process, however, does not account for directly
modeling the LLM’s output predictions. To bridge
this gap, we propose soft probability aggregation,
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a simple and intuitive approach to resolve the dis-
crepancy between the explanations and predictions
— rather than aggregating over the raw predictions,
it directly computes the sum of the probabilities
associated with each potential label, expressed as

N
Yy = argmax Zpa (y \ 777357%‘) . “

y =1

The soft probability aggregation reduces the noise
inherited in LLM sampling-based decoding algo-
rithms, resulting in a more accurate final prediction.

3.5 Summary

By plugging these two techniques together, we ob-

tain the final prediction 3 for test instance x as
N

y = argmax Zwej xpo(y| P,z e5), (&)
Y

j=1

where e; is the explanation generated via Eq. 1,
the we; is the weight for e; using the bootstrapped
LLM scorer in Eq. 2, and py (y | P, z,e;) is the
soft probability generated using Eq. 4. Overall, cal-
culating the score for explanations and soft prob-
abilities both take an additional O(XN) time com-
plexity. Fortunately, these two steps do not require
additional training and can be efficiently supported
with distributed inference techniques in practice?.
Other than these techniques, EASE keeps other
components intact and can be plugged into most
LLMs to empower their in-context learning ability.

4 Experiments

4.1 Experiment Setups

Tasks We evaluate our EASE framework on two
types of tasks: natural language inference and ques-
tion answering including E-SNLI (Camburu et al.,
2018), ANLI (Nie et al., 2020), ECQA (Aggar-
wal et al., 2021), OpenbookQA (Mihaylov et al.,
2018) and StrategyQA (Geva et al., 2021). Besides,
we conduct additional experiments on XNLI (Con-
neau et al., 2018), GSM8k (Cobbe et al., 2021) and
SVAMP (Patel et al., 2021) in Section 4.7.

Baselines We consider the following approaches:
(1) Standard In-context Learning (ICL)
(Brown et al., 2020), (2) Predict-then-Explain
(PE) (Lampinen et al., 2022), (3) Explain-
then-Predict (EP) (Wei et al., 2022b), (4)
Self-consistency (Wang et al., 2022b, 2023d), (5)
FLamE (Zhou et al., 2023), (6) OrderEnsem-

3More studies are in Appendix E.

ble (Lu et al., 2022) and (7) PromptBoost (Hou
et al., 2023) as baselines. The details are in App. B.

Implementation Details In our main experi-
ments, we use PaLM2-S and PaLM2-L (Anil et al.,
2023) as the backbone model. Results on more
(open source) backbone models are reported in Sec-
tion 4.3. For each dataset, we set the size of few-
shot examples to 48 following (Zhou et al., 2023;
Marasovic et al., 2022), and fit as many instances
as possible during inference until reached the max-
imum length. As the LLM is often sensitive to
the selection of few-shot examples (Ye and Durrett,
2023; Liu et al., 2022), for each dataset, we create
5 splits from the original dataset, each containing
300 test examples, and report the average perfor-
mance over 5 splits. During sampling, we set the
default temperate to ¢ = 0.7 and sample N = 9
candidate explanations for each instance.

4.2 Overall Results

Table 1 exhibits the performance of EASE and
baselines on seven datasets using PaLM 2-S and
PalLM 2-L as the backbone. From the results, we
have the following findings: First, leveraging ex-
planations often improves LLM in-context learning,
especially when aggregating multiple predictions
sampled from the LLM*. Conversely, the standard
EP pipeline sometimes even hurts the performance
of larger models. Existing boosting methods for in-
context learning do not help much in improving per-
formance. Second, despite its complex design, the
latest baseline FLamE often falls short compared
to other baselines, which suggests that fine-tuning
an additional classifier is particularly important
for FLamE and it might be less compatible with
the LLM in-context learning framework. Third,
EASE consistently outperforms all other methods
across nearly all datasets and model sizes, provid-
ing a reliable way to improve in-context learning.
Finally, When comparing EASE with its own vari-
ants (e.g. w/o BLS and SPA), it’s observed that
the original EASE consistently holds an advantage,
indicating the necessity of both PW and SA com-
ponents in maximizing performance.

4.3 Results on Open-source Models

In order to demonstrate the generalizability of our
EASE framework, as well as promote reproducibil-

*We have also tried to incorporate multiple explanations
with temperature sampling for PE pipeline, but we find perfor-
mance drops. This is because the prediction of the PE pipeline
can not benefit from generated explanations.
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Table 1: The main experiments results, where “BLS” stands for bootstrapped LLM scorer and “SPA” stands for soft
probability aggregation. All results have passed the statistically significant test (p < 0.05) over baselines.

Backbone Methods E-SNLI ANLI-R1 ANLI-R2 ANLI-R3 ECQA StrategyQA OpenbookQA Average
ICL (Brown et al., 2020) 59.88 54.38 48.10 52.66 59.84 66.69 80.21 60.25
PE (Lampinen et al., 2022) 71.02 62.59 55.18 57.17 74.39 71.75 79.70 67.40
EP (Wei et al., 2022) 64.53 57.40 53.00 53.33 72.11 72.40 81.38 64.88
Self-consistency wangetal, 20230y  68.68 65.40 56.49 59.00 74.48 76.94 83.47 69.21
PaLM 2-S FLamE zhou et al., 2023) 67.58 60.36 52.00 50.15 72.80 75.33 80.14 65.48
OrderEnsemble (Luetal, 2022) 69.30 63.33 56.33 58.33 73.14 76.35 83.68 68.64
PromptBoost (Hou etal., 2023) 70.65 64.00 55.63 60.33 73.50 77.30 83.91 69.33

EASE 75.01 66.48 59.66 64.33 75.59 78.23 84.10 71.92 (13.91%)
EASE w/o BLS 73.84 66.84 58.74 62.66 7517 78.40 83.91 71.37
EASE w/o SPA 69.82 66.77 58.50 62.50 75.42 78.33 83.68 70.73
ICL (Brown et al., 2020) 87.42 79.00 68.33 65.65 81.29 81.13 91.17 79.14
PE (Lampinen et al., 2022) 88.84 80.55 71.49 68.33 83.13 83.19 92.46 81.14
EP (Wei et al., 2022) 84.59 79.03 67.99 67.66 80.51 85.45 89.74 79.28
Self-consistency wang etal., 2023y~ 87.34 81.29 73.16 70.16 82.67 87.85 92.88 82.19
PaLM 2-L FLamE (zhou et al., 2023) 83.23 71.85 58.50 56.83 80.26 84.79 93.14 75.51
OrderEnsemble Luctal, 2022) 87.12 80.66 72.66 69.33 82.25 87.55 93.10 81.81
PromptBoost (Hou et al., 2023) 87.46 80.33 73.00 69.94 83.12 88.15 92.63 82.09
EASE 89.42 83.69 76.16 74.00 83.65 89.90 93.93 84.40 (12.69%)

EASE w/o BLS 88.94 82.87 75.60 72.66 83.42 89.34 93.72 83.79
EASE w/o SPA 88.21 82.59 73.83 71.33 83.42 89.35 93.51 83.18

Table 2: The experiment results on open-source models, where “BLS” stands for bootstrapped LLLM scorer and
“SPA” stands for soft probability aggregation. All results have passed the significant test (p < 0.05) over baselines.

Model (—) FLAN-UL2 (20B) Llama-2 (7B)
Dataset (—) StrategyQA E-SNLI ANLI-R1 ANLI-R2 ANLI-R3 ECQA StrategyQA OpenbookQA Avg.
ICL (Brown et al., 2020) 61.76 51.14 34.58 36.05 27.48 45.48 53.81 47.48 42.29
PE (Lampinen et al., 2022) 73.42 54.25 37.83 37.50 34.37 52.33 56.21 56.48 47.00
EP (Wei et al., 2022b) 75.46 56.90 35.41 39.16 36.04 54.45 57.17 4435 46.21
Self-consistency (Wang etal., 2023d) 76.01 58.79 40.16 40.16 36.16 55.14 57.12 60.87 49.77
FLamE (zhou et al., 2023) 72.17 49.32 36.83 35.16 36.50 45.11 57.70 46.23 43.84
OrderEnsemble (Lueta. 2022) 75.46 58.62 37.50 36.66 36.66 53.42 56.01 44.67 45.93
PromptBoost (Hou et al.. 2023) 75.22 58.04 39.17 38.33 35.83 52.57 56.94 46.33 46.74

EASE 78.70 (1 3.55%) 60.80 44.50 41.66 41.33 60.45 59.81 64.43 53.28 (1 7.05%)

EASE w/o BLS 77.31 59.54 4345 41.33 40.33 60.34 59.62 65.06 52.81
EASE w/o SPA 77.78 58.50 41.33 40.16 3533 54.97 57.40 61.71 49.91

Table 3: The study on different scoring approaches.
Note that to ensure fair comparison, we do not use soft
probability aggregation for our method and baselines.

Dataset (—) E-SNLI OpenbookQA StrategyQA
Model (=) PaLM 2-S PaLM2-L PaLM2-S PaLM2-L FLAN-UL2
EASE 69.82 83.68 83.68 93.51 78.70
EASE w/ PE Negative 68.90 8391 83.54 93.93 78.06
LLM Zero-shot Scoring (Fuetal. 2023) 66.84 81.77 81.38 88.50 75.15
LLM Pairwise Scoring (in 69.25 8297 82.97 93.14 76.93
Lexical Scoring (ve and Du 2) 67.72 83.54 82.66 93.72 75.34
NLI Scoring (chenetal 64.87 81.89 82.21 91.52 76.11

ity, we extend our investigations to open-source
LLM:s including FLAN-UL2 (Tay et al., 2023)°
and Llama-2-7b (Touvron et al., 2023). Both mod-
els have publicly accessible weights®. Table 2
shows the open-source LLMs generally perform
worse than PaLM 2 on the challenging NLU bench-
marks, mainly due to having fewer parameters. De-
spite this, the experiment results still align with
our prior findings, demonstrating that our proposed
techniques can consistently yield performance en-
hancements across these open-source LLMs.

5https ://github.com/google-research/
google-research/tree/master/ul?2. We only test
on StrategyQA since FLAN-UL?2 is fine-tuned on labeled data
from other datasets, violating the few-shot setting.

®https://huggingface.co/meta-1lama/Llama-2-7b.

4.4 Study on Explanation-aware Ensemble

We perform additional experiments to further un-
derstand the benefit of the explanation-aware en-
semble, and the result is shown in Table 3.

Performance w/ Different Scoring Methods We
first compare our LLM-based explanation scorer
with a few alternatives including (1) lexical scor-
ing, which estimates the reliability of explanations
via the lexical gap (Ye and Durrett, 2022), and
(2) NLI Scoring that uses an NLI model to ver-
ify the reliability of explanations. We use MT5-
XXL (Xue et al., 2021) fine-tuned on NLI datasets
as the scorer. Overall, we observe that our model
outperforms these models in most cases, indicating
that LLLM has a strong capacity for estimating the
quality of the explanations with only a few demon-
strations. In addition, we observe that pairwise
scoring does not perform well for weighting the
predictions. This is because it was originally pro-
posed for text ranking, different from our scenarios
in terms of input formats and relevance signals.

Performance w/ Different Bootstrapping Strate-

gies To justify the design of leveraging the Explain-
then-Predict (EP) pipeline to generate negative
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Figure 3: Average Score of Bootstrapped LLM Scorer.

Table 4: The study on different probability aggregation
approaches. Note that we do not use explanation-aware
ensemble for our method and baselines.

Dataset (—) E-SNLI OpenbookQA StrategyQA
Model (—) PaLM 2-S PaLM2-L PaLM2-S PaLM2-L FLAN-UL2
Inconsistency Ratio 14.60% 10.06% 13.96% 10.71% 10.00%
EASE 73.84 88.21 83.91 93.72 78.70

w/ argmax 73.20 87.90 83.68 93.51 78.42
Cond. Gen (wictal, 20230 70.77 82.20 78.07 84.38 72.80

demonstrations, we also consider other ways in-
cluding removing demonstrations as well as using
the Predict-then-Explain (PE) pipeline. Overall, in
many cases, using the EP pipeline leads to better re-
sults, as we observe that the PE pipeline sometimes
causes the false negative issue: it will first generate
incorrect predictions but followed with reasonable
explanations. However, when the model performs
reasonably well (e.g. PaLM 2-L on OpenbookQA),
then it may make less erroneous prediction during
the bootstrapping step, leading to insufficient train-
ing signals for EASE to perform well. In addition,
no matter whether PE and EP are used, they both
largely outperform the baseline where no demon-
stration is given, necessitating the role of demon-
stration for explanation-aware ensembling.

EASE Assigns Higher Scores for Reliable Expla-
nations To justify that better scores are assigned to
explanations with correct answers, we calculate the
average score for explanations associated with cor-
rect and incorrect predictions’. The results in Fig. 3
show that EASE leads to a higher average score
for those explanations with correct answers. We
further justify this point in Sec. 4.6 human study.

4.5 Study on Soft Probability Aggregation

The premise behind soft probability aggregation
is the potential inaccuracy in the prediction token
due to temperature sampling variability. To verify
this, we calculate the proportion of cases where the
prediction token p; is different than the prediction
pi # argmax p(+| P, z, e;). As exhibited in Table 4,

"To eliminate the effect of the sampling randomness, we
calculate the prediction based on the soft probability in Eq. 4.

BN Faithful
s Unfaithful

s Before B Win
. After E-SNLI

0
ESNLI SQA
Consistency

0.0
ESNLI SQA

. 0
Faithfulness EASE Lexical NLI

EASE Lexical NLI

(a) Faithful & Consistency (b) Pairwise Evaluation

Figure 4: Human Study Results.

we observe that such inconsistency predictions ap-
pear in 10% to 15% of the cases, which is not rare
in practice. By using the soft score, we observe that
it consistently leads to performance boosts. The
gain is more evident when the inconsistency issue
is more severe — on E-SNLI dataset with PaLM
2-S as the backbone, around 15% examples have
inconsistent predictions. Incorporating soft proba-
bility aggregation leads to a notable performance
gain (from 68.68% to 73.84%). When compared to
other methods for prediction correction, such as us-
ing hard predictions (i.e. argmax p(-|P, z,€;)) or
generation probability conditioned on different ver-
balizers, EASE achieves better performance. More
case studies on using soft probabilities are deferred
to Appendix F.2.

4.6 Human Study on Explanations

We conduct additional human studies to further in-
vestigate whether the scores generated by LLM are
aligned with human preferences. On two datasets,
we randomly select 80 instances for evaluation.
Faithfulness and Consistency Evaluation. To
provide in-depth analysis, we follow (Ye and Dur-
rett, 2022) to consider two dimensions: (1) faith-
fulness: whether the explanation is grounded in
the corresponding input context; (2) consistency:
whether the explanation entails the prediction. We
ask human raters to indicate the ‘faithfulness’ and
‘consistency’ of the explanations. The results are
shown in Figure 4(a). For faithfulness, we observe
a higher average score from the LLM scorer to
those identified faithful explanations. For consis-
tency, we observe that there is a significant drop
in the inconsistency ratio when soft probability ag-
gregation is used. These results further justify that
two modules in EASE can collectively reduce the
effect of unreliable explanations.

Pairwise Evaluation. For each instance, we sam-
ple two explanations with different predictions as
{(e1,p1), (e2,p2)}, with one being correct. We
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Table 5: Performance on XNLI dataset using four target
languages.

DE FR ES ZH Avg.

Self-consistency 47.15 44.66 48.33 39.67 44.95
EASE 51.50 48.33 50.66 43.00 48.37 (+7.4%)

EASE w/o BLS 4882 4733 49.66 42.00 46.95

EASE w/o SPA  49.49 4233 47.00 40.33 44.79

Table 6: Performance on Arithmetic Reasoning datasets.

GSM8k SVAMP

Self-consistency 22.50 54.33
EASE (w/ BLS Only, Few Shot) 24.25 56.33
GRACE (Khalifa et al., 2023) (Supervised) 30.9 55.6

compare our approach and two baselines (NLI
model, lexical overlap) with human raters: for each
pair of explanations, we first ask four humans to
determine which explanation is better and use c;
(i = 1,2) to denote the number of raters that se-
lect e; as the better one. Then, we use different
models to estimate the score for explanations sep-
arately, denoted as (e, , Se,). The final judge of
“Win-Tie-Lose” is determined to be:

win,
r = tie,
lose,

The final results are shown in Figure 4(b). The co-
hen’s kappa among human raters are 0.75 (E-SNLI)
and 0.64 (StrategyQA), which stands for “substan-
tial agreement”. Overall, EASE aligns with human
preferences the best, indicating its better ability to
be the proxy for explanation quality estimation. We
display more examples of generated explanations
and the scores in Appendix F.1.

C1 = C2;

4.7 Results on More Challenging Tasks

We provide additional experiments to show that
EASE can be applied to more challenging tasks
where the initial explanation and predictions are
not good enough. For all experiments, we use
LLama2-7b as the backbone LLM.
Cross-Lingual Transfer We extend our framework
to multi-lingual NLI tasks, where we provide the
demonstrations and explanations in English and
inference on target languages including German
(DE), French (FR), Spanish (ES), and Chinese (ZH)
using the examples in XNLI dataset (Conneau et al.,
2018). The performance (accuracy) of our method,
as well as our direct baseline (self-consistency),
are shown in Table 5. From the table, we observe
that our method achieves a 7.4% performance gain
when compared to the self-consistency baseline,
demonstrating our method can be readily applied
to challenging cross-lingual scenarios.

if (c1 > caand s¢; > sey) 0r (c1 < caand 5oy < Sey);

if (c1 < caand se; > sep) 0r (c1 > coand s¢; < Sey)-

I Sclf-Consistency EASE 80

80 85
g0 70
3 70 EEE Self-Consistency
EASE
60 65 5

VI V2 V3 VI V2 V3 0.5 0.7 1.0
ESNLI StrategyQA Temperature

Accuracy
S T
3 3
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N
o

(a) Prompt Format (b) Temperatures (E-SNLI)

Figure 5: Effect of prompt format and temperatures.
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Figure 6: Effect of number of demonstrations.

Arithmetic Reasoning For arithmetic reasoning,
one difference is that this task requires the genera-
tion of a candidate answer in the form of a numeri-
cal value, rather than simply outputting a class or
choice. While direct adoption of soft probability
aggregation may not be feasible, we can still lever-
age the bootstrapped LLM scorer to assign weights
to different outputs generated by LLMs. To eval-
uate our approach, we conducted experiments on
GSMBS8k (Cobbe et al., 2021) and SVAMP (Patel
et al., 2021). The results of our direct baseline
(self-consistency) and our proposed method are
summarized in Table 6. From these results, it is
evident that incorporating the LLLM as an expla-
nation (reasoning) scorer can further enhance the
reasoning ability of the LLM.

4.8 Additional Studies

As EASE relies on several key components such
as prompts and sampling steps, we study their ef-
fect on the final prediction, using PaLM 2-S as the
backbone.

Effect of the Sampling Temperatures and
Prompt Templates We study the robustness EASE
to different prompt templates by choosing three
different prompt formats from (Bach et al., 2022)
(the details are in Appendix C.3) on two datasets.
Overall, from Figure 5(a) we observe that EASE is
robust to them as all of the prompt formats lead to
performance gains when compared to the strongest
baseline self-consistency. Similarly, in Figure 5(b),
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Table 7: Verbalizer Study for Bootstrapped LLM Scorer,
using PalLM 2-S as the backbone.

Template | VI | V2 | V3
E-SNLI | 75.01 | 73.75 | 74.12
StrategyQA | 78.40 | 78.23 | 76.75

we observe that EASE also performs better than
baseline under all temperature settings, further jus-
tify its robustness across different settings.

Effect of the Size of Demonstrations K Figure
6 illustrates the performance with different size of
demonstrations. By increasing the number of K,
the performance gradually increases, while EASE
achieves performance gains under all value of K.

Effect of the Number of Generated Explana-
tions N In Figure 7, we examine the influence of
the number of explanations. On both datasets, in-
creasing the explanations generally improves the
performance, while EASE achieves better perfor-
mance than the baselines using only 30% - 40%
of the generated explanations, which can reduce
the burden of sampling massive explanations while
maintaining the performance.

Effect of Verbalizers for Bootstrapped LLM
Scorer We investigate the role of verbalizers in
representing the “positive” and “negative” explana-
tions. We consider three set of verbalizers, namely
V1:“Yes” and “No”, V2: “True” and “False”, and
V3: “Foo” and “Jaa” using symbolic tuning (Wei
et al., 2023a). Using PalLM 2-S as the backbone,
the experimental results are shown in Table 7. From
the results, we observe that the original “Yes” and
“No” generally perform better. Symbolic tuning
does not work as well as other verbalizers with
concrete semantics, indicating it may not be strong
enough for the explanation scoring task.

5 Conclusion

In this work, we empower LLM’s in-context learn-
ing ability with natural language explanations.
Specifically, we design explanation-aware ensem-
ble to weight multiple predictions using their as-
sociated explanations and realize this idea using a
bootstrapped LLM scorer. In addition, we lever-
age a soft probability aggregation scheme to mit-
igate the issue of inconsistent predictions for en-
sembling. We conduct extensive experiments on
seven datasets from a diverse task set and show our
proposed framework can outperform previous state-
of-the-art methods using four LLMs as backbones.
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Limitations

In this work, our primary goal is to identify the
existing issues to better leverage explanations to
empower in-context learning. While our approach
has shown promise, it also comes with increased
computational demands, as both explanation-aware
ensemble and soft probability aggregation steps
require additional computation overhead®. Fu-
ture work could explore designing more power-
ful prompts to let LLMs directly output the suffix
tokens as quality score (Tian et al., 2023). Addi-
tionally, our methodology depends on the logits
returned in both the explanation-aware ensemble
and soft probability aggregation processes, making
it less suitable to directly adapt to black-box LLMs
(e.g. ChatGPT, OpenAl (2023)). To approximate
the soft score, one strategy is to set the temperature
to a non-zero value and conduct multiple sampling
steps, then use the frequency of the corresponding
verbalizers as the proxy of the score.

Besides, the key assumption of EASE is that
different explanations are of diverse quality, while
those explanation leads to correct predictions tend
to be of higher quality. We mainly conduct em-
pirical experiments to support this point, yet there
often exists multiple facets to evaluate the quality
of free-text explantions (Chen et al., 2023a,b; Sun
et al., 2022). More in-depth metrics are needed to

$However, in Appendix E, we show that under the same

inference time budget, our method still outperforms the best
baseline (i.e. self-consistency).
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faithfully evaluate the quality of free-text explana-
tions and reveal the true inner workings of EASE.

We also assume that the LLM must possess a
baseline of language modeling and reasoning capa-
bilities for effective in-context learning. For tasks
where in-context learning is not viable, alternatives
such as continuous pretraining and task-specific
fine-tuning might be more suitable to enhance the
LLM’s task-specific knowledge. Besides, our ex-
periments, which included a range of LLMs from
Llama-2 to PalLM 2 and cover various NLP tasks,
demonstrate that these models generally exhibit
some level of reasoning capacity, performing better
than random guesses.

Additionally, while EASE augments in-context
learning by weighting predictions through explana-
tions, it does not refine the explanation’s content.
For future works, it is potential to leverage tech-
niques such as self-refinement (Madaan et al., 2023;
Ling et al., 2023) and debating (Du et al., 2023)
to elevate explanation quality and strengthen the
model’s reasoning abilities.

Ethics Considerations

We acknowledge the risk that the explanations from
large language model may inherit systematic biases
from their pretraining data and contain incorrect
information. Our approach aims to mitigate this
by identifying the most reliable explanations. This
process does not eliminate the possibility of bias,
but offers a method to reduce its impact, emphasiz-
ing the need for future work on improving the way
these models are trained and utilized.
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A Datasets Details

A.1 Datasets Used in Main Experiments

The seven benchmarks in our experiments are all
publicly available. The details for these datasets
are included as follows:

e E-SNLI (Camburu et al., 2018) is an enriched
version of the Stanford Natural Language Infer-
ence (SNLI) corpus (Bowman et al., 2015), aug-
mented with human-annotated natural language
explanations for entailment relations;

* ANLI-R1/R2/R3 (Nie et al., 2020) are a set of
three collections of adversarially generated NLI
examples curated through a human-in-the-loop
process;

* ECQA (Aggarwal et al., 2021) is built upon
CommonsenseQA benchmark (Talmor et al.,
2019) and contains additional human-annotated
question explanations;

* OpenbookQA (Mihaylov et al., 2018) is a QA
dataset that requires comprehensive reasoning
from open-book sources. As no ground-truth
explanations are given, we use the provided facts
as the proxy explanations.

» StrategyQA (Geva et al., 2021) focuses on rea-
soning over complex, multi-hop questions that
often require strategic planning.

A.2 Additional Datasets

* XNLI (Conneau et al., 2018) is a cross-lingual
NLI dataset, designed to evaluate language un-
derstanding across different languages. It ex-
tends the Stanford NLI (SNLI) dataset by pro-
viding translations of the English examples into
various languages.

* GSMB8Kk (Cobbe et al., 2021) provides a diverse
set of questions that require logical reasoning,
which focuses on grade-school level mathemati-
cal problems.

* SVAMP (Patel et al., 2021) is centered around
assessing models in solving arithmetic word
problems, specifically designed to test the varia-
tion in problem phrasing.

A.3 Download Links

Below are the links to downloadable versions of
these datasets.

E-SNLI:
datasets/esnli;

https://huggingface.co/

ANLI R1/R2/R3: https://github.com/
facebookresearch/anli;

* ECQA: https://github.com/allenai/feb;

* OpenbookQA: https://huggingface.co/
datasets/openbookqa;

» StrategyQA: for StrategyQA we use the
question-only set from the link https://
github.com/google/BIG-bench/blob/main/
bigbench/benchmark_tasks/strategyqga;

e XNLI: https://huggingface.co/datasets/
xnli;

« GSMB8Kk:
datasets/gsm8k;

https://huggingface.co/

e SVAMP: https://github.com/arkilpatel/
SVAMP/tree/main/data

A4 Setups

Main Experiment Setups By default, we sam-
ple few-shot demonstrations from the train set and
sample from the test split for all datasets. For Open-
bookQA, as the original dataset only contains 500
test examples, in each split we use 100 examples.
For ANLI, as some of the examples contain no
explanations, while the explanations for some ex-
amples include task-irrelevant information such as
‘I think the computer was confused because
so many of the words were similar to the
description’. To reduce the effect of such exam-
ples, we remove those examples occurs with term
‘the system’, ‘the computer’, ‘the model’, ‘the
AI’, and manually checked all the few-shot demon-
strations to ensure that there is no such information
in explanations.

Setups for Multilingual NLI For the multi-lingual
NLI task, we simulate a cross-lingual setting where
we provide the demonstrations and explanations
in English and inference on target languages in-
cluding German (DE), French (FR), Spanish (ES),
and Chinese (ZH) using the examples in XNLI
dataset (Conneau et al., 2018). Note that this is
one common setting studied in previous multilin-
gual reasoning benchmarks (Shi et al., 2023). We
use 16-shot examples from the E-SNLI dataset as
demonstrations, and for each target language, we
sample 300 instances.
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Setups for Arithmetic Reasoning For each
dataset, we employed 16 examples from the train-
ing set as few-shot demonstrations. We use the
prompts provided in existing works (Wang et al.,
2023d) to avoid additional prompt engineering.

B Baselines

The detailed information for baselines are de-
scribed as follows.

e Standard In-context Learning (ICL) (Brown
et al., 2020): it solely uses the input-label pairs
for few-shot learning without using explana-
tions.

* Predict-then-Explain (PE) (Lampinen et al.,
2022): it provides the explanation after the label
for each instance when constructing demonstra-
tions. During the inference stage, it generates
the explanation after the prediction.

* Explain-then-Predict (EP) (Wei et al., 2022b):
it is the standard chain-of-thought pipeline
which provides an explanation before the label
as demonstrations. During the inference stage,
it first generates an explanation, then followed
by the prediction. Note that for both PE and EP
method, we use greedy sampling to obtain the
explanation and prediction.

* Self-consistency (Wang et al., 2022b, 2023d): it
improves over the standard EP pipeline by aggre-
gating over multiple explanations from LLMs to
enhance the result.

e FLamE (Zhou et al., 2023) is a recent LLM
few-shot learning method that generates mul-
tiple label-conditioned explanations and deter-
mines the final prediction based on the label that
achieves the highest logit after reviewing all ex-
planations for the given instance’.

* Order-Ensemble (Lu et al., 2022) is an
ensemble-based method, which generates multi-
ple outputs via shuffling the order of the few-shot
demonstrations, and use the majority voting for
ensembling.

* PromptBoost (Hou et al., 2023) is also an
ensemble-based method, which leverages Ad-
aBoost algorithm to assign different weights for
predictions from different prompts.
°In the original FLamE paper, the RoBERTa is used for

final classification. For a fair comparison, we adjusted FLamE
to use the in-context LLM as the classifier.

C Prompt Formats

In this section, we list the prompts used in our
experiments.

C.1 Prompt Format For In-context Learning

In this step, we list the prompt for generating the
explanations and predictions. Many of the prompt
formats are adapted from (Bach et al., 2022). Note
that the blue text is instance-dependent, while the
red text is the model’s expected output.

C.1.1 E-SNLI

Listing 1: Prompt Format for E-SNLI dataset, standard
in-context learning.

In this task, given a premise and
a hypothesis, your job is to
determine whether the hypothesis
can be inferred from the premise.

# demonstrations (no more than

48)

Based on the premise: [premise],
can we infer the hypothesis:
Lhypothesis] from the premise?

Choose among Yes, Maybe, and No.
Answer : [Answer]

# test examples

Based on the premise: [premise],

can we infer the hypothesis:
[hypothesis] from the premise?
Choose among Yes, Maybe, and No.
Answer : [Answer]

Listing 2: Prompt Format for E-SNLI dataset, using
predict-then-explain pipeline.

In this task, given a premise and
a hypothesis, your job is to
determine whether the hypothesis
can be inferred from the premise.

# demonstrations (no more than

48)

Based on the premise: [premise],
can we infer the hypothesis:
[hypothesis] from the premise?

Choose among Yes, Maybe, and No.
Answer : [Answer]
Explanation: [Explanation]
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# test examples

Based on the premise: [premise],

can we infer the hypothesis:
[hypothesis] from the premise?

Choose among Yes, Maybe, and No.
Answer: [Answer]
Explanation: [Explanation]

# test examples

Based on the premise: [premise],
can we infer the hypothesis:
[premise] from the premise?

Choose among Yes, Maybe, and No.

Answer : [Answer]

Listing 3: Prompt Format for E-SNLI dataset, using
explain-then-predict pipeline.

Listing 5: Prompt Format for ANLI dataset, using
predict-then-explain pipeline.

In this task, given a premise and
a hypothesis, your job is to
determine whether the hypothesis
can be inferred from the premise.

# demonstrations (no more than
48)

Based on the premise: [premise],

can we infer the hypothesis:
Lhypothesis] from the premise?

Choose among Yes, Maybe, and No.
Answer : [Answer]

Explanation: [Explanation]

# test examples

Based on the premise: [premise],

can we infer the hypothesis:
[hypothesis] from the premise?

In this task, given a premise and
a hypothesis, your job is to
determine whether the hypothesis
can be inferred from the premise.

# demonstrations (no more than

48)

[premise], Based on the previous
passage, is it true that
[hypothesis]? Choose among Yes,
Maybe, and No.

Answer : [Answer]

Explanation: [Explanation]

# test examples

[premise], Based on the previous
passage, is it true that
[hypothesis]? Choose among Yes,
Maybe, and No.

Answer : [Answer]

Explanation: [Explanation]

Choose among Yes, Maybe, and No.
Explanation: [Explanation]

Answer: [Answer]

C.1.2 ANLI

Listing 4: Prompt Format for ANLI dataset, standard
in-context learning.

Listing 6: Prompt Format for ANLI dataset, using
explain-then-predict pipeline.

In this task, given a premise and
a hypothesis, your job is to
determine whether the hypothesis
can be inferred from the premise.

# demonstrations (no more than
48)

Based on the premise: [premise],
can we infer the hypothesis:
[premise] from the premise?

Choose among Yes, Maybe, and No.

Answer : [Answer]

In this task, given a premise and
a hypothesis, your job is to
determine whether the hypothesis
can be inferred from the premise.

# demonstrations (no more than

48)

[premise], Based on the previous
passage, is it true that
[hypothesis]? Choose among Yes,
Maybe, and No.

Answer : [Answer]

Explanation: [Explanation]

# test examples

[premise], Based on the previous
passage, is it true that
[hypothesis]? Choose among Yes,
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Maybe, and No.
Explanation: [Explanation]
Answer: [Answer]

C.1.3 ECQA & OpenbookQA

As both ECQA & OpenbookQA are multi-choice
classification tasks, we use the same prompt for-
mats for them.

Listing 7: Prompt format for multi-choice QA, standard
in-context learning.

# test examples

Given the following options,
do you think is the correct
answer to the question below?

what

Question: [question]
Choices: [choices]
Answer: [Answer]

Explanation: [Explanation]

In this task, your job is to
first read the question as well
as the candidate choices. Then,
choose one answer from the
choices for the question.

# demonstrations (no more than
48)

Given the following options,
do you think is the correct
answer to the question below?

what

Question: [question]
Choices: [choices]
Answer: [Answer]

# test examples

Given the following options,
do you think is the correct
answer to the question below?

what

Question: [question]
Choices: [choices]
Answer : [Answer]

Listing 9: Prompt format for multi-choice QA, using
explain-then-predict pipeline.

Listing 8: Prompt format for multi-choice QA, using
predict-then-explain pipeline.

In this task, your job is to
first read the question as well
as the candidate choices. Then,
choose one answer from the
choices for the question.

# demonstrations (no more than
48)

Given the following options,
do you think is the correct
answer to the question below?

Question: [question]
Choices: [choices]
Answer : [Answer]
Explanation: [Explanation]

what

In this task, your job is to
first read the question as well
as the candidate choices. Then,
choose one answer from the
choices for the question.

# demonstrations (no more than
48)

Given the following options,
do you think is the correct
answer to the question below?

Question: [question]
Choices: [choices]
Explanation: [Explanation]
Answer : [Answer]

what

# test examples

Given the following options,
do you think is the correct
answer to the question below?

Question: [question]

Choices: [choices]

Explanation: [Explanation]

Answer: [Answer]

what

C.1.4 StrategyQA

Listing 10: Prompt format for StrategyQA, standard
in-context learning.

In this task, given a question,
you need to answer True or False.
# demonstrations (no more than
48)

For the question:

you think it
-

'[question]', do
is the True or False
Answer: [Answer]

# test examples
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For the question: '[question]', do
you think it is the True or False
5

Answer: [Answer]

Listing 11: Prompt format for StrategyQA, using
predict-then-explain pipeline.

In this task, given a question,
you need to answer True or False.
# demonstrations (no more than
48)

For the question: '[question]', do
you think it is the True or False
?

Answer : [Answer]

Explanation: [Explanation]

# test examples

For the question: '[question]', do
you think it is the True or False
5

Answer : [Answer]

Explanation: [Explanation]

Listing 12: Prompt format for StrategyQA, using
explain-then-predict pipeline.

In this task, given a question,
you need to answer True or False.

# demonstrations (no more than
48)

For the question: '[question]', do
you think it is the True or False
?

Explanation: [Explanation]

Answer : [Answer]

# test examples

For the question: '[question]', do
you think it is the True or False
5

Explanation:
Answer: [Answer]

[Explanation]

C.2 Prompt Format For Explanation-aware
Ensemble

Listing 13: Prompt format for LLM Scoring. Note that
we use the probability of the ‘Answer’ token as the
proxy for the quality score.

1

In this task, you will be given
the input for the [task_namel]
task, your job is to determine
whether the explanation provided
is a good one for the given input

Please consider the explanation
's coherence, informativeness,
and consistency with the
prediction to evaluate its
quality.

# demonstrations (no more than

48)
For '[task
input]', can you determine whether

the explanation is a good one
for the given [task]?
Explanation: [Explanation]
Answer: [Answer] [Yes or No]

# test examples

For '[task
input]', can you determine whether
the explanation is a good one

for the given [task]?
Explanation: [Explanation]
Answer : [Answer]

C.3 Additional Prompt Format Used in
Prompt Sensitivity Study

In section 4.8, we have studied the effect of dif-
ferent prompt templates. Here we list them in the
following lists.

Listing 14: Prompt Format 2 for E-SNLI dataset

In this task, given a premise and
a hypothesis, your job is to
determine whether the hypothesis
can be inferred from the premise.

# demonstrations (no more than

48)

Based on [premise], does it follow
that [hypothesis]? Choose among

Yes, Maybe, and No.

Answer : [Answer]

Explanation: [Explanation]

# test examples

Based on [premise], does it follow
that [hypothesis]? Choose among

Yes, Maybe, and No.
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Explanation:
Answer: [Answer]

[Explanation]

Listing 15: Prompt Format 3 for E-SNLI dataset

In this task, given a premise and
a hypothesis, your job is to
determine whether the hypothesis
can be inferred from the premise.

# demonstrations (no more than
48)

Based on the premise [premise],

can we conclude the hypothesis
that [hypothesis]? Choose among Yes
, Maybe, and No.

Answer : [Answer]

Explanation: [Explanation]

# test examples

Based on the premise [premise],

can we conclude the hypothesis
that [hypothesis]? Choose among Yes
, Maybe, and No.

Explanation: [Explanation]

Answer: [Answer]

EXAM: Answer by True of False.
Question: '[question]'
Explanation: [Explanation]
Answer : [Answer]

# test examples

EXAM: Answer by True of False.
Question: '[question]'
Explanation: [Explanation]
Answer: [Answer]

D Human Evaluation

Here we provide the guidelines for human evalua-
tion

Listing 18: Human Evaluation Guideline for E-SNLI
dataset.

Listing 16: Prompt format 2 for StrategyQA, using
explain-then-predict pipeline.

In this task, given a question,
you need to answer True or False.

# demonstrations (no more than
48)

Answer the question:
by True or False.
Explanation: [Explanation]
Answer: [Answer]

'[question] ',

# test examples
Answer the question:
by True or False.
Explanation: [Explanation]
Answer: [Answer]

'[question]',

For this explanation grading task
, given the task input (e.g. the
premise and hypothesis for the
NLI task and the question for the
QA task), ground-truth answer,
as well as a pair of explanations
from the LLM, you job is to
determine which explantion will
reach the ground-truth answer for
that input.
For the E-SNLI dataset, your task
is to predict if the hypothesis
is entailed/neutral/contradicts
the premise.

Listing 19: Human Evaluation Guideline for Strate-
gyQA dataset.

Listing 17: Prompt format 3 for StrategyQA, using
explain-then-predict pipeline.

In this task, given a question,
you need to answer True or False.

# demonstrations (no more than
48)

For this explanation grading task
, given the task input (e.g. the
premise and hypothesis for the
NLI task and the question for the
QA task), ground-truth answer,
as well as a pair of explanations
from the LLM, you job is to
determine which explantion will
reach the ground-truth answer for
that input.
For the strategyQA dataset, your
task is to answer the question
with 'True' or 'False'.
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Table 8: Comparison of Self-Consistency and EASE under similar computational costs.

LLM (=) PalL.M2-S PaLM2-L

Dataset (—) E-SNLI ECQA StrategyQA | E-SNLI ECQA StrategyQA
Self-consistency 68.68 74.48 76.94 87.34 82.67 87.85
Self-consistency (Same Computation) | 71.94  75.36 78.00 88.71 83.80 88.88
EASE 75.01  75.59 78.23 8942  83.65 89.90

E Additional Results on Complexity
Comparison

In our method, the additional steps — "soft prob-
abilistic aggregation" and "Explanation Scoring"
— involve generating only a single token and
its probability score. This process is less time-
consuming than the standard explain-then-predict
step, which generates both explanations and pre-
dictions. Roughly speaking, suppose we generate
N explanations for one example during the infer-
ence time, requiring t = N x D time for decoding
(where D is the time for generating both explana-
tions and predictions). Then for each explanation,
suppose the decoding time for generating expla-
nation scores and soft probability are d; and do,
respectively. The additional time for explanation
scoring and soft probability aggregation per expla-
nation is ' = N *(d; +ds). As has been discussed
above, both d; and dy are much smaller than D as
it only needs to decode for one token. As a result,
the additional time ¢’ << 2t.

To evaluate the comparative effectiveness of the
self-consistency approach when augmented with
additional samples to match the overall computa-
tional costs of our method. For this purpose, we
utilize the PaLM2-S and PaLM2-L models as the
backbone Large Language Models. The results are
summarized in Table 8, providing a direct compari-
son between the standard self-consistency method
and our EASE approach under similar computa-
tional constraints. Overall, we observe that EASE
consistently outperforms the self-consistency ap-
proach in most scenarios, even when the latter is
allocated additional computational resources.

F Additional Studies

F.1 Case study on explanation-aware
ensemble

Tables 9 and 10 give an example of Explanation-
aware Ensemble process on E-SNLI dataset. Take
the Table 9 as an example, where the original pre-
diction using majority voting is “Entailment”. By
leveraging LLM to score each explanation, the

LLM is able to reduce the effect of unreliable expla-
nations: for example, explanation 3 copies a part
of the premise without providing additional reason-
ing, thus it receives a low score (0.369). On the
contrary, explanation 4 and explanation 6 correctly
identifies the key reasoning step, thus receiving
higher scores (0.677 and 0.612). After weighted
majority voting, the total score of “Neutral” class
is higher than the “Entailment” class, thus we are
able to obtain the prediction “Neutral”, which is
the ground-truth answer.

F.2 Case study on soft probability aggregation

Tables 11 and 12 provide examples of Soft Proba-
bility Aggregation applied to the ESNLI and Strat-
egyQA Datasets, respectively. For some examples
(e.g. Explanation 4 in Table 11 and Explanation 1
in 12), a mismatch between predicted labels and
their respective highest probability scores is ob-
served, indicating the potential for inconsistency in
LLM predictions. By aggregating the probability
score in a soft manner, we are able to rectify the
final predictions, justifying the effectiveness of soft
probability aggregation.
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Table 9: Case study I for explanation-aware ensemble on E-SNLI Dataset.

Premise: A man is working on a computer while two people sit and talk in front.
Hypothesis: The two people sat and chatted for a bit while the IT guy removed the virus.
Ground-truth Label: Neutral, Majority Voting Prediction: Entail.

Explanation 1: The two people cannot be sitting and talking in front while the IT guy removes the virus.
Prediction 1: Contradict

Score 1: 0.468

Explanation 2: There is no proof that there is an IT Person removed the virus.
Prediction 2: Neutral

Score 2: 0.562

Explanation 3: The two people were sitting and talking.
Prediction 3: Entail

Score 3: 0.369

Explanation 4: There is no evidence that the man is an IT guy, or that he is removing a virus.
Prediction 4: Neutral

Score 4: 0.677

Explanation 5: The two people could be talking and the IT guy could be removing the virus.
Prediction 5: Entail

Score 5: 0.488

Explanation 6: But it’s not given that the IT guy is removing a virus.
Prediction 6: Neutral

Score 6: 0.612

Explanation 7: The man on the computer is the IT guy.
Prediction 7: Entail

Score 7: 0.468

Explanation 8: The people sitting and talking are not related to the man working on the computer.
Prediction 8: Contradict

Score 8: 0.447

Explanation 9: The man sitting at the computer is an IT person and is removing the virus.
Prediction 9: Entail

Score 9: 0.455

Table 10: Case study II for explanation-aware ensemble on StrategyQA Dataset.

Question: Is Hermione Granger eligible for the Order of the British Empire?
Ground-truth Label: False, Majority Voting Prediction: True.

Explanation 1: The Order of the British Empire is a British order of chivalry rewarding contributions to the
arts and sciences, work with charitable and welfare organizations and public service outside the civil service.
Hermione Granger is a character in the Harry Potter series by J K.

Prediction: True

Score 1: 0.426

Explanation 2: The Order of the British Empire is a British Order of Chivalry. Hermione Granger is a fictional
character living in a world of magic and wizards. The Order of the British Empire has never been awarded to a
fictional character.
Prediction: False

Score 2: 0.655

Explanation 3: The Order of the British Empire was founded in 1917 by King George V. Hermione Granger is
a British citizen To be eligible for the Order of the British Empire, a person must have contributed to the arts,
science, medicine, charity, industry or government.

Prediction: True

Score 3: 0.489

Explanation 4: Hermione Granger is a fictional character from the Harry Potter books, not a British citizen.
Prediction: False

Score 4: 0.678

Explanation 5: Hermione Granger is a fictional character in the Harry Potter books. The Order of the British
Empire is a British award that can only be received by a British subject .
Prediction: False

Score 5: 0.650

Explanation 6: Hermione Granger is a fictional character in the Harry Potter series Order of the British Empire
honors people who have made a major contribution to the arts, science, medicine, charity, or industry. Hermione
Granger has contributed to the arts by authoring a book on the history of magic.

Prediction: True

Score 6: 0.406

Explanation 7: Hermione Granger is a British citizen The Order of the British Empire is an order of chivalry.
Prediction: True

Score 7: 0.452

Explanation 8: The Order of the British Empire is a knighthood. Hermione Granger is a Hogwarts student.
Prediction: True

Score 8: 0.406

Explanation 9: Hermione Granger is a Hogwarts student and does not have British citizenship.
Prediction: False

Score 9: 0.602
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Table 11: Case study for Soft Probability Aggregation on ESNLI Dataset. The mismatched prediction is highlighted
in red. The number in the list represents the probability score for Entail, Neutral and Contradict, respectively.

Premise: A Seattle firefighter standing in front of his truck.
Hypothesis: The man is standing in front of the ambulance.
Ground-truth Label: Contradict, Majority Voting Prediction: Neutral.

Explanation 1: The man is standing in front of the truck and the man is standing in front of the ambulance.

Prediction: Neutral Score 1: [0.369, 0.419, 0.175]
Explanation 2: An ambulance is different than a truck.

Prediction: Contradict Score 2: [0.001, 0.042, 0.953]
Explanation 3: The Seattle firefighter is standing in front of his truck. The truck is not necessarily an ambulance.

Prediction: Neutral Score 3: [0.002, 0.880, 0.105]
Explanation 4: Ambulances are not fire trucks.

Prediction: Neutral Score 4: [0.001, 0.372, 0.614]
Explanation 5: The guy is standing in front of a truck.

Prediction: Entail Score 5: [0.391, 0.194, 0.378]
Explanation 6: The man is standing in front of the truck.

Prediction: Entail Score 6: [0.418, 0.198, 0.364]
Explanation 7: Firetrucks and ambulances are different.

Prediction: Contradict Score 7: [0.000, 0.004, 0.995]
Explanation 8: A Seattle firefighter is a man.

Prediction: Entail Score 8: [0.928, 0.036, 0.027]
Explanation 9: The firefighter isn’t necessarily an ambulance driver.

Prediction: Neutral Score 9: [0.001, 0.552, 0.456]

Table 12: Case study for Soft Probability Aggregation on StrategyQA Dataset. The mismatched prediction is
highlighted in red. The number in the list represents the probability score for False and True, respectively.

Question: Could every citizen of Samoa send a letter to a unique JPMorgan Chase employee?
Ground-truth Label: True, Majority Voting Prediction: False.
Explanation 1: Samoa has a population of about 195,000 people JPMorgan Chase has 260,000 employees.

Prediction: True Score 1: [0.614, 0.373]
Explanation 2: There are 158,000 citizens of Samoa JPMorgan Chase has 247,000 employees.
Prediction: False Score 2: [0.317, 0.673]

Explanation 3: There are roughly 275,000 people in Samoa JPMorgan Chase has roughly 250,000 employees
Not all of JPMorgan Chase’s employees are eligible to receive mail at work.

Prediction: False Score 3: [0.556, 0.443]
Explanation 4: Samoa has a population of 197 751. JPMorgan Chase has about 243 000 employees worldwide.
There are 50 states in the United States

Prediction: False Score 4: [0.494, 0.494]
Explanation 5: There are around 194,000 people living in Samoa JPMorgan Chase employs around 250,000

people.

Prediction: False Score 5: [0.526, 0.464]
Explanation 6: There are 195,308 citizens of Samoa JPMorgan Chase has 257,000 employees.

Prediction: True Score 6: [0.180, 0.809]
Explanation 7: Samoa has a population of around 196,000 people JPMorgan Chase has more than 250,000

employees.

Prediction: False Score 7: [0.614, 0.372]
Explanation 8: The population of Samoa is about 188 000, J P Morgan Chase employs about 250 000 people

Prediction: True Score 8: [0.374, 0.616]

Explanation 9: There are 190,000 citizens of Samoa in 2017 JPMorgan Chase has over 250,000 employees.
There are between 10-12 000 letters in an average day.
Prediction: False Score 9: [0.465, 0.527]
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