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Abstract

In code search, the Generation-Augmented Re-
trieval (GAR) framework, which generates ex-
emplar code snippets to augment queries, has
emerged as a promising strategy to address the
principal challenge of modality misalignment
between code snippets and natural language
queries, particularly with the demonstrated
code generation capabilities of Large Language
Models (LLMs). Nevertheless, our preliminary
investigations indicate that the improvements
conferred by such an LLM-augmented frame-
work are somewhat constrained. This limita-
tion could potentially be ascribed to the fact
that the generated codes, albeit functionally ac-
curate, frequently display a pronounced stylis-
tic deviation from the ground truth code in the
codebase. In this paper, we extend the founda-
tional GAR framework and propose a simple
yet effective method that additionally Rewrites
the Code (ReCo) within the codebase for style
normalization. Experimental results demon-
strate that ReCo significantly boosts retrieval
accuracy across sparse (up to 35.7%), zero-shot
dense (up to 27.6%), and fine-tuned dense (up
to 23.6%) retrieval settings in diverse search
scenarios. To further elucidate the advantages
of ReCo and stimulate research in code style
normalization, we introduce Code Style Simi-
larity, the first metric tailored to quantify stylis-
tic similarities in code. Notably, our empiri-
cal findings reveal the inadequacy of existing
metrics in capturing stylistic nuances. The
source code and data are available at https:
//github.com/Alex-HaochenlLi/ReCo.

1 Introduction

Code search, aimed at retrieving the most seman-
tically relevant code snippets from a codebase ac-
cording to a specified natural language query, is
a common activity that plays an important role in
software development (Nie et al., 2016; Shuai et al.,
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Passage Retrieval

uery:
How was the COVID-19 pandemic impacted mental health?
True Passage:

...two studies investigating COVID-19 patients ... significantly
higher level of depressive...

Generated Reference:
...depression and anxiety had increased by 20% since the start
of the pandemic...

Code Search
QUE! y:

Write a function to get the frequency of the elements in a list.
True Code:
import collections
def freq count(listl):
freq_count = collections.Counter(listl)
return freq_count

Generated Exemplar Code:
def count frequency(my_list):
frequency = {}
for element in my_list:
if element not in frequency:
frequency[element] = ©
frequency[element] += 1
return frequency

Figure 1: Comparison of GAR between passage re-
trieval and code search. In passage retrieval, the truth
(yellow) is included in the generated content. In code
search, despite the generated exemplar code satisfies the
description of the query, it exhibits noticeable dissimi-
larity to the true code.

2020). Retrieving and reusing analogous code frag-
ments from large-scale codebases like GitHub can
enhance productivity significantly.

Despite both being sequences of words, match-
ing code queries and natural language queries is
challenging as they share few grammatical rules,
causing them to fall into two distinct modalities.
This grammatical distinction results in limited word
overlap, significantly hampering the application of
sparse retrieval systems in code search. On the
other hand, in dense retrieval systems, the align-
ment of query and code representations during the
training phase assists in alleviating the challenge

1371

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1371-1389

August 11-16, 2024 ©2024 Association for Computational Linguistics


https://github.com/Alex-HaochenLi/ReCo
https://github.com/Alex-HaochenLi/ReCo

Query:

Write a function to get the frequency of the
elements in a list.

LLM

True Code:
import collections

def freq_count(listl):
freg_count = \
collections.Counter(listl)

return freq_count

Retrieve

Exemplar Code:
def count_frequency(my_list):

Augmented

frequency = {}
for element in my_list:
if element not in frequency:
frequency[element] = ©
frequency[element] += 1
return frequency

Generate

Exemplar Code

@ Query

Augmented Rewritten Code:
Code def frequency(my_list):

freq = {}
for i in my_list:
if i in freq:
freq[i] += 1
else:
freq[i] = 1
return freq

Rewrite

Rewritten Code

Figure 2: An illustration of the ReCo method. It initially prompts LLMs to generate exemplar codes based on the
search query. Subsequently, the original query and these exemplar codes are synthesized to formulate an augmented
query. Analogously, the rewritten codes, produced by the LLMs, are merged with the original code, thereby creating
a candidate for retrieval. The example delineated in this figure aligns with the one depicted in Fig. 1.

(Lietal., 2023). As aresult, these systems are capa-
ble of encapsulating potential semantic correlations
between terminologies employed in programming
languages and those in natural languages. How-
ever, this potential association becomes challeng-
ing to capture if two terminologies rarely manifest
together within a query-code pair.

To bridge this gap, one possible solution is
to transform the data from one modality to the
other. This could involve either generating ex-
emplar codes based on the query or summarizing
the functionality of codes in the codebase. Given
that natural language queries in code search are
often short and ambiguous (Mao et al., 2023; Rah-
man and Roy, 2021), our research concentrates
on the former solution, referred as Generation-
Augmented Retrieval (GAR) (Mao et al., 2020).
GAR has demonstrated competitive performance
in question answering and passage retrieval. In
these NLP tasks, a language model is adopted to
generate references based on the query to augment
it. Similarly, we could use a language model to gen-
erate exemplar code snippets that realize the func-
tionalities described in the query. Then the query
and exemplar codes are combined to be fed into the
retrieval system. With many LLMs demonstrating
great intelligence in precisely writing codes (Tou-
vron et al., 2023a,b; OpenAl, 2023b; Zan et al.,
2022), performing GAR with LLMs becomes a
promising approach for code search.

However, from our preliminary studies, the im-
provement in performance brought by GAR using
LLMs is limited, especially with the high computa-
tional cost of LLMs. We argue that answer format
influences the performance of GAR on question

answering and code search. In question answering,
the correct answer to the question is often unique
and can be expressed in limited forms. The gener-
ated contents from LLMs, if correct, are usually in
the exact same form as the answer. As highlighted
in Fig. 1, the matching word “depressive” appears
in the reference. On the other hand, code snippets
with the same functionality can have diverse for-
mulations, which lowers the chance of matching
the code in the codebase, and thus leads to minor
improvement of GAR in code search. As shown in
Fig. 1, the true code uses Python built-in function
Counter to count the number of elements in a list,
while the exemplar code snippet does it manually.

To address the mismatch of the generated and
ground truth code snippets, we build upon GAR
and propose a simple yet effective framework that
additionally Rewrites and the Code (ReCo) in the
codebase. As shown in Fig. 2, after rewriting, the
style of codes in the codebase are normalized by
LLMs to align with the exemplar code, thereby
facilitating the retrieval. We evaluate ReCo on
several code search models across various search
scenarios, including coding challenge competence,
online programming community, and general pro-
gramming problems in Python and Java. Experi-
mental results show that ReCo could significantly
boost the performance of sparse retrieval systems
(up to 35.7%) and dense retrieval systems in both
zero-shot (up to 27.6%) and fine-tuning (up to
23.6%) settings.

Furthermore, we propose a novel evaluation met-
ric, dubbed Code Style Similarity, to quantitatively
measure the disparity in code style. Our metric vali-
dates ReCo’s capability in aligning the style of code
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within the codebase with that of code generated by
LLMs. Conventional metrics like BLEU (Papineni
et al., 2002) and CodeBLEU (Ren et al., 2020) are
deemed less appropriate as they calculate similar-
ity based on exact-matched tokens of the given
two code snippets. In contrast, Code Style Similar-
ity evaluates style from three distinct perspectives:
variable naming, API invocation, and code struc-
ture, based on edit distance (Ristad and Yianilos,
1998). Our experiments show that Code Style Sim-
ilarity exhibits superior explanatory power than
existing metrics in measuring the style deviation
of code from the dataset and that generated from
LLM.

2 Related Works

Code Search Models The development of code
search models could be split into three stages. Tra-
ditional methods, also denoted as sparse retrieval,
employ information retrieval techniques to match
words between queries and codes (Hill et al., 2011;
Yang and Huang, 2017; Satter and Sakib, 2016).
As we mentioned before, since programming lan-
guages and natural languages share few grammat-
ical rules, these methods often suffer from vocab-
ulary mismatch problems (McMillan et al., 2011).
Then, neural models became popular (Gu et al.,
2021; Cambronero et al., 2019; Gu et al., 2018;
Husain et al., 2019). They all employ a framework
where queries and codes are encoded by neural en-
coders separately into a joint representation space.

Recently, transformer-based pre-trained models
significantly outperformed previous methods, since
they can be trained on large-scale unlabelled cor-
pus with self-supervised pre-training tasks. Many
novel pre-training tasks are proposed to let mod-
els have a better general understanding of codes
(Guo et al., 2021; Li et al., 2022b,c; Shi et al.,
2022). For instance, CodeBERT (Feng et al., 2020)
utilizes masked language modeling and replaced
token detection. CodeT5 (Wang et al., 2021) fo-
cuses on generative tasks through bimodal dual gen-
eration. UniXcoder (Guo et al., 2022) integrates
the aforementioned generative and understanding
pre-training tasks. CodeT5+ (Wang et al., 2023b)
employs the same architecture as CodeT5 and pre-
trains it with span denoising, causal language mod-
eling, contrastive learning, and text-code matching
from both unimodal code data and bimodal code-
text data.

Large Language Models As the model pa-
rameters and size of training corpora of those
transformer-based pre-trained models scale up to
billions, they appear to demonstrate remarkable in-
telligence in understanding and generating codes.
As a milestone, Codex (Chen et al., 2021) with 12
billion parameters indicates the beginning of the
Code LLM era. Meanwhile, there are a number of
powerful Code LLMs proposed (Zan et al., 2022),
though most of them are not publicly accessible.
Recently, ignited by OpenAI’s ChatGPT (OpenAl,
2023a), a bunch of excellent open-sourced mod-
els also contribute to the thriving of Code LLMs
(Roziere et al., 2023; Nijkamp et al., 2022; Luo
et al., 2023). Among them, Code LLaMA (Roziere
et al., 2023) has attracted significant attention be-
cause it is a collection of efficient Code LLMs
ranging from 7B to 34B parameters. At the same
time, some LLMs that are not specifically trained
for code exhibit surprising abilities in code intel-
ligence as well, such as GPT3.5 (OpenAl, 2023a)
and LLaMA (Touvron et al., 2023a,b). This can be
attributed to the inclusion of code snippets in the
unlabeled training corpus.

LLMs for Retrieval While LLMs are designed
for token generation, their direct application to re-
trieval tasks such as code search is not suitable. In-
deed, there have been attempts to amalgamate the
search query and all the candidates together as in-
put, subsequently requesting the LLMs to rank the
candidates within the input (Qin et al., 2023). How-
ever, the constraint on input sequence length im-
pedes its applicability to large-scale retrieval tasks.

One indirect way is to ask LLMs to generate
some references and expand the search query with
them. This framework, denoted as Generation-
Augmented Retrieval, has been proven effective
in both question answering and passage retrieval
(Mao et al., 2020; Gao et al., 2022; Wang et al.,
2023a). Mao et al. (2020) is the first work to pro-
pose GAR in question answering. HyDE (Gao
et al., 2022) evaluates GAR in passage retrieval
under zero-shot setting. query2doc (Wang et al.,
2023a) extends GAR to fine-tuning. Our research
findings suggest that the Generation-Augmented
Retrieval (GAR) method does not substantially en-
hance the efficiency of code search, primarily due
to the significant stylistic difference between exem-
plar code and true code.
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Code Generation Evaluation Metrics A suit-
able automatic evaluation metric is vital to the
growth of code generation. It is used to measure
the lexical similarity between the generated hypo-
thetical code and the true reference code. Initially,
metrics such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004), originally designed for ma-
chine translation, were utilized in the realm of code
generation. However, subsequent scholarly dis-
course posits that these metrics overlook the syntac-
tic and semantic nuances inherent to code. Hence,
to consider those features, CodeBLEU (Ren et al.,
2020) adds terms that calculate Abstract Syntax
Tree similarity and data-flow similarity. Crystal-
BLEU (Eghbali and Pradel, 2022) sets weights for
tokens according to their frequency. They find that
high-frequency tokens are often meaningless hence
assigning lower weights. These metrics are widely
adopted in code generation evaluation, yet they are
not suitable for measuring the style difference be-
tween two codes due to shared syntactic verbosity.

3 Methodology

3.1 Preliminaries

Code search aims to retrieve code snippets that are
semantically most pertinent to a specified query.
Given a search query g and a code snippet c in the
fixed codebase, an encoder G is used to map the
query and the code to a shared representation space.
We calculate the similarity between query and code
by dot product, which could be formulated as:

sim(q,c) = (G(q), G(c)) = <Vq,Vc>, (1

where v, and v, are representation vectors of ¢ and
¢, respectively. Finally, codes in the codebase are
ranked according to the similarity score. Note that
in a code search system, code representations v,
can be calculated and stored in advance.

3.2 ReCo

Building on GAR, ReCo not only generates exem-
plar codes based on the query but also rewrites the
codes in the codebase.

Generating and Rewriting Code First, we elu-
cidate the process of generating exemplar codes.
Given a query ¢, we employ few-shot prompting
(a.k.a in-context learning) (Brown et al., 2020) to
generate an exemplar code snippet. The prompt
consists of an instruction “Please generate a

Java/Python code snippet according to the given
description.” and K randomly sampled query-code
pairs from the training set. In this paper, we set
K = 4. The instruction and in-context samples are
denoted as GEN, enabling us to derive the exem-
plary code ¢, as follows:

cq = LLM(q, GEN). ()

In the procedure of rewriting the code c, we
initially summarize the code into a natural lan-
guage description, represented as ggyym,. This can
be achieved by changing the instruction in GEN to
“What is the main purpose of the Java/Python code
snippet?”. We denote it as SUM. Subsequently,
similar to generating exemplar codes, we consider
@sum as the query ¢'. The entire process leading to
the acquisition of the rewritten code, denoted as c,,
is as follows:

Jsum = LLM(c, SUM), 3)
Ce = LLM(qsum, GEN). @

Detailed examples are provided in Appendix A
to further elucidate the prompt.

Sparse Retrieval Query ¢ and code c are ap-
pended with exemplar code ¢, and rewritten code
cc in a sparse retrieval system, respectively. Since
we could generate multiple code snippets as aug-
mentation, to retain the original semantics of ¢ and
¢, we simply repeat them for N times which is
equal to the number of augmented codes. Take the
query as an example, the augmented search query
g™ could be expressed as:

+

q" = concat({q} X N, {cq1,¢q2,-..,cqn}). (5)

Similarly, we could get the augmented code c*.
In application, ¢ is fed to the sparse retrieval sys-
tem as the search query and c¢* are candidates in
the codebase.

Dense Retrieval InfoNCE loss (Van den Oord
et al., 2018) is widely adopted in fine-tuning be-
cause it can pull together the representations be-
tween the query and its corresponding code while
pushing away the representation of negative codes
(Li et al., 2023, 2022a). During training, we take

'The process of rewriting is implemented via a summarize-
then-generate approach, as we have observed that merely in-
structing LLMs to rewrite the original codes does not result in
significant alterations.
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other in-batch codes as negative samples for a query
(Huang et al., 2021). With augmented query ¢*
and augmented code ¢, InfoNCE loss £ can be
described as:

&)

exp(vh v
L =—F |log p( a

exp(v;rz. vE)+ Z;;z exp(v(;. vjj) ’
(6)
where n is the batch size, v, and v are aug-
mented representations of ¢+ and ¢, respectively.
For augmented representations, we calculate the
expectation of all the generated content according
to the chain rule. Take the exemplar code as an

example, we have:

Elve,] = E[G(c,)] = EIG(LLM(g, GEN))]. (7)

Here we assume the distribution of v, is uni-
modal since the preferred style of LLM is con-
sistent when generating codes. Then, we employ
average pooling between the representation of v
and v, to get the augmented representation vj.
The total process can be described as:

=g [Nt Y de).
cq~LLM(q,GEN)

®)

where IV is the number of exemplar codes. Sim-

ilarly, we can get the augmented representation

v of each code. During evaluation, v, and v, in

Eq.(1) are replaced by v and v .

Theoretical Insights We offer theoretical in-
sights to differentiate GAR and our proposed ReCo.
Each code in the codebase is an implementation
of a specific query, which we denote as ¢ ~ P(q).
Here P denotes a real-world distribution between
queries and codes. LLM also defines a probability
distribution over queries. Thus, exemplar codes
can be considered to follow ¢, ~ LLM(g). We
could find that ¢ and ¢, are sampled from two dif-
ferent distributions given q. This accounts for the
occasional divergence between the true code and
the exemplar code for the same query, as illustrated
in Fig. 1.

The rewritten code follows ¢, ~ LLM(qsum)-
If the query ¢ and code c are identical in seman-
tics and @sqym correctly reflect the functionality
of code ¢, we could approximate the distribution
of LLM(¢sum) as LLM(q). Once the exemplar

code and the rewritten code are both sampled from
LLM(q), the expectation of LLM-generated con-
tent becomes more similar, which is reflected in the
style of generated codes.

4 Code Style Similarity

To quantitatively measure the style difference
among codes, we propose a novel evaluation met-
ric, dubbed Code Style Similarity (CSSim). To the
best of our knowledge, this is the first metric ad-
dressing the similarity between two codes from a
stylistic perspective. Indeed, there are several eval-
uation metrics widely adopted in code generation
or translation to measure semantic similarity like
BLEU and CodeBLEU. Yet they are not suitable
for measuring the style similarity.

The basic idea of these metrics is to compare
the predicted code snippet against the ground truth
by calculating the intersection of contiguous se-
quences of code tokens (i.e., n-grams). It is rec-
ognized that due to the syntactic verbosity and
coding conventions inherent to programming lan-
guages, two code snippets frequently share numer-
ous n-grams that are incapable of reflecting their
stylistic nuances. Besides, the score is calculated
based on the exact match of n-grams, which can be
deemed excessively rigid. For example, compared
with token_count, word_count is expected to be
more stylistically similar to words_count. How-
ever, both of them will be assigned a score of 0
under 2-gram match.

CSSim addresses style from three perspectives:
variable naming, API invocation, and code struc-
ture. Variable naming is generally believed as a
reflection of the programmer’s preference. For
API invocation, similar APIs often exist in vari-
ous libraries or packages, the choice of APIs also
indicates the preference. As for code structure,
sometimes the swap of two lines does not influ-
ence the operation hence the order should also be
considered. Besides, CSSim is calculated based
on a softer measurement, edit distance (Ristad and
Yianilos, 1998).

API invocation and variable name follow the
same process. Here we take the variable name as an
example. We first extract all the variables from the
code snippet to get V = {v;} Y. For each variable
in the set, we find the most similar variable from
the other code and take the edit distance between
the two as the similarity of this variable. Then, we
take the weighted average value of all the variables
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as the style distance in variable naming. The whole
process can be described as:

1
Dis = )\7, in ED iy Vg ), 9
isy, Z vm1n2 (vi,v5), (9)

2 ey

where V1 and V5 are extracted variables from two
codes and ED denotes Edit Distance. \; is normal-
ized inverse document frequency (IDF) because we
intend to decrease the impact of common words.
To ensure symmetry in this metric, we update code
distance in variable naming as:

Disy1 + Disyo
— 5

For the measurement of code structure, we sim-
ply apply Tree Edit Distance (TED) (Paaflen, 2018)
to the Abstract Syntax Tree transformed from the
code. Similar to edit distance, TED quantifies the
least amount of basic operations (Insertion, Dele-
tion, and Substitution) required to transform one
tree into the other. To calculate CSSim, we first
calculate the Code Style Distance CSDis between
two codes ¢ and ¢y, which is:

Disyay = (10)

Disyyr + Disapr + TED
3

CSDis(cp, ¢2) = ,
(1)
where Disvy,, Disapr, TED € [0,1] hence
CSDis € [0, 1]. We define CSSim = 1 — CSDis.

5 Experimental Setups

Datasets We evaluate ReCo across various
search scenarios and programming languages: on-
line forum StackOverflow CoNaLa (Yin et al.,
2018), coding challenge competence APPS
(Hendrycks et al., 2021), general programming
problems MBPP (Austin et al., 2021) and MBJP
(Athiwaratkun et al., 2022). The first three datasets
are written in Python while the last one is written
in Java. The statistics of the datasets are shown in
Appendix B.1. We take the widely adopted Mean
Reciprocal Rank (MRR) as the evaluation metric
(Li et al., 2023). MRR is the average of reciprocal
ranks of the true code snippets for the given query.

Baselines We apply ReCo on several models:
BM25, an enhanced version of TF-IDF, is a sta-
tistical measure that matches certain keywords in
codes with the given query. CodeBERT is a bi-
modal model pre-trained on Masked Language

CoNaLa MBPP APPS MBJP

Unsupervised
BM25 52.6 12.6 11.6 11.3

+ GAR 71.7 35.1 17.6 335

+ ReCo 75.8+4A1 70.8+35A7 22-6+5A0 65-3+31.8
UniXcoder 77.2 69.3 8.3 73.2

+ GAR 839 85.0 13.2 80.0

+ ReCo 85.1+1_2 92-4+7.4 28.8+15A6 87.6+7‘6
Contriever ~ 55.7 55.3 9.6 37.0

+ GAR  75.0 71.3 14.0 62.3

+ ReCo 77.9+2_9 87.4+16<1 41-6+27A6 76.6+14A3
CodeT5+ 73.7 59.4 7.6 67.7

+ GAR 80.3 717 10.2 79.2

+ ReCo 80.8+0,5 89.4+11<7 29.9+19.7 84-0+4A8

Supervised
CodeBERT 83.6 79.6 25.1 79.6

+ GAR  88.6 87.7 29.3 84.1

+ ReCo 85.0_36 923;46 S51.2;219 89.1 .50
UniXcoder 84.8 81.2 243 81.6

+ GAR 859 89.0 345 85.6

+ ReCo 87.1+1'2 94.2+5'2 58.1+23'6 90.5+4'9

Table 1: Comparative analysis of various models w.r.t
MRR(%) when utilizing GAR or ReCo.

Modeling and Replaced Token Detection. UniX-
coder unifies both generating and understanding
pre-training tasks to further enhance code represen-
tation learning by leveraging cross-modal contents.
Contriever (Izacard et al., 2021) is an unsuper-
vised dense information retrieval model that lever-
ages contrastive learning for its training. CodeT5+
is pre-trained on both unimodal code data and bi-
modal code-text data with a diverse set of pre-
training tasks including span denoising, causal
language modeling, contrastive learning, and text-
code matching.

Compared Metrics We compare Code Style
Similarity with several metrics used for measuring
semantic similarity. BLEU measures how many
words are shared between the generated and the
reference sentence based on the modified n-gram
precision. ROUGE-L computes the longest com-
mon subsequence of words. CodeBLEU is tai-
lored for code snippets by setting higher weights
for programming language keywords and consider-
ing data-flow and AST match as well.

Implementation Details When prompting
LLMs, we randomly sample 4 in-context examples
from the training sets and set a temperature of 1.
And when we prompt LLMs multiple times for the
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Figure 3: Regression plots between AMRR (= MRRRreco — MRRGagr) and AMetricScore(= Metric(cy, ¢.) —
Metric(cq, ¢)) under different evaluation metrics. The data points are from BM25 results on four datasets with four

LLMs.

same input, each time we resample the in-context
example. The maximum length of output for
code summarization and generation is 128 and
256, respectively. For sparse retrieval, we use the
default implementation from Pyserini (Lin et al.,
2021). For dense retrieval, during training, we
adopt the default hyperparameters described in
the original paper. They are trained for 10 epochs
with a batch size of 32. Experiments are conducted
on a Nvidia Tesla A100 GPU. Please refer to
Appendix B.3 for more details.

6 Results

Overall Results The results are shown in Table 1.
It is worth noting that our experiments encompass
the use of various LLMs and multiple instances of
both exemplar codes and rewritten codes for con-
ducting ablation studies. Here we report the best
performance when equipped with ReCo. Compre-
hensive results can be found in Appendix D. We
can observe that ReCo significantly outperforms
GAR on both supervised and unsupervised mod-
els across diverse search scenarios. With ReCo,
the non-neural model BM25 can have competi-
tive performance compared to neural models un-
der zero-shot setting. And ReCo could boost the
performance of zero-shot neural models similar
to supervised models. We also evaluate ReCo on
Contriever, a passage retrieval model that is not
specifically trained for code-related tasks. We ar-
gue that ReCo can also benefit general-purpose
retrieval models. Note that compared with GAR,
ReCo does not bring any additional computation in
real-time search because the rewritten code could
be pre-processed and stored in the codebase.

Comparison among Evaluation Metrics To
demonstrate the superiority of Code Style Similar-
ity, we prove that existing metrics are not effective

w/ the best exemplar code

Dataset Random

CSSim CodeBLEU ROUGE-L BLEU
CoNalLa 41.3 43.6 39.6 41.5 42.3
MBPP 24.0 26.8 25.1 23.7 24.0
APPS 14.1 15.2 14.8 14.2 14.2
MBJP 26.6 29.9 29.1 27.2 28.8

Table 2: Performance comparison of the best exemplar
code selection versus random selection for GAR across
four datasets, using the Code Llama-7B model.

in measuring the style similarity between two codes
by contradiction. If existing metrics are effective,
they should satisfy two necessary conditions: 1)
the variation of metric scores AMetricScore be-
tween Metric(cy, ¢.) and Metric(cy, ¢) is in the
same direction with code search performance gap
between ReCo and GAR (AMRR = MRRReco —
MRRgar). This is because once the rewritten
code is closer to the exemplar code in style, the
code search performance should improve accord-
ingly. 2) If we only choose the best one with
the highest Metric(c,, ¢) among multiple exem-
plar codes, the performance should be significantly
better than randomly selecting one exemplar code.

For the first condition, we analyze the results
from BM25 on the four datasets with different
LLMs including GPT3.5, Code Llama-7B, 13B,
and 34B. Here we do not take the results from
dense retrieval systems because neural models can
capture the potential relationship among similar
tokens. The numerical scores under different evalu-
ation metrics are shown in Appendix D. Regression
plots are shown in Fig. 3. According to our first
condition, AMetricScore and AMRR should be
consistent, which means that points are expected
to be scattered on Quadrant I and III. We can see
that most of the points in CodeBLEU, ROUGE-L,
and BLEU are scattered on Quadrant I'V. In other
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CoNaLa MBPP APPS MBIJP

UniXcoder 77.2 69.3 8.3 73.2
UniXcoder + ReCo 85.1 86.2 273 834

w/o original query&code 83.1 84.4 26.8 78.1
UniXcoder-ft 84.8 81.2 24.3 81.6
UniXcoder-ft + ReCo 87.1 88.0 48.8 854

w/o original query&code 85.5 84.8 390 803

Table 3: Comparative performance analysis of using
exclusively LLM-generated codes versus a combination
of LLM-generated codes, original queries, and codes.
“UniXcoder-ft” represents UniXcoder after fine-tuning.

words, when the rewritten codes are considered
to be more similar to the exemplar code by these
metrics, the performance of ReCo, on the contrary,
drops compared with GAR. Points from Code Style
Similarity mostly fall on Quadrant I and III and the
regression line nearly passes through the origin.

For the second condition, we analyze the results
from BM25 equipped with GAR. For each query,
we calculate the metric score between its exemplar
codes and the true code in the codebase and then
select the one with the highest metric score. The
performance on four datasets after selecting the
best exemplar code generated by Code Llama-7B
is shown in Table 2. We can observe that compared
with random selection, the improvement brought by
CodeBLEU, ROUGE-L, and BLEU is not signifi-
cant generally. On the contrary, Code Style Similar-
ity outperforms other settings. To better understand
the preference of different evaluation metrics, we
also conduct case studies in Appendix C.

In conclusion, our findings indicate that exist-
ing metrics for measuring code style similarity fall
short when subjected to two contradictory condi-
tions. Conversely, Code Style Similarity (CSSim)
demonstrably satisfies these criteria, highlighting
its superior effectiveness in quantifying stylistic
similarities in code. Furthermore, we observe
a clear positive correlation between code style
similarity as measured by CSSim and improve-
ment in MRR for code search, thereby validating
ReCo’s motivation that style normalization is ad-
vantageous.

Using only LLM-generated codes To further
demonstrate that the exemplar code and rewritten
code are similar in style, we conduct experiments to
only use these LLM-generated codes in the retrieval
system. In other words, we use exemplar code to
retrieve rewritten codes. The results of UniXcoder
under fine-tuning and zero-shot settings on four

CoNaLa MBPP APPS MBIJP

BM25 52.6 12.6 11.6 11.3
w/ Code Llama-7B 14.2 14.0 7.8 154
w/ Code Llama-13B 29.8 26.3 8.1 28.4
w/ Code Llama-34B 204 14.7 4.7 15.8
w/ GPT3.5 75.8 70.8 22.6 65.3

Table 4: Performance of ReCo on BM25 when using dif-
ferent LLMs to generate exemplar and rewritten codes.

datasets are shown in Table 3. We can see from
the results that only using LLM-generated codes
can reach competitive performance compared with
additionally using original queries and codes, and
even outperform the setting only using original
queries and codes, which indicates that the consis-
tent style in exemplar code and rewritten code have
made retrieval easier.

Impact of Different LLMs We explore the ef-
fect of using different LLMs in ReCo. The results
on BM25 are shown in Table 4. The full results
including other retrieval models are in Appendix D.
GPT3.5’s number of parameters is not released pub-
licly but is estimated at around 175 billion. Gener-
ally, we observe that larger LLMs yield greater im-
provements. However, a decrement in performance
is noted with the application of Code Llama-34B.
This decrement is attributed to the model’s propen-
sity to generate code not only for the prompted fifth
example but also for the initial four in-context ex-
amples. Consequently, the generated code is often
truncated due to output length limitations.

Impact of Number of Generated Codes We
also explore the effect of the numbers of gener-
ated exemplar codes and rewritten codes in ReCo.
The outcomes of BM25 on CoNalLa and MBPP are
depicted in Fig. 4, while a comprehensive compila-
tion of results, inclusive of other retrieval models
and datasets, can be found in Appendix D. Our ob-
servations indicate a marginal enhancement when
LLMs are tasked with generating more codes. We
discern that the multiple codes generated exhibit
similarities, with minor variations, attributable to
the self-consistent style of each LLM. To address
this, our future work will investigate controlled
prompts that steer LLMs towards generating code
with controlled stylistic variations, thereby enhanc-
ing the diversity of code generation. Fig. 4 also
illustrates that the improvement tends to diminish
as the quantity of generated codes increases. In
practical applications, it is essential to weigh the
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Figure 4: Performance of BM25 + ReCo with different
numbers of generated codes.

trade-off between performance enhancement and
the incremental costs associated with generation.

7 Broader Impact

As we stated, the key motivation behind ReCo is
to normalize the code style between exemplar code
and original code. Indeed, there exist code nor-
malization methods, but they only focus on super-
ficial formatting such as the usage of indentation
and naming convention (e.g., from camelCase to
snake_case). In this paper, we discuss code style
normalization from a deeper perspective, imple-
mentation logic, and preference for variable nam-
ing or API invocation. We believe that this task
has great potential as it could not only benefit code
search but also many other code-related tasks like
code review and code translation.

In this paper, we adopt LLMs to achieve the
goal of style normalization by first summarizing
the code snippet and then generating code based
on the summary. This is because we find directly
asking LLMs to rewrite the code results in very
similar outputs. In the process of summarize-then-
generate, models are expected to have great code
intelligence hence there is no loss of information,
as described in the theoretical insights of ReCo. Yet
we are aware of the huge cost brought by LLMs. To
decrease the cost, one promising solution is to train
models specifically used for code style normaliza-
tion. These models are considered to have much
fewer parameters since much general knowledge in
LLMs is not needed. To push forward the research
of code style normalization, we propose a suitable
evaluation metric, dubbed Code Style Similarity.
In our future work, we plan to train such models to
improve the efficiency of ReCo.

8 Conclusion

In this paper, we propose ReCo, an LLM-
augmented code search framework built on GAR,
that additionally rewrites the code in the code base
to normalize the code style between exemplar code
and code in the codebase. We evaluate ReCo on
several code search models across various search
scenarios with different programming languages.
Experimental results demonstrate the effectiveness
of ReCo by significantly boosting the performance
of models. To encourage further research works
on code style normalization and explain the effect
of ReCo, we propose an evaluation metric Code
Style Similarity. In our future work, based on this
metric, we may develop new models that can more
efficiently normalize the code style.
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Limitations

There are mainly two limitations of this work. First,
although ReCo does not require any additional com-
putation in real-time search compared with GAR,
both GAR and ReCo rely on the real-time gen-
eration of exemplar codes. Therefore, ReCo and
GAR may have limitations when applied to tasks
that demand low latency. The latency of generat-
ing exemplar codes depends on the time cost of
LLM inference. As stated in research works focus-
ing on GAR, over the years the cost of hardware
has decreased a lot and there are many works pro-
posed to improve the inference efficiency of LLMs
(Gao et al., 2022; Wang et al., 2023a). We believe
the efficiency problem of GAR and ReCo will be
addressed in the future. The second limitation is
that we do not evaluate ReCo on some extremely
large-scale codebases like CodeSearchNet (Husain
et al., 2019). This is due to the time burden of gen-
erating exemplar codes and rewriting codes. For
example, according to our estimation, there are
1,005,474 queries in total in CodeSearchNet hence
generating one exemplar code for them costs more
than two months. To address this limitation, we
evaluate ReCo on several search scenarios covering
coding challenge competence, online programming
community, and general programming problems to
show the effectiveness of ReCo.
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A Complete Prompt

Table 11 and Table 12 are two complete prompt
examples for generating exemplar codes and sum-
marizing original codes, respectively. Note that in
the second step of rewriting original codes, we also
adopt the prompt structure of generating exemplar
codes but replace the description at last with the
summary.

B Experiment Settings

B.1 Dataset Statistics

The dataset statistics are shown in Table 5. The
numbers here are pairs of queries and their true
code snippet. Code search models are asked to dis-
tinguish the correct code from the codes from other
pairs. Note that in the original APPS dataset, there
are 4,284 and 3,515 pairs in the training and test
set, respectively. Due to the huge cost of prompt-
ing LLMs, we randomly sample a subset for our
evaluation.

B.2 MRR Calculation

MRR is the average of reciprocal ranks of the true
code snippets for the given query, which could be
calculated as:

Dataset CoNalLa MBPP APPS MBIJP
Train 2,379 373 1,000 374
Test 500 500 1,000 500

Table 5: Statistics of the dataset used in our experiment.

True Code

def find_ first duplicate(nums):
num_set = set()
no_duplicate = -1
for i in range(len(nums)):
if nums[i] in num_set:
return nums[i]
else:
num_set.add(nums[i])
return no_duplicate

Exemplar Code 1

def find duplicate(my_list):
for i in range(len(my_list)):
if my_list[i] in my_list[i+1:]:
return my_list[i]
return None

Exemplar Code 2

def find duplicate(my_list):
seen = set()
for num in my_list:
if num in seen:
return num
seen.add(num)
return None

Figure 5: Case study between Code Style Similarity and
the existing metrics. The first exemplar code is preferred
by existing metrics while the second one is preferred
by Code Style Similarity. The second exemplar code
is more similar to the true code from the perspective of
style.

1 el
MRR= — Y ———
‘Q‘ ; Rankz

where Rank; is the rank of the true code for the
i-th given query Q).

(12)

B.3 Implementation Details

For neural models, they all use the same set of
hyperparameters. The maximum input length
of codes and queries are both set to be 256.
Models are trained by Adam and learning
rate is set to 5e-6. We adopt mean pooling
to get the representation of the whole input
sentence to make sure the pooling mechanism
is consistent with that during pre-training. The
representations are normalized by the L2 norm.
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Datasets

Metric LLM

CoNaLa MBPP APPS MBJP
M(cq,cc) M(cg,e)  AM  M(cq,ce) M(cq,c)  AM Mlcg,ce) Mcge)  AM M(cg,ce) Mcgc)  AM
CSSim CodeLlama-7B 0.492 0.543  -0.051 0.504 0.518 -0.014 0.493 0.498  -0.005 0.529 0.52 0.009
CodeLlama-13B 0.534 0.593  -0.059 0.547 0.565 -0.018 0.481 0.5 -0.019 0.52 0.528  -0.008
CodeLlama-34B 0.522 0.564  -0.042 0.527 0.533 -0.006 0.526 0.495 0.031 0.506 0.52 -0.014
GPT3.5 0.553 0.548 0.005 0.553 0.522 0.031 0.508 0.534  -0.026 0.502 0.496 0.006
CodeBLEU CodeLlama-7B 0.16 0.143 0.017 0.264 0.187 0.077 0.153 0.128 0.025 0.324 0.312 0.012
CodeLlama-13B 0.116 0.189  -0.073 0.348 0.249 0.099 0.171 0.13 0.041 0.311 0375  -0.064
CodeLlama-34B 0.181 0.183  -0.002 0.184 0.208 -0.024 0.151 0.131 0.020 0.266 0.319  -0.053
GPT3.5 0.28 0.228 0.052 0.385 0.249 0.136 0.204 0.163 0.041 0.462 0.318 0.144
ROUGE-L  CodeLlama-7B 0.138 0.002 0.136 0.118 0.001 0.117 0.041 0.003 0.038 0.025 0.001 0.024
CodeLlama-13B 0.193 0.002 0.191 0.13 0.001 0.129 0.046 0.003 0.043 0.038 0.001 0.037
CodeLlama-34B 0.127 0.001 0.126  0.0898 0.001  0.0888 0.03 0.003 0.027 0.027 0 0.027
GPT3.5 0.007 0.005 0.002 0.001 0.001 0 0.003 0.007  -0.004 0 0 0
BLEU CodeLlama-7B 0.017 0.012 0.005 0.081 0.029 0.052 0.017 0.018  -0.001 0.115 0.096 0.019
CodeLlama-13B 0.026 0.055  -0.029 0.143 0.07 0.073 0.019 0.023  -0.004 0.146 0.197  -0.051
CodeLlama-34B 0.026 0.025 0.001 0.054 0.03 0.024 0.021 0.01 0.011 0.109 0.136  -0.027
GPT3.5 0.145 0.099 0.046 0.195 0.065 0.13 0.048 0.036 0.012 0.309 0.171 0.138

Table 6: Full results of MetricScore(cy, ¢.) and MetricScore(cy, ¢) under different metrics. M is short for

MetricScore. AM = M(c¢q, ¢c) — M(cq, €).

UniXcoder is initialized using the publicly
available checkpoint at https://huggingface.
co/microsoft/unixcoder-base, Contriever
is initialized using https://huggingface.co/
facebook/contriever-msmarco, and CodeT5+
is initialized using https://huggingface.
co/Salesforce/codet5p-110m-embedding.
CodeBERT is initialized using https:
//huggingface.co/microsoft/codebert-base
and then pre-trained on the CodeSearchNet
dataset (Husain et al., 2019) for 10 epochs. The
pre-training setting is the same as in fine-tuning.
All the experiments involving model training are
running with 3 random seeds 1234, 12345, and
123456 and they all meet p < 0.01 of significance
tests.

C Case Study

We also conduct a case study to show the superi-
ority of Code Style Similarity. Fig. 5 shows two
exemplar codes generated by Code Llama-7B. The
true code aims to find the first duplicate element
in a given array of integers. Although both the
two exemplar codes satisfy the description, their
implementation style is different. The first exem-
plar code is preferred by CodeBLEU, ROUGE-L,
and BLEU while the second one is preferred by
Code Style Similarity. The true code uses a set
to collect seen elements when traversing the list,
which is also the logic in the second exemplar code.
The first exemplar code implements the function in
a different way by checking whether my_list[i]
appears inmy_list[i+1:]. We think the first code

is preferred by existing metrics because lines 2-4
in the first exemplar code are very similar to lines
4-6 in the true code, which contributes a lot to the
metric score.

D Full Results

In this section, we report the full experimental
results. The results of MetricScore(cy, c.) and
MetricScore(cy, ¢) under different evaluation met-
rics are shown in Table 6. The results of BM25 are
shown in Table 7. The results of fine-tuned UniX-
coder and CodeBERT are shown in Table 8 and
Table 9, respectively. The results of UniXcoder,
Contriever, and CodeT5+ under zero-shot setting
are shown in Table 10.
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Datasets

Model LLM #gen Framework

CoNaLa MBPP APPS MBJP

| GAR 41.3 24.0 14.1 26.6

ReCo 15.0 13.4 7.4 14.1

) GAR 44.0 25.5 14.9 28.4

CodeL.lama-7B ReCo 14.9 14.2 7.6 14.1

3 GAR 44.5 26.3 154 293

ReCo 14.9 14.0 7.5 14.8

4 GAR 44.5 26.4 152 297

ReCo 14.2 14.0 7.8 15.4

| GAR 58.9 40.0 160  41.8

ReCo 28.0 249 7.7 14.1

’ GAR 62.7 42.1 16.5 44

CodeLlama-13B ReCo 29.2 25.2 8.0 28.1

3 GAR 64.0 41.4 16.8  45.1

BM?25 ReCo 29.9 24.6 8.0 28.6

4 GAR 63.9 42.2 170 454

ReCo 29.8 26.3 8.1 28.4

| GAR 49.7 24.6 10.0  29.6

ReCo 18.5 13.0 4.6 14.6

) GAR 53.0 24.6 10.6 30.2

CodeLlama-34B ReCo 19.5 13.1 4.8 14.4

3 GAR 55.5 24.6 10.9 31.5

ReCo 20.0 14.2 4.8 15.3

4 GAR 56.8 25.7 10.9 323

ReCo 20.4 14.7 4.7 15.8

| GAR 65.5 30.2 16.3 30.6

ReCo 71.0 65.1 212 618

’ GAR 69.7 34.5 17.0 322

GPT3.5 ReCo 74.0 68.9 21.9 65.4

3 GAR 71.0 35.3 17.3 33.1

ReCo 74.6 70.2 22.8 65.6

4 GAR 71.7 35.1 17.6 33.5

ReCo 75.8 70.8 22,6 653

Table 7: Full results of BM25. #gen denotes the number of generated and rewritten codes. Bold and underlined
results are the best performance of ReCo and the performance of GAR under the same setting, which are reported in
Table 1.
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Datasets

Model LLM #gen Framework

CoNalLa MBPP APPS MBJP

| GAR 854 74.2 322 771

ReCo 72.5 76.7 513 81.7

CodeLlama-7B > GAR 86.7 74.8 340 79.1

ReCo 78.8 79.3 54.9 83.5

3 GAR 87.0 75.0 34.5 79.3

ReCo 81.7 80.2 58.1 84.1

| GAR 89.2 87.9 36.3 84.9

ReCo 81.0 92.9 414  90.0

UniXcoder (CodeLlama-13B ) GAR 90.2 89.0 36.9 85.6

ReCo 85.1 93.2 46.1 89.6

3 GAR 90.8 89.0 38.3 85.6

ReCo 85.5 94.2 46.8 90.5

1 GAR 87.0 81.3 29.9 81.2

ReCo 82.3 65.2 284 669

CodeLlama-34B 2 GAR 87.6 83.8 312 83.6

ReCo 85.6 75.7 345 728

3 GAR 88.4 83.6 32.9 84.6

ReCo 87.0 78.8 382  76.6

GAR 85.9 79.9 44.5 80.5

GPT3.5 ! ReCo 87.1 88.0 48.8 854

Table 8: Full results of UniXcoder after fine-tuning. #gen denotes the number of generated and rewritten codes.
Bold and underlined results are the best performance of ReCo and the performance of GAR under the same setting,
which are reported in Table 1. Note that due to the cost of OpenAI’s API for using GPT3.5, we only generate one
exemplar code and rewrite the code once for the training set. And due to the GPU memory limit, we can set a
maximum number of #gen as 3.
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Datasets

Model LLM #igen Framework

CoNaLa MBPP APPS MBJP

| GAR 81.7 72.6 268 754

ReCo 65.5 75.6 455  79.7

CodeLlama-7B 2 GAR 84.8 73.8 284 759

ReCo 73.7 77.4 48.8 81.2

3 GAR 85.4 74.0 293  76.1

ReCo 77.1 78.6 512 812

| GAR 87.2 87.2 29.5 82.9

ReCo 77.1 90.5 38.2 88.3

CodeBERT (Codel.lama-13B ’ GAR 89.2 87.6 30.8 83.6

ReCo 81.4 91.3 40.9 88.8

3 GAR 89.8 87.7 31.6 84.1

ReCo 83.3 92.3 416  89.1

1 GAR 86.1 78.5 233 797

ReCo 78.3 59.6 222 610

CodeLlama-34B ) GAR 87.4 81.1 252 81.8

ReCo 82.4 68.9 27.0 684

3 GAR 88.6 80.9 26.4 81.5

ReCo 85.0 71.3 308 717

GAR 83.3 81.6 38.2 80.9

GPT3.5 ! ReCo 82.4 83.5 43.1 81.4

Table 9: Full results of CodeBERT after fine-tuning. #gen denotes the number of generated and rewritten codes.
Bold and underlined results are the best performance of ReCo and the performance of GAR under the same setting,
which are reported in Table 1. Note that due to the cost of OpenAI’s API for using GPT3.5, we only generate one
exemplar code and rewrite the code once for the training set. And due to the GPU memory limit, we can set a
maximum number of #gen as 3.
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Datasets

Model LLM #gen Framework
CoNaLa MBPP APPS MBIJP
CodellamaTB 4 ot I 000 ms 714
UniXeoder CodeLlama-13B 4 g;t:lz S;; % ;22 %
Codellama34B 4 it G0 0y as
GPTIS 4 Rl w1 s s e
CodellamaTB 4 pf6 00 0 ais 6o
Contriove,  Codellama-13B 4 Eﬁé gg:g % ;2:1 %f;
Codellama3B 4 Ll 00 @0 05 360
GPTIS 4 Rl Ts 93 a1 e
CodellamaTB 4 00 0T D e 750
CodeTs,  Codellama-13B 4 gﬁi ;gg % ;ﬁ? %
Cotellama3dB 4 i 00 O0 Ny 6o
GPTIS 4 R ss e 101 #1e

Table 10: Full results of UniXcoder, Contriever, and CodeT5+ under zero-shot setting. #gen denotes the number of
generated and rewritten codes. Bold and underlined results are the best performance of ReCo and the performance
of GAR under the same setting, which are reported in Table 1.
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Please generate a python code snippet according to the last given description. Only output the code
snippets. Do not explain the code. I will show you four examples first.

Description: Write a python function to find the index of an extra element present in one sorted array.
Code:
def find_Extra(arrl,arr2,n) :
for i in range(0, n) :
if (arr1[i] != arr2[i]) :
return i
return n

Description: Write a function to decode a run-length encoded given list.
Code:
def decode_list(alist):
def aux(g):
if isinstance(g, list):
return [(g[1], range(g[0]))]
else:
return [(g, [0])]
return [x for g in alist for x, R in aux(g) for i in R]
Prompt
Description: Write a python function to accept the strings which contains all vowels.
Code:
def check(string):
if len(set(string).intersection("AEIOUaeiou"))>=5:
return ("accepted’)
else:
return ("not accepted")

Description: Write a function to compute binomial probability for the given number.
Code:
def get_inv_count(arr, n):
inv_count =0
for i in range(n):
for j in range(i + 1, n):
if (arr[i] > arr[j]):
inv_count += 1
return inv_count

Description:Write a function to sort a given matrix in ascending order according to the sum of its rows.
Code:

def sort_matrix_by_row_sum(matrix):
row_sums = []
for row in matrix:
Output row_sum = sum(row)
row_sums.append(row_sum)
sorted_matrix = [x for _, X in sorted(zip(row_sums, matrix))]
return sorted_matrix

Table 11: A prompt example used for generating exemplar codes for the MBPP dataset. A more detailed prompt
may increase the quality of the exemplar code and we leave this as our future work.
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What is the main purpose of the fifth python code snippet? Summarize in one sentence and be
concise. I will show you four examples first.

Code:
def odd_values_string(str):

result =""

for i in range(len(str)):

ifi%2==0:
result = result + str[i]

return result

Purpose: Write a python function to remove the characters which have odd index values of a given string.

Code:
from collections import defaultdict
def max_aggregate(stdata):
temp = defaultdict(int)
for name, marks in stdata:
temp[name] += marks
return max(temp.items(), key=lambda x: x[1])
Purpose: Write a function to calculate the maximum aggregate from the list of tuples.
Prompt Code:
def pos_count(list):
pos_count= 0
for num in list:
if num >=0:
pos_count += 1
return pos_count
Purpose: Write a python function to count positive numbers in a list.

Code:
import math
def volume_tetrahedron(num):
volume = (num ** 3/ (6 * math.sqrt(2)))
return round(volume, 2)
Description: Write a function to calculate volume of a tetrahedron.

Code:

def sort_matrix(M):
result = sorted(M, key=sum)
return result

Purpose:

Output  Write a function to sort a matrix (list of lists) based on the sum of each inner list.

Table 12: A prompt example used for summarizing the original codes for the MBPP dataset. A more detailed
prompt may increase the quality of the rewritten code and we leave this as our future work.
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