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Abstract
Memory Editing (ME) has emerged as an ef-
ficient method to modify erroneous facts or
inject new facts into Large Language Mod-
els (LLMs). Two mainstream ME methods
exist: parameter-modifying ME and parameter-
preserving ME (integrating extra modules while
preserving original parameters). Regrettably,
previous studies on ME evaluation have two crit-
ical limitations: (i) evaluating LLMs with single
edit only, neglecting the need for continuous
editing, and (ii) evaluations focusing solely on
basic factual triples, overlooking broader LLM
capabilities like logical reasoning and reading
understanding. This study addresses these lim-
itations with contributions threefold: (i) We
explore how ME affects a wide range of funda-
mental capabilities of LLMs under sequential
editing. Experimental results reveal an intrigu-
ing phenomenon: Most parameter-modifying
ME consistently degrade performance across
all tasks after a few sequential edits. In contrast,
parameter-preserving ME effectively maintains
LLMs’ fundamental capabilities but struggles
to accurately recall edited knowledge presented
in a different format. (ii) We extend our evalu-
ation to different editing settings, such as lay-
ers to edit, model size, instruction tuning, etc.
Experimental findings indicate several strate-
gies that can potentially mitigate the adverse
effects of ME. (iii) We further explain why
parameter-modifying ME damages LLMs from
three dimensions: parameter changes after edit-
ing, language modeling capability, and the in-
context learning capability. Our in-depth study
advocates more careful use of ME in real-world
scenarios.

1 Introduction
Memory Editing (ME) was introduced as an ef-
fective method to correct erroneous facts or in-
ject new knowledge into Large Language Models
(LLMs). Previous ME methods can be roughly di-
vided into two categories: (1) parameter-modifying
ME methods, for example, MEND (Mitchell et al.,
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Figure 1: A comparison of two main limitations in
previous memory editing evaluations. (a) shows the
conventional method, assessing models after each edit,
focused solely on the modified knowledge triples. (b)
presents our approach, evaluating LLMs after a series of
edits to assess their overall impact on various capabilities
of LLMs, for a deeper insight into the enduring effects
of memory editing.

2022a), ROME (Meng et al., 2022a), and MEMIT
(Meng et al., 2022b), which directly modify a
small number of parameters within the model,
(2) parameter-preserving ME methods, such as
GRACE (Hartvigsen et al., 2022) and MELO (Yu
et al., 2023), which integrate additional modules
into the LLMs architecture without altering the
original model parameters.

Although ME has shown much promise, previ-
ous studies evaluating and analyzing ME methods
have two critical limitations, as depicted in Figure 1.
First, they only consider the performance of LLMs
after every single editing. However, in practice,
LLMs usually need to be edited sequentially, i.e.,
sequential memory editing, which edits the same
model multiple times to incorporate new knowl-
edge continuously. Sequential memory editing is
more important in real-world scenarios because new
knowledge always appears over time. Second, prior
research has predominantly concentrated on assess-
ing ME’s impact on factual knowledge. However, it
is crucial to evaluate ME’s influence on the broader
capabilities of LLMs, such as logical reasoning,
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multilingual proficiency, code generation, and so
on. Unfortunately, previous studies on evaluating
and analyzing ME tend to overlook these broader
aspects, hindering the popularity of ME methods
in practical applications.

To address these limitations, our study com-
prehensively evaluates the general capabilities of
memory-edited LLMs in sequential editing scenar-
ios. This evaluation involves four distinct ME meth-
ods, including three parameter-modifying ME meth-
ods - MEND (Mitchell et al., 2022a), ROME (Meng
et al., 2022a) and MEMIT (Meng et al., 2022b), and
one parameter-preserving ME method - GRACE
(Hartvigsen et al., 2022). We leverage three differ-
ent checkpoints of LLaMA-2 (Touvron et al., 2023),
consisting of LLaMA-2-7B, LLaMA-2-7B-Chat
and LLaMA-2-13B as base LLMs. The evaluation
framework spans six core capabilities of LLMs:
Professional Knowledge, Common Sense Knowl-
edge, Logical Reasoning, Reading Understanding,
Multilingual Proficiency, and Code Generation,
based on eight downstream evaluation benchmarks.

The experimental findings reveal varied im-
pacts of the parameter-modifying versus parameter-
preserving ME methods on LLMs in sequential
editing scenarios. Specifically, all parameter-
modifying ME methods systematically damage
all fundamental capabilities of LLMs after a few
sequential edits. On the contrary, the parameter-
preserving ME method, GRACE (Hartvigsen et al.,
2022), effectively maintains the core capabilities
of the model even after 100 sequential edits, with-
out any noticeable degradation in the performance
across various downstream tasks. However, models
edited using GRACE exhibit limited generalization,
suggesting that the edited model struggles to recall
the newly incorporated knowledge when it is pre-
sented in a different format. For example, if the
edited knowledge is “who is the CEO of Apple?
Tim Cook”, the post-edited model cannot correctly
answer the same question described differently -
“Who leads Apple as CEO?”

We then extend our analysis of parameter-
modifying ME methods - the ROME and MEMIT,
to more editing settings, including increasing the
model size, instruction tuning, editing different
layers, and the batch size of memory editing. In-
terestingly, experimental results indicate that larger
models show more robustness on multilingual and
code-generation tasks, while instruction tuning can
alleviate the decline in knowledge QA tasks. Be-

sides, editing deeper layers and increasing the batch
size are also beneficial to maintain the general ca-
pabilities of LLMs. However, these strategies can
not entirely overcome the observed performance
decline. Our findings underscore the inherent com-
plexity and challenges of applying ME in the se-
quential editing setting.

To explain how parameter-modifying ME meth-
ods damage the general capabilities of LLMs, we
further analyze the post-edited models from three
aspects: the changes in the model parameters, the
language modeling capability, and the in-context
learning capability. Experimental findings reveal
that with each sequential edit, there is an increasing
deviation in the model’s parameters from those of
the original model. This divergence is identified as
the primary cause of noted performance damage.
As a result of these parameter shifts, the language
modeling capability of post-edited LLMs suffers
a noticeable degradation after sequential edits. In-
terestingly, the post-edited LLMs can maintain the
in-context learning capability when editing shal-
low and deep layers instead of middle layers. Our
analysis provides insights into the understanding of
parameter-modifying ME methods and sheds light
on proposing new strategies to alleviate the damage
or new ME methods in the future.

In summary, our study makes several pivotal
contributions to the field:

• We pioneer a comprehensive evaluation of
post-edited LLMs to assess their general capa-
bilities in sequential memory editing scenarios.
Our study uniquely covers both types of ME
methods and examines their impacts across six
core capabilities of LLMs, revealing distinct
drawbacks.

• Our comprehensive experiments suggest that
instruction tuning, editing deeper layers, in-
creasing model size, and increasing the batch
size of memory editing are beneficial to mit-
igate the damage caused by the parameter-
modifying ME methods, but cannot entirely
overcome the adverse effect.

• We analyze the damage of ME to LLMs in three
dimensions: (1) parameter changes, (2) lan-
guage modeling capability, and (3) in-context
learning capability, which partially explains
how memory editing influences LLMs, provid-
ing insights for the development of new ME
methods and mitigation strategies.
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Figure 2: An overview of two categories of approaches
for memory editing. We adopt GRACE (Hartvigsen
et al., 2022) as an example of the parameter-preserving
ME method.

2 Related Work
Methods of Memory Editing From the perspec-
tive of whether the model parameters are modi-
fied, previous ME methods can be divided into
two categories: parameter-modifying ME methods
and parameter-preserving ME methods (Yao et al.,
2023), as illustrated in Figure 2. KN (Dai et al.,
2021), an example of the parameter-modifying ME
method, uses a knowledge attribution approach
to identify and adjust relevant neurons in a Feed
Forward Neural Network (FFN) layer. Similarly,
ROME (Meng et al., 2022a) and MEMIT (Meng
et al., 2022b) apply a Locate-Then-Edit strategy
to inject new facts into LLMs. They first conduct
causal analysis to pinpoint where the knowledge is
stored in models and then edit the located parame-
ters. Besides, meta-learning methods, for example,
KE (De Cao et al., 2021) and MEND (Mitchell
et al., 2022a), train a hypernetwork to estimate
alterations or gradients of models’ parameters for
modification. Regarding the parameter-preserving
ME methods, T-Patcher (Huang et al., 2023) and
CaliNET (Dong et al., 2022) introduce additional
neurons into the FFN layer. GRACE (Hartvigsen
et al., 2022) and MELO (Yu et al., 2023), on the
other hand, implement a discrete codebook to incor-
porate new knowledge. Besides, SERAC (Mitchell
et al., 2022b) proposes a counterfactual model to
handle the edited knowledge. Additionally, Mem-
Prompt (Madaan et al., 2022), and IKE (Zheng et al.,
2023a) explore prompt-based or in-context learning
strategies to update the knowledge of LLMs.

Evaluations and Analysis of Memory Editing
Recently, in addition to exploring new ME meth-
ods, evaluation and analysis of ME methods have

also drawn much attention. Hase et al. (2023) criti-
cally examines the limitations of causal tracing in
determining the specific layers to be edited in LLMs.
Ju and Zhang (2023) contribute a novel benchmark
for assessing knowledge localization methods in
LLMs. The scope of evaluation also extends to
more complex aspects of the robustness of ME.
For instance, Li et al. (2023a) introduces a bench-
mark dataset, underscoring two significant areas
of concern: Knowledge Conflict and Knowledge
Distortion. Similarly, Cohen et al. (2023) presents
a dataset designed to evaluate ME methods in six
challenging scenarios. In a related vein, Li et al.
(2023b) proposes the DepEdit framework, which
assesses ME methods by considering the interdepen-
dencies between a fact and its logical implications.
Regrettably, prior studies predominantly evaluate
post-edited models per edit rather than sequentially,
focusing narrowly on basic factual triples. Despite
Pinter and Elhadad (2023)’s caution, there is a
lack of experimental evidence, creating a gap in
understanding. To address this, our study conducts
comprehensive experiments, assessing the impact
of ME methods on the general capabilities of LLMs
in sequential editing scenarios. We provide de-
tailed analyses explaining the performance decline
across various tasks, offering insights for mitigating
damage or proposing improved ME methods.

3 Notation and Backgrounds
Following Meng et al. (2022a), we denote a fact
as a triple form (𝑠, 𝑟, 𝑜), where 𝑠 represents a sub-
ject (e.g., Tim Cook), 𝑟 represents a relation (e.g.,
the CEO of) and 𝑜 represents an object (e.g., Ap-
ple). Given a model 𝑓 with parameter 𝜃, we have
𝑓𝜃 (𝑠, 𝑟) = 𝑜. Memory editing aims to directly edit
a model’s parameter: 𝑀𝐸 ( 𝑓𝜃 ) = 𝑓𝜃 ′ , to force the
model to remember a new knowledge denoted as
(𝑠, 𝑟, 𝑜′), such that 𝑓𝜃 ′ (𝑠, 𝑟) = 𝑜′ without chang-
ing other irrelevant facts. In the sequential model
editing problem, each edit is made to the model
after the last edit. We denote 𝑓𝜃0 as the original
model, and 𝑓𝜃𝑡−1 as the result model after 𝑡 − 1
times edition. The 𝑡-th editing is 𝑀𝐸 ( 𝑓𝜃𝑡−1) = 𝑓𝜃𝑡 ,
satisfying 𝑓𝜃𝑡 (𝑠𝑡 , 𝑟𝑡 ) = 𝑜𝑡 , where (𝑠𝑡 , 𝑟𝑡 , 𝑜𝑡 ) is the
𝑡-th new knowledge.

4 Experimental Settings
Base LLMs. We perform experiments on one
of the most popular open-source large language
models, LLaMA-2 (Touvron et al., 2023), in-

13757



Method Edit #. MMLU MBPP MATH BBH TyDiQA C3 ComQA AX-b Avg.
LLaMA 0 46.8 18.2 3.4 38.4 26.8 32.1 49.6 45.9 32.7

parameter-modifying ME methods

MEND
1 47.2 19.2 3.26 38.3 26.4 32.2 50.6 49.0 33.3
10 46.5 0.0 0.1 9.2 18.7 25.2 44.8 45.9 23.8
20 35.2 0.0 0.0 4.2 9.8 14.9 11.0 26.5 12.7
100 25.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2

ROME
1 46.9 17.6 3.3 38.4 26.8 32.0 49.6 45.5 32.5
10 46.6 17.8 3.3 38.3 27.0 32.6 50.2 45.2 32.6
20 34.3 18.4 2.6 33.8 24.1 28.9 20.6 51.5 26.8
100 25.5 2.8 1.0 28.8 8.0 23.2 19.0 38.4 18.3

MEMIT
1 46.7 18.4 3.4 38.3 26.8 32.0 50.6 45.9 32.8
10 46.7 16.6 3.2 37.8 26.7 32.9 51.1 45.4 32.6
20 25.3 16.6 1.9 32.4 19.5 15.5 19.7 31.2 20.3
100 22.9 0.0 0.0 0.0 0.0 0.0 0.49 1.8 3.1

parameter-preserving ME methods
GRACE 100 46.8 18.2 3.4 38.4 26.8 32.1 49.6 45.9 32.7

Table 1: Evaluation of four ME methods on eight tasks under the sequential editing setting for the LLaMA-2-7B
model. “Edit #.” refers to the number of individual edits (batch size = 1) applied sequentially to the model. “ComQA”
refers to the CommonsenseQA dataset. The scores for the MMLU, BBH, and TyDiQA datasets are the mean values
derived from all respective subsets.

cluding three different checkpoints: LLaMA-2-7B,
LLaMA-2-7B-Chat, and LLaMA-2-13B.

ME Methods. In this study, we select ROME
(Meng et al., 2022a), MEMIT (Meng et al., 2022b),
and MEND (Mitchell et al., 2022a) as representative
examples of parameter-modifying ME methods,
covering both Locate-Then-Edit methods (such as
ROME and MEMIT) and hypernetwork methods
(e.g., MEND). Regarding parameter-preserving ME
methods, we opt for GRACE (Hartvigsen et al.,
2022), a state-of-the-art method, as our chosen
method. Considering that MELO (Yu et al., 2023)
is built upon the same foundational framework and
employs the same constraint method as GRACE,
we decide to solely focus on GRACE. Furthermore,
in-context learning approaches are excluded from
our study, given that they do not modify parameters
or even add new modules into LLMs.

Datasets. We randomly select 100 samples from
the ZsRE (Levy et al., 2017) as the editing dataset.
To fully evaluate the fundamental capabilities of
LLMs, we consider six core aspects: Professional
Knowledge, Common Sense Knowledge, Logical
Reasoning, Reading Understanding, Multilingual
Proficiency, and Code Generation. Our evalua-
tion framework consists of eight main benchmarks:
MMLU (Hendrycks et al., 2020), BBH (Ghazal
et al., 2013), MATH (Hendrycks et al., 2021),
SuperGLUE-AX-b (Wang et al., 2019), Common-
senseQA (Talmor et al., 2018), C3 (Sun et al.,

2020), TydiQA (Clark et al., 2020), and MBPP
(Austin et al., 2021). Details of the experimental
settings and metrics corresponding to each dataset
are shown in Appendix B.

Evaluation Metrics. To evaluate whether
the post-edited model can successfully answer
questions about the new knowledge, we utilize
reliability, which checks if the edited model
successfully remembers the added knowledge,
and generalization, which checks if the edited
model recalls the new knowledge described
in different formats. Specifically, following
the notation in Section 3, we further denote
(𝑠′𝑒, 𝑟 ′𝑒, 𝑜𝑒) a rephrased format of the knowledge
to be edited (𝑠𝑒, 𝑟𝑒, 𝑜𝑒). Reliability is then for-
mulated as: E⊮

(
argmax𝑜 𝑓 (𝑜 | 𝑠𝑒, 𝑟𝑒) = 𝑜𝑒

)
,

while generalization is formulated as
E⊮

(
argmax𝑜 𝑓

(
𝑜 | 𝑠′𝑒, 𝑟 ′𝑒

)
= 𝑜𝑒

)
. In our ex-

periments, we only use one different format
for each knowledge to calculate generalization.
In sequential editing scenarios, we define the
individual reliability and individual generalization
score to specifically assess the model’s accuracy
on the latest edit made in the most recent iteration.
These scores evaluate how effectively the model
integrates new information after each editing cycle.
Conversely, sequential reliability and sequential
generalization provide broader evaluations of the
model’s performance, considering the knowledge
edits from all previous iterations, not just the recent
ones.
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5 Evaluations of ME on LLMs

In this section, we explore the impact of the two
types of ME methods on LLMs in sequential editing
scenarios, aiming to quantify their damage to the
general capabilities of LLMs.

5.1 Evaluation of Parameter-Modifying ME
Methods

The evaluation results of the post-edited models
on eight datasets are shown in Table 1. Following
the initial edit, all the ME methods maintain per-
formance levels comparable to the baseline model
on eight benchmarks. However, after 10 sequential
edits, notable performance degradation is observed
with the MEND method, particularly in benchmarks
such as MBPP, MATH, TyDiQA, and C3. This
decline contrasts with other methods that show
relatively stable performance. After 20 edits, a
significant performance drop is evident in all three
parameter-modifying ME methods across all eval-
uation datasets. After 100 sequential edits, the
MEMIT and MEND fail in all tasks with nearly
zero scores except the MMLU dataset. Note that, as
described in Appendix B, each data instance in the
MMLU dataset comprises a question and four pos-
sible answers, thus a random choice score should
be around 25% which is similar to the evaluation
scores of all parameter-modifying ME methods
after 100 sequential edits, indicating that the post-
edited LLMs fail to answer all questions in the
MMLU dataset. All these results highlight the
systematic hurt of the parameter-modifying ME
methods on LLMs in sequential editing scenarios.

We report the individual and sequential scores
of reliability and generalization in Table 2. The
decline of the sequential reliability and generaliza-
tion indicates that in sequential editing scenarios,
post-edited models, edited by parameter-modifying
ME methods, forget previously edited knowledge
after several edits. Besides, the individual reliabil-
ity and generalization of the ROME and MEMIT
methods remain similar as the number of edits in-
creases, while the MEND method has a significant
decline, indicating that in sequential editing sce-
narios, the MEND method cannot successfully add
new knowledge into LLMs after several edits.

5.2 Evaluation of Parameter-Preserving ME
Method

The parameter-preserving ME method, GRACE,
introduces an additional codebook to store edited

Sequential Score Individual Score
Method Edit #. Rel. Gen. Rel. Gen.

parameter-modifying ME methods

MEND
1 80 80 80 80
10 79.3 74.8 86.8 87.7
20 39.1 44.1 67.2 68.1
100 0 0 13.6 13.9

ROME
1 80 80 80 80
10 66.7 69.7 93 87.3
20 53.3 52.4 90.3 85.7
100 52.3 49.5 93.3 90.4

MEMIT
1 80 80 80 80
10 87 87 86.4 83.2
20 22.4 25.3 88.3 88.1
100 0.07 0.06 87.7 85.4

parameter-preserving ME methods

GRACE 100 99.8 30.2 99.8 30.2

Table 2: The individual and sequential scores of relia-
bility, denoted as Rel. and generalization, denoted as
Gen. We evaluate the scores on the editing dataset.

knowledge. As described in Appendix A.1, it
applies a threshold to control whether the input
information uses the stored knowledge. In the ex-
periments in Table 1 and Table 2, we set 1 as the
value of the threshold. It is shown that such a
small threshold helps maintain the broad capabil-
ities of LLMs with no noticeable decline in the
performance on all downstream tasks. However, it
also restricts the post-edited model from correctly
answering the question about the edited knowledge
described in a different format. This results in a
low score of generalization, as illustrated in Table
2. We claim that a larger threshold increases the
generalization but fails to preserve the core capa-
bilities of LLMs. We discuss the influences of the
threshold in Appendix C.

6 Impact of Different Editing Settings
This section is dedicated to analyzing the influences
of ME in different editing settings. We focus on
four aspects: model size, instruction tuning, layers
to edit, and the batch size of memory editing.

Model Size. Figure 3 illustrates that all model
checkpoints edited by the ROME method, regard-
less of their size, show performance degradation
that correlates with the number of sequential edits.
Interestingly, an increase in model size appears to
have a protective effect, particularly in multilingual
understanding and code generation domains, as
shown in the TyDiQA and MBPP datasets. How-
ever, this protection does not extend to all areas.
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The post-edited LLMs with different sizes of 7B
and 13B suffer the same decline trend on knowl-
edge question-answering tasks, e.g., the MMLU and
CommonsenseQA datasets. We conjecture the rea-
son as: edited knowledge triples and the concerned
knowledge in the MMLU and CommonsenseQA
datasets are stored closer in the model’s param-
eters, compared to the concerned knowledge of
multi-lingual understanding or code generation. As
models scale up, a more precise separation between
the edited knowledge and concerned knowledge of
code generation and multi-lingual understanding
tasks emerges, potentially allowing for less disrup-
tive memory editing. We leave the proof of these
hypotheses as future work.

Figure 3: Evaluation of three different checkpoints of
LLaMA-2-7B on four datasets. We apply ROME as the
ME method.

Instruction Tuning. Compared with
LLaMA-2-7B, LLaMA-2-7B-Chat is further
instruction tuned to generate more natural
conversational responses. The implementa-
tion of instruction tuning, particularly in the
LLaMA-2-7B-Chat model, provides insightful
observations. As shown in Figure 3, despite the
overall performance degradation trend, instruction
tuning appears to impart a degree of robustness,
as evidenced by the enhanced stability across
MMLU and CommonsenseQA. This finding
suggests that instruction tuning might play a role
in safeguarding model capabilities against the
detrimental effects of memory editing, especially
for knowledge question-answering tasks, although
it does not entirely prevent performance losses.
However, instruction tuning does not help mitigate
the damage to code generation and multi-lingual

understanding tasks. We give a preliminary
explanation of this phenomenon in Appendix
D.2. The impact of instruction tuning on memory
editing suggests an intriguing area for further
investigation, especially regarding how it influences
the model’s capability to integrate and handle
edited information.

Layers to Edit. Inspired by (Hase et al., 2023),
we investigate the effects of editing different layers
in LLMs using the ROME and MEMIT methods.
Figure 4 shows a noticeable trend: editing layers
closer to the output (deeper layers) results in a
marginal decrease in performance while editing
shallower layers leads to significant performance
degradation. Specifically, when editing the 20th
layer of the LLaMA-2-7B model using ROME, the
model’s performance on CommonsenseQA after
100 editing iterations stands at 46.27%1. However,
editing shallower layers, such as the 5th, 10th, and
15th layers, severely impacts the model’s perfor-
mance, leading to significant deterioration after just
20 edits. Similarly, with MEMIT, editing layers
25 through 29 leads to a performance decrease of
just 9.6% from the post-first-edit outcomes. These
results indicate that the choice of layers for editing
in LLMs significantly impacts their general capa-
bilities, with deeper layers showing more resilience
to the editing process than shallower ones. We also
edit different layers using GRACE, whose results
are shown in Appendix D.5, suggesting a similar
conclusion as both ROME and MEMIT.

Figure 4: The performance of the LLaMA-2-7B model
on the CommonsenseQA dataset. LX represents editing
the X-th layer of the model, while LX~Y represents
editing layers between the X-th and the Y-th layer.

Batch Size of ME. In line with Meng et al.
(2022b), we conduct experiments to test the in-
fluence of varying batch sizes of memory editing.
Utilizing MEMIT to edit LLaMA-2-7B, we alter the
batch size from 1 to 1000. As shown in Figure 5,

1An intriguing observation emerges when we edit the 30th
layer using ROME, which is explained in Appendix D.3.
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with the same number of edit triples, increasing the
batch size means reducing the number of editing
times, which turns out to be beneficial in mitigating
the damage of ME to LLMs.

Figure 5: The performance of LLaMA-2-7B on Com-
monsenseQA, utilizing MEMIT as the editing method
with different batch sizes for memory editing. The x-axis
denotes the total number of edit triples. For example,
for the line of batch size 100, the first data point of this
line lies in the total number of edit triples 100, which
only edits the model once. BS denotes batch size.

Temperatures. In this experiment, we explore
how varying temperatures can affect the perfor-
mance of post-edited LLMs. Specifically, we apply
the ROME method to edit the 25th layer of LLaMA-
2-7B and subsequently evaluate its performance
on CommonsenseQA under different temperature
settings: 0, 0.2, 0.5, and 0.8. Our findings as shown
in Table 3, indicate a clear trend: as the inference
temperature increases, the edited model’s perfor-
mance deteriorates more rapidly. At a temperature
of 0, the model maintains a stable performance until
a significant number of edits are made, after which
the performance sharply declines to 0. However, at
higher temperatures (0.2, 0.5, and 0.8), the perfor-
mance starts to decrease more noticeably, even with
fewer edits. This result suggests that higher infer-
ence temperatures, which typically encourage more
diverse and less certain outputs, may exacerbate the
model’s vulnerability to memory editing, leading
to more pronounced performance degradation.

Number of Edits

Temp. 0 1 10 50 100 200 500 1000

0 49.6 49.6 50.2 44.8 44.6 38.8 1.2 0
0.2 49.6 49.6 50.1 45.1 47.8 36.7 0 0
0.5 49.6 49.6 44.6 43.7 46.6 32.4 0 0
0.8 49.6 49.6 42.1 40.2 42.3 31.2 0 0

Table 3: The evaluation results on CommonsenseQA
across different temperatures.

7 Interpreting Disruptions in LLMs
Caused by Memory Editing

To interpret the damage caused by parameter-
modifying ME methods, our investigation is struc-
tured around three pivotal aspects: (i) the model
parameter changes after being sequential edited, (ii)
the impact on the language modeling capability of
LLMs, and (iii) the in-context learning capacity.
This multifaceted exploration is designed to provide
a holistic understanding of how memory editing
affects LLMs.

7.1 Parameter Changes after Memory Editing
In this section, we investigate the changes between
the parameters of LLMs before and after sequen-
tial memory editing. We apply ROME as the ME
method and LLaMA-2-7B as the base model. We
use the Pearson product-moment correlation coef-
ficient (𝑅) to measure the similarities between the
parameters of the original and edited layers within
the model. The correlation coefficient matrix, 𝑅,
ranges from -1 to 1. An 𝑅 value of 1 indicates a
perfect positive linear correlation, implying that the
parameters in both the original and edited layers
are identical. Conversely, a value of -1 indicates
a perfect negative correlation, while a value of 0
suggests no similarity between the parameters."

Figure 6: Similarity score based on the Pearson product-
moment correlation coefficient, calculated between the
parameters of the original and edited model layers.

As illustrated in Figure 6, with fewer than 15
edits, the correlation coefficient (𝑅) between the
edited and original layers remains high (e.g. close
to 1), indicating the significant similarity of the
parameters. However, with an increasing number
of edits, there is a marked decrease in similarity.
Such changes in the parameter lead to a “mismatch”
between the edited and original layers, which un-
dermines the model’s inherent coherence through
layers. Consequently, the model’s general capabili-
ties are significantly damaged.
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Number of Edits

Edit Layer 1 10 14 20 30 50 75 100

5 7.63 7.65 7.61 14.29 14.29 13.89 12.90 14.04
10 7.15 7.32 7.38 28.61 45.23 81.08 / /
15 7.61 7.48 81.24 50.09 21.25 28.48 29 634.93 17 220.91
20 7.61 7.75 7.69 8.12 8.09 9.48 10.67 11.15
25 7.63 7.61 7.73 8.81 15.77 18.35 31.26 9830.27
30 7.65 810.04 2477.53 603.46 49.09 78.39 1018.46 1444.29

Table 4: Perplexity scores computed by pre-trained Vicuna-7b-v1.5. The calculated texts were generated by the
edited LLaMA-2-7B. The result “/” means that the edited model fails to generate any response.

One interesting finding is that modifications in
deeper layers, especially the 20th, 25th, and 30th
layers, maintain relatively higher similarity scores
compared to editing the shallower layers. This
finding aligns with the experiments of editing differ-
ent layers in Section 6, where we find that editing
deeper layers results in a less pronounced decrease
in performance. This distinction highlights a key
architectural characteristic of LLMs: deeper lay-
ers, located closer to the output, exhibit greater
tolerance to modifications, effectively sustaining
the model’s performance. On the other hand, the
shallower layers, forming the foundational process-
ing stages of the LLMs, are more susceptible to
disruptions from edits, leading to more significant
performance degradations. This layered sensitiv-
ity within LLMs underscores the importance of
strategic layer selection in the editing process.

We argue that the diminishing similarity between
the edited and original layers is a primary factor
in the model’s reduced performance, disrupting its
internal coherence and substantially impacting its
performance in various tasks.

7.2 Language Modeling Capability
We hypothesize that the significant changes in the
edited layers damage the language modeling ca-
pability of LLMs. To validate this hypothesis,
we use Vicuna-7b-v1.5 (Zheng et al., 2023b) to
measure the Perplexity (PPL) of output sequences
generated by post-edited models edited by ROME.
CommonsenseQA is used as the evaluation dataset.

In our setting, we concatenate each question with
its corresponding generated answer and calculate
the perplexity solely for the first 20 tokens of the
answer portion. Answers with less than 20 tokens
are excluded to avoid the effect of sequence length
on the PPL. Additionally, we observe that in certain
instances, the post-edited models tend to produce
repetitive token sequences, which, while contribut-

ing to lower perplexity scores, are not meaningful
in the context of answering CommonsenseQA ques-
tions. To address this, we implement a penalty ratio
for repetitive sentences to ensure a more accurate
reflection of the model’s language modeling capa-
bility. The details of the formula to calculate the
adjusted perplexity are shown in Appendix E.1.1.

As illustrated in Table 4, after 100 sequential
edits, editing the 10th and 15th layers results in an
extremely high perplexity, which leads to a zero
score for the performance. On the other hand, edit-
ing the 5th layer results in a relatively low perplexity,
indicating that the model is not completely dam-
aged, although there is a significant decline in the
performance as shown in Table 1. Editing the 20th
layer maintains a lower perplexity, which guarantees
a high performance on CommonsenseQA. These
findings can explain the observations in Figure 4.
However, although editing the 25th and 30th layers
severely damages the language modeling capability
of LLMs, they still maintain very high performance
on CommonsenseQA, as shown in Figure 4. We
explain this by examining the in-context learning
capability in Section 7.3.

7.3 In-Context Learning Capability
We further investigate whether, after memory edit-
ing, LLMs can still maintain the in-context learning
capabilities. Wang et al. (2023) demonstrates that in
in-context learning, the shallow layers of LLMs ag-
gregate information from contexts into label words
(for example, the CommonsenseQA contains five
options as label words - A, B, C, D, or E), while
in deep layers, LLMs extract and use the aggre-
gated information of label words to perform the
final prediction. Inspired by this work, we evaluate
the post-edited LLM on SST2 (Socher et al., 2013)
where the label words are “positive” and “nega-
tive”, based on 1-shot in-context learning. We use
LLaMA-2-7B as the base LLM and edit it using
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ROME and MEMIT on different layers. To save
space, we describe the experimental setup and de-
tailed results in Appendix E.2. The experimental
results indicate that editing shallow (e.g. the 5th
layer) and deep layers (e.g. 20th, 25th, and 30th lay-
ers) does not significantly influence the in-context
learning capability of LLMs.

These findings also explain the phenomenon men-
tioned in Section 7.2 – although editing the 25th
and 30th layers severely damages the language mod-
eling capability of LLMs, they still maintain very
high performance on CommonsenseQA as shown
in Figure 4. The experiments illustrated in Figure
4 on CommonsenseQA are based on an 8-shot in-
context setting, and the first token of the generated
sequence is treated as the final prediction. Given the
maintenance of in-context learning capability, the
post-edited model is still able to correctly predict
the first token of the generated sequence, although
it fails to generate a meaningful sentence because
of the damage to language modeling capability.

8 Conclusions
We conduct a comprehensive evaluation of two
types of memory editing methods for LLMs across
eight diverse benchmarks. Our findings indicate
that parameter-modifying ME methods tend to sys-
tematically degrade the model performance on gen-
eral downstream tasks. In contrast, the parameter-
preserving ME method, GRACE, successfully main-
tains the LLMs’ capabilities but fails to maintain
generalization. We also show that increasing model
size, instruction tuning, editing deeper layers, and
increasing the batch size of memory editing are
beneficial to mitigate the damage of parameter-
modifying ME methods to LLMs. Finally, we
conduct an in-depth analysis of how parameter-
modifying ME methods hurt the general capabilities
of LLMs. Overall, our research provides compre-
hensive insights into the dynamics of how, when,
and why memory editing influences LLMs, offering
valuable guidance for future research on memory
editing.

9 Limitations
Despite the contributions, our study still has limi-
tations. Our experiments on parameter-preserving
ME methods are not exhaustive. As shown in Figure
4, there is an observed performance decrease after
100 edits when editing layers 20/25 with ROME.
Further experiments are needed to understand these

long-term effects. Besides, we do not completely
explain why LLMs can maintain in-context learning
capabilities after being sequentially edited. These
limitations highlight areas for future research, under-
scoring the need for more extensive investigations
to refine our understanding of the intricate balance
between knowledge editing and model integrity in
LLMs.
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A Editing Methods
We conduct our experiments on four ME methods.
The summary of each method is shown in Table
5. We introduce GRACE and ROME in detail in
the following sections. The MEMIT method is not
introduced as it is an improved version of ROME.

A.1 GRACE
GRACE (Hartvigsen et al., 2022) is a method de-
signed for sequential memory editing without al-
tering original model parameters. The GRACE
adapter, which is wrapped into a chosen layer of an
LLM, contains two components: (1) a codebook
that consists of a set of keys, denoted as K, and
values, denoted asV, and (2) deferral radii, denoted
as E, to decide whether the input information flow
uses the codebook. Specifically,K is a set of cached
activation ℎ𝑙−1 predicted by layer 𝑙 − 1. V is a set
of values that are randomly initialized and updated
using the LLMs’ loss for edits. Each key is corre-
sponding to a single value. The hyperparameter
𝜖 ∈ E is a threshold for the similarity between the
new input and previous edited knowledge. GRACE
adapter is activated at layer 𝑙 only if this similarity
is smaller than the radius.

During editing, GRACE adds keys, correspond-
ing values, and 𝜖 entries. In the inference process,
at layer 𝑙, if the similarity of the activation at layer
𝑙 − 1 and keys are smaller than the corresponding
radius 𝜖 , the activation of the next layer becomes
the cached corresponding values. Formally, the
activation of 𝑙th layer is formulated as follows:

ℎ𝑙 =

{
GRACE

(
ℎ𝑙−1) if min𝑖

(
𝑑
(
ℎ𝑙−1,K𝑖

) )
< 𝜖𝑖∗ ,

𝑓 𝑙
(
ℎ𝑙−1) otherwise

(1)
where 𝑖∗ = argmin𝑖

(
𝑑
(
ℎ𝑙−1) ,K𝑖

)
and 𝑓 𝑙

(
ℎ𝑙−1)

denotes the 𝑙-th layer’s activation of the unedited
model. 𝜖𝑖 and K𝑖 are the deferral radius and key
𝑖. GRACE(ℎ𝑙−1) retrieves the corresponding value
associated with the closest key. 𝑑 (.) is a distance
function. Following Hartvigsen et al. (2022), we
use Euclidean distance in our experiments.

As shown in our experiments in Section 5.2, the
hyperparameter 𝜖 is a trade-off between general-
ization and maintaining the broader fundamental
capabilities of LLMs.

A.2 ROME and MEMIT
ROME (Meng et al., 2022a) applies a Locate-then-
Edit strategy, which first utilizes the causal tracing
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Method Additional
Training Edit Layer Default Edit Parameter

Preserving Parameters GRACE NO FFN 30𝑡ℎ𝑚𝑙𝑝𝑝𝑟𝑜 𝑗

Modifying Parameters
MEND YES FFN 𝑀𝑜𝑑𝑒𝑙ℎ𝑦𝑝𝑒𝑟 + 29/30/31𝑡ℎ𝑚𝑙𝑝
ROME NO FFN 5𝑡ℎ 𝑚𝑙𝑝𝑝𝑟𝑜 𝑗
MEMIT NO FFN 4/5/6/7/8𝑡ℎ 𝑚𝑙𝑝𝑝𝑟𝑜 𝑗

Table 5: The details of memory editing methods. The edit parameter is in default for all checkpoints. We also
conduct the ablation study on edited layers where we specify the exact layers we edit. In the table, 𝑚𝑙𝑝𝑝𝑟𝑜 𝑗 means
the down project layer of the MLP layer, while 𝑚𝑙𝑝 means we edit the gate/up/down project layers of the MLP layer.

method to ensure that MLP layers in LLMs play a
role in recalling factual knowledge, and then edits
specific MLP layers to integrate new knowledge
into LLMs. Following Meng et al. (2022a), we
denote the first layer of the 𝑙th MLP layer as𝑊 (𝑙)

𝑓 𝑐 ,
and the second layer as𝑊 (𝑙)

𝑝𝑟𝑜 𝑗 . ROME treats𝑊 (𝑙)
𝑝𝑟𝑜 𝑗

as a linear associative memory, which claims that
any linear operation 𝑊 can work as a key-value
store for a set of Key-Value vectors denoted as 𝐾 =
[𝑘1 |𝑘2 | . . .] and 𝑉 = [𝑣1 |𝑣2 | . . .], respectively. A
new key-value pair (𝑘∗, 𝑣∗) can be injected into𝑊
by solving the following equation:

minimize ∥�̂�𝐾 −𝑉 ∥ such that �̂� 𝑘∗ = 𝑣∗. (2)

This can be solved by setting �̂� = 𝑊 +
Λ
(
𝐶−1𝑘∗

)𝑇 , where 𝑊 is the original matrix,
𝐶 = 𝐾𝐾𝑇 is a pre-cached constant, and Λ =
(𝑣∗ −𝑊𝑘∗) /

(
𝐶−1𝑘∗

)𝑇
𝑘∗. In ROME’s work, 𝐶

works as a constraint method to avoid edited pa-
rameters forgetting other unrelated knowledge. It
is computed using the hidden states 𝑘 of 100,000
random samples from Wikipedia text. We eval-
uate whether the constraint method is beneficial
to mitigating the damage of ROME to the general
capabilities of LLMs in the Appendix D.1.

MEMIT (Meng et al., 2022b), which can edit
multiple knowledge at a time (e.g. batch editing),
is a following work of the ROME (Meng et al.,
2022a).

B Evaluation Datasets
To rigorously assess the impact of ME methods
on LLMs, we employ a diverse set of benchmarks
encompassing essential capabilities, including Pro-
fessional Knowledge, Common Sense Knowledge,
Logical Reasoning, Reading Understanding, and
Multilingual Proficiency. Our evaluation consists
of eight benchmarks, the specifics of which are de-
lineated in Table 6. We leverage the opencompass
codebase (Contributors, 2023), a widely recognized

open-source repository for LLMs evaluation. In
alignment with their established protocols, we adopt
the Perplexity (PPL) mode for the evaluation of the
MMLU dataset. For instance, in the MMLU dataset,
each item comprises a question and four possible
answers. We concatenate the question with each an-
swer option to create four distinct input sequences.
Subsequently, we compute the Perplexity for each
sequence using the edited LLMs under examination.
A lower Perplexity score indicates higher model
confidence in the corresponding sentence, thereby
guiding our selection of the answer with the low-
est score as the definitive prediction. Conversely,
for the remaining benchmarks, we utilize the Gen-
eration (GEN) mode for evaluation. Specifically,
for MATH, BBH, and TyDiQA, we ascertain the
accuracy of the model’s predictions against the
ground truth following a post-processing procedure.
Regarding the programming task MBPP, we em-
ploy Python’s built-in exec() function to verify the
error-free execution of the generated code.

C The Trade-off of the Threshold in
GRACE

As shown in Table 7, the generalization increases
rapidly when we increase the threshold from 1
to 20. However, the capabilities of multi-lingual
understanding and code generation are completely
damaged. One counter-intuitive finding is that the
performance of the MMLU is not hugely influenced.
We leave the explanation of this phenomenon as
future work.

D Additional Impact of Different Editing
Settings

D.1 Efficacy of Constraint Method in ROME
In our examination of ROME’s constraint method-
ologies, which incorporate 100,000 Wikidata en-
tries to limit the influence of edits on unrelated
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Capability Task Datasets #. Items Metrics Language Mode #. Shots

Professional
Knowledge

High School / University
Professional Examination MMLU 15691 Acc. English PPL 5

Logical
Reasoning

Mathematical Reasoning MATH 5000 Acc. English GEN 4
Comprehensive Reasoning BBH 6511 Acc. English GEN 3

Textual Entailment AX-b 1104 Acc. English GEN 0

Common Sense
Knowledge

Knowledge
Question Answering ComQA 1221 Acc. English GEN 8

Reading
Understanding Reading Understanding C3 1825 Acc. Chinese GEN 0

Multilingual
Proficiency

Multi-Language
Question Answering TyDiQA 6322 F1 13 languages GEN 0

Code
Generation Code Generation MBPP 500 Pass. Code GEN 3

Table 6: The details of downstream evaluation benchmarks.

information, we analyze a variant of ROME with-
out constraints (ROME w/o C). Figure 3 illustrates
that applying constraints significantly enhances the
model’s performance in all datasets, validating the
effectiveness of this strategy. In the absence of
constraints, a marked deterioration in performance
is observed, notably in benchmarks like TyDiQA,
CommonsenseQA, and MBPP. This finding indi-
cates that unconstrained parameter modification
can severely impair the model’s efficacy, while the
application of constraints attenuates this negative
impact. However, it’s noteworthy that the effec-
tiveness of these constraints begins to wane after
approximately 20 edits. This observation highlights
an emerging need for innovative constraint method-
ologies in parameter modification, particularly in
the context of sequential memory editing. Devel-
oping more robust constraint mechanisms could
be vital to maintaining model performance and
integrity over a broader range of edits.

D.2 Explanation of Instruction Tuning

To preliminary explain why instruction tuning help
to safeguard model capabilities against the negative
effects of sequential editing, we conduct the fol-
lowing experiments on LLaMA-2-7B and LLaMA-
2-7B-Chat. Both of them are sequentially edited
100 times at the 5th layer, which is consistent with
the experimental setting in Figure 3. As described
in Section 7.1, parameter changes are one of the
possible reasons for the performance decline in
downstream tasks. Therefore, we compare the pa-
rameter changes of the two edited models. We
report the similarity score of edited parameters
and original parameters in Table 8. It is shown

that the parameter changes of the LLaMA-2-7B-
Chat model are always smaller than that of the
LLaMA-2-7B model, which indicates the potential
for less damage on the instruction tuning model
compared to the original model. Besides, as men-
tioned in Section 6, CommonsenseQA and MMLU
are highly different from MBPP (a code generation
task), and TyDiQA (a multi-lingual understanding
task). The instruction-tuned model is mainly tuned
for dialogue in English, which is largely different
from code generation and multi-lingual texts but
relatively similar to the English knowledge ques-
tions, which might be a potential reason for the
robustness of the instruction-tuned model on Com-
monsenseQA and MMLU after being edited.

D.3 Explanation of Editing Deeper Layers

In this section, we explain the phenomenon when
we edit the 30th layer of LLaMA-2-7B using ROME.
As shown in Figure 4, after 14 edits to the 30th layer,
the model’s performance intriguingly plummeted
to zero. However, a notable recovery occurred after
20 edits, with performance gradually increasing
to approximately 45% following 50 edits. This
unusual pattern can be attributed to the methodology
used in our evaluation, where we considered the first
token of the output generated by the edited model
as the final prediction. Initially, after 14 edits, the
model’s language modeling capability appeared to
be completely compromised. Yet, after 20 edits, the
model consistently predicted the first token as one
of the candidates - ’A, B, C, D, or E’ - although it
still failed to generate a coherent sequence beyond
this. This indicates that while the model retained
the capacity to predict the first token accurately,
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Layer 𝜖 C3 ComQA MBPP AX-b MMLU Rel. Gen.

20
1 27.07 44.1 15.8 46.56 46.8 99 30.2
5 27.07 44.1 15.2 45.92 46.8 98 45.0
10 27.01 39.72 15.2 41.58 46.8 99 52.1
20 10.36 12.19 0 14.49 46.2 98 97.3

30
1 32.1 49.6 18.2 45.9 46.8 99 27.2
5 32.1 49.6 18.2 45.9 46.8 99 28.1
10 28.55 46.36 17.4 45.02 46.8 99 41.5
20 24.25 42.06 16.4 43.97 46.8 99 51.8

Table 7: The evaluation results across different thresholds of GRACE. We edit the 20th and 30th layers in this
experiment, while in Table 1 where we only edit the 30th layer. We denote 𝜖 as the threshold. Rel. and Gen. are
reliability and generalization respectively, which is evaluated on the editing dataset.

Number of Edits

Model 1 10 20 50 75 100

7B 0.997 0.946 0.753 0.605 0.501 0.348
7B-Chat 0.999 0.949 0.775 0.625 0.525 0.361

Table 8: The similarity scores between edited models
and original models. 7B refers to LLaMA-2-7B and
7B-Chat refers to LLaMA-2-7B-Chat respectivately.

its broader language modeling capabilities were
significantly diminished. We delve into a more in-
depth analysis and explanation of this phenomenon
in Section 7, exploring this observation’s underlying
mechanisms and implications.

D.4 Long-term Effects of ROME Method

We extend our experiments in Figure 4 by sequen-
tially editing the 20th, 25th, and 30th layers of
LLaMA-2-7B 1000 times, and evaluating the edited
model on CommonsenseQA. As is shown in Table
9, after 500 edits, the model’s performance drasti-
cally declines, with almost complete degradation
observed after 1000 edits. Specifically, for layer
20, the performance drops from 46.2% after 100
edits to 0 after 1000 edits. Similar trends are noted
for the 25th and 30th layers, with performances
plummeting to zero after extensive editing. These
results illustrate the long-term effects of sequen-
tial memory editing on LLMs, revealing a critical
threshold beyond which the model fails to maintain
its capabilities, essentially ’entirely forgetting’ its
knowledge. This degradation not only confirms the
substantial impact of extensive ME but also high-
lights the necessity of developing more sustainable
editing approaches that can preserve the model’s
integrity over time.

Number of Edits

Edit Layer 100 200 500 1000

20 46.2 25.7 12.8 0
25 44.6 38.8 1.15 0
30 42.3 47.0 23.1 0

Table 9: The evaluation results on CommonsenseQA
across different editing layers of ROME.

D.5 Layers to Edit in GRACE Method
We also conduct experiments to edit different lay-
ers of LLaMA-2-7B using the GRACE method.
According to Table 10, with the same threshold,
editing the shallower layer results in more damage
to LLMs. This is because, in the shallow layer,
the activations are not much different for different
inputs because of the less calculation compared to
deeper layers. We claim that editing deeper layers
in GRACE is a better choice than that of shallower
layers.

Layer MMLU ComQA TyDiQA MBPP

10 23.1 8.7 0.1 0
20 46.8 39.7 22.8 16.4
30 46.8 46.4 23.42 17.4

Table 10: The evaluation results across different editing
layers of GRACE. The threshold is set by 10.

D.6 Different Editing Datasets
To ensure the robustness of our findings, we con-
duct further experiments using four different ran-
dom seeds to select distinct sets of 100 samples for
editing. These experiments are designed to assess
the variability in the impact of memory editing
across different subsets of the data. In these ex-
tended experiments, we apply the ROME method to
sequentially edit the 5th layer of the LLaMA-2-7B
model, with the evaluation conducted on Common-
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Figure 7: Evaluation Performance across three dif-
ferent checkpoints of LLaMA-2-7B. We denote the
ROME method without constraint strategy using 100,000
Wikipedia text as ROME w/o C.

senseQA. As is shown in Table 11, despite the
sample variance, there is a consistent trend of per-
formance degradation post-editing. Specifically,
after 100 sequential edits, all versions of the edited
LLM exhibit a significant performance decline, in-
dicating a general trend of damage across different
sample sets. However, it was also observed that the
rate of performance degradation varied among the
samples within the first 20 edits, suggesting that
some samples might induce faster degradation than
others.

Number of Edits

Sample Seed 1 10 20 50 100

a 49.6 49.1 20.6 20.1 19.0
b 49.6 49.2 48.5 31.6 22.1
c 49.6 49.1 46.7 25.4 21.2
d 49.6 49.1 24.7 20.2 19.5

Table 11: The evaluation results on CommonsenseQA
across different editing samples.

E Additional Analysis of the Damage to
LLMs by ME Methods

E.1 The Language Modeling Capability
E.1.1 Adjusted Perplexity
As described in Section 7.2, we proposed adjusted
perplexity as a measurement for the language mod-
eling capability of post-edited LLMs to avoid the
influence of the generated repetitive sequences. We
employ Vicuna-7b-v1.5 (Zheng et al., 2023b) to

measure the Perplexity of the output sequences gen-
erated by post-edited models edited by ROME to
answer questions in the CommonsenseQA dataset.
Specifically, denote a generated sequence with 𝑛
tokens as 𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛), we calculate the
perplexity using the following equation:

PPL(𝑌 ) = exp

{
−1
𝑡

𝑡∑︁
𝑖

log 𝑝𝜃 (𝑦𝑖 | 𝑦<𝑖)
}

(3)

where 𝑝𝜃 (𝑦𝑖 |𝑦<𝑖) is the log-likelihood of the 𝑖th
token conditioned on the previous tokens 𝑦<𝑖 . How-
ever, such a naive approach is not applicable in our
situation because post-edited models tend to gen-
erate repetitive tokens, which leads to relatively
low perplexity. Therefore, we calculate the n-gram
repetitive ratio for each sequence. We first slice
the sequence into several n-gram fragments, then
we set the ratio of the number of unique fragments
over the total number of fragments as the repetitive
ratio 𝜌. Finally, we calculate the adjusted PPL is
calculated by:

Adj_PPL(𝑌 ) = PPL(𝑌 ) × 𝑒1−𝜌 (4)

E.1.2 Additional Evaluation on the Language
Modeling Capability

In addition to applying pre-trained LLM to calculate
the perplexity of sequences generated by the edited
model, as described in Section 7.2 and E.1.1, we
also use the edited model to calculate the perplexity
of normal texts as another evaluation metrics of
the language modeling capability. Specifically, we
randomly select 1000 sequences from the WikiText-
103 dataset (Merity et al., 2016) and feed them
into edited LLaMA-2-7B to calculate the perplexity
scores. As is shown in Table 12, editing shallow
layers (especially for layers 10 and 15) damages the
model rapidly and severely. However, the model
retains more language modeling capabilities when
edited in deeper layers. This result is consistent
with the Table 4.

E.2 The In-Context Learning Capability
In-context learning, which concatenates several
demonstration-label pairs and the demonstration to
be predicted as input context, is one of the most
important capabilities of LLMs. Wang et al. (2023)
explain the success of LLMs in in-context learn-
ing, that in the shallow layers (near to input), the
model aggregates information from demonstrations
to label words, while in deep layers, the model
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Number of Edits

Edit Layer 0 1 10 14 50 100

5 10.6 12.71 12.72 13.01 13.23 18.31
10 10.6 18.33 18.99 50.15 417.64 1593.14
15 10.6 12.71 12.80 19.68 23.5 18 373.90
20 10.6 18.75 18.98 19.37 20.14 29.30
25 10.6 12.70 12.75 12.96 20.62 35.55
30 10.6 15.56 30.25 60.24 40.99 53.12

Table 12: Perplexity scores of standard texts, calculated by the edited LLaMA-2-7B, when different layers are
sequentially edited.

extracts and uses this information from previous
label words to form the final prediction. In this
section, we utilize the same way proposed by Wang
et al. (2023) to analyze whether the in-context learn-
ing capability has been influenced after sequential
edits. Specifically, we calculate the saliency score
(Simonyan et al., 2013) for each attention matrix:

𝐼𝑙 =

�����
∑︁
ℎ

𝐴ℎ,𝑙 ⊙ 𝜕L(𝑥)
𝜕𝐴ℎ,𝑙

����� (5)

where L(𝑥) is the loss function of the task, 𝐴ℎ,𝑙

represents the value of attention matrix of the ℎ-th
attention head in the 𝑙-layer and 𝑥 represents the
input. 𝐼𝑙 (𝑖, 𝑗) is the significance of the information
flow from the 𝑖-th token to 𝑗-th token. We denote
𝑝𝑖 as the 𝑖-th label words such as "True" or "False",
𝑞 as the target position in which the model predicts
labels, and 𝑤 as the words in demonstrations. 𝐶
represents the number of label words. We have
three metrics as shown below:
𝑆𝑤𝑝: the saliency score of information flow from

text part 𝑤 to label words 𝑝:

𝑆𝑤𝑝 =

∑
(𝑖, 𝑗 ) ∈𝐶𝑤𝑝

𝐼𝑙 (𝑖, 𝑗)��𝐶𝑤𝑝

�� ,

𝐶𝑤𝑝 = {(𝑝𝑘 , 𝑗) : 𝑘 ∈ [1, 𝐶], 𝑗 < 𝑝𝑘} .
(6)

𝑆𝑝𝑞: the saliency score of information flow from
label words 𝑝 to target position 𝑞:

𝑆𝑝𝑞 =

∑
(𝑖, 𝑗 ) ∈𝐶𝑝𝑞

𝐼𝑙 (𝑖, 𝑗)��𝐶𝑝𝑞

�� ,

𝐶𝑝𝑞 = {(𝑞, 𝑝𝑘) : 𝑘 ∈ [1, 𝐶]} .
(7)

𝑆𝑝𝑞: the saliency of information flow except
𝑆𝑤𝑝 and 𝑆𝑝𝑞:

𝑆𝑤𝑤 =

∑
(𝑖, 𝑗 ) ∈𝐶𝑤𝑤

𝐼𝑙 (𝑖, 𝑗)
|𝐶𝑤𝑤 |

𝐶𝑤𝑤 = {(𝑖, 𝑗) : 𝑗 < 𝑖} − 𝐶𝑤𝑝 − 𝐶𝑝𝑞

(8)

We utilize SST-2 (Socher et al., 2013) as the
experimental datasets and one-shot setting. Ac-
cording to Figure 8, the original Llama-2-7B model
proves the claim proposed by Wang et al. (2023).
Specifically, in the shallow layer (from layer 0 to
layer 5), the line of 𝑆𝑤𝑝 dominates, which shows
that the information is aggregating from text to
labels. While in the deep layer (from layer 6 to the
last layer), the line of 𝑆𝑝𝑞 dominates, indicating that
the label information is aggregating to the target
position. For the ROME method, editing layer 5 has
a slight influence on layers 6 to 10, which promotes
the information aggregating to label words process.
Because the change is not very obvious, the model
can still maintain an average score of 18.3% accu-
racy according to Table 1. While if we edit layer
15, due to the damage stored in layer 15, in the
deeper layer, there are some fluctuate between 𝑆𝑤𝑝

and 𝑆𝑝𝑞, which shows unstable attention across
those layers, resulting in much worse performance
on CommonsenseQA as shown in Figure 4. The
same thing happens when we edit layers from 4th to
8th using the MEMIT method. It is shown that in
the deeper layer, the information fails to aggregate
form label words to target position, which explains
a worse average score of 3.8% according to Table
1. Finally, editing the 30th layer does not have
much influence on such an attention mechanism for
information flow. This means that the perplexity
capability is much different from the in-context
learning capability. Besides, this also partly ex-
plains why editing the 30th layer using ROME gives
a high performance after 100 edits.
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Figure 8: In-context learning saliency score

F Experiments on Other Models
In order to prove the robustness of our findings,
we conduct similar experiments on two different
models: Mistral-7B (Jiang et al., 2023) and GPT2-
XL (Radford et al., 2019).

F.1 Mistral-7B
We apply ROME to sequentially edit 1000 knowl-
edge on Mistral-7B and evaluate the edited model
on CommonsenseQA. As is shown in Figure 9, se-
quential memory editing completely damages LLM
after around 200 edits.

Figure 9: The performance of edited Mistral-7B on Com-
monsenseQA, utilizing ROME as the editing method
with different editing layers.

F.2 GPT2-XL
We further conduct the same experiments on GPT2-
XL. We use ROME to edit 1000 knowledge and
evaluate the edited model on CommonsenseQA and
WikiText. As is shown in Figure 10 and Table 13,
after sequentially editing GPT2-XL, although the
edited model can still successfully answer some

questions of CommonsenseQA, it fails to maintain
language modeling capabilities. One possible expla-
nation is that GPT-2-XL maintains high in-context
learning capabilities after sequential editing. As
explained in Section 7.3, maintaining the in-context
learning capability is helpful for the tasks Common-
senseQA. To prove this, following Appendix E.2,
we calculate the score of 𝑆𝑤𝑝, 𝑆𝑞𝑝 and 𝑆𝑤𝑤 . As is
shown in Table 14, after 1000 edits, the GPT2-XL
still maintains the in-context learning capability,
which explains the reason why it maintains sim-
ilar results on CommonsenseQA after sequential
editing.

Figure 10: The performance of edited GPT2-XL on Com-
monsenseQA, utilizing ROME as the editing method
with different editing layers.
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Number of Edits

Layer 0 1 10 50 100 500 1000

5 41.1 41.2 41.4 41.9 470.9 910.7 1250.3
25 41.1 100.7 472.1 476.3 900.2 1025.7 1798.6
45 41.1 125.6 127.3 370.6 490.2 881.1 1697.9

Table 13: Perplexity scores of standard texts, calculated
by the edited GPT2-XL, when different layers are se-
quentially edited.

Layer

Score 0 5 10 15 20 25 30 35 40 45

𝑆𝑤𝑝 0.68 0.61 0.3 0.17 0.13 0.01 0.02 0.01 0.01 0.01
𝑆𝑞𝑝 0.16 0.24 0.6 0.75 0.8 0.94 0.95 0.98 0.98 0.98
𝑆𝑤𝑤 0.16 0.15 0.1 0.08 0.07 0.05 0.03 0.01 0.01 0.01

Table 14: The in-context learning salience score of each
layer of the edited GPT2-XL.
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