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Abstract

We present EasyGen, an efficient model de-
signed to enhance multimodal understanding
and generation by harnessing the capabilities
of diffusion models and large language models
(LLMs). Unlike existing multimodal models
that predominately depend on encoders like
CLIP or ImageBind and need ample amounts
of training data to bridge modalities, Easy-
Gen leverages BiDiffuser, a bidirectional condi-
tional diffusion model, to foster more efficient
modality interactions. EasyGen achieves text
generation by training a projection layer linking
BiDiffuser and an LLM, and facilities image
generation by training an adapter to align the
LLM’s text space with the BiDiffuser’s image
space. Comprehensive quantitative and quali-
tative experiments show that EasyGen excels
in data-efficient training, high-quality image
generation, and extendibility, effectively ad-
dressing the challenges in multimodal gener-
ation. The source code is available at https:
//github.com/zxy556677/EasyGen.

1 Introduction

In recent years, remarkable progress has been made
in the field of artificial intelligence generated con-
tent (AIGC), notably in technologies like large lan-
guage models (LLMs) (Chiang et al., 2023; Tou-
vron et al., 2023; Brown et al., 2020; Chowdhery
et al., 2022; Zeng et al., 2022) for text generation
and diffusion models (Rombach et al., 2022; Nichol
et al., 2022; Saharia et al., 2022) for visual gener-
ation. These breakthroughs have paved the way
for the development of multimodal large language
models (MLLMs), sparking a recent trend of incor-
porating extra visual modules into LLMs. Collabo-
rative models, such as Visual ChatGPT (Wu et al.,
2023a) and MM-REACT (Yang et al., 2023), strate-
gically use externally pre-trained tools to translate
visual information into text descriptions and feed

*Co-second author.

the data into LLMs. However, they are exclusively
dependent on pre-trained tools for inference. Con-
trarily, end-to-end trained models including the
BLIP series (Li et al., 2023b), LLaVA series (Liu
et al., 2023b,a), MiniGPT-4 (Zhu et al., 2023), and
mPLUG-Owl (Ye et al., 2023) focus on mapping
image information to the text space of LLMs, en-
abling LLMs to comprehend visual inputs.

Existing end-to-end models are also not without
limitations. First, most of these multimodal models
rely on either CLIP (Radford et al., 2021) or Image-
Bind (Girdhar et al., 2023) as their image encoder.
While these encoders excel in learning unified rep-
resentations that encompass both text and images,
they face challenges when it comes to transform-
ing between different modalities. This predica-
ment makes current vision-language models rely-
ing heavily on sizable data sets to align CLIP/Bind-
encoded images with the language model, due to
the disparity between different modalities.

Moreover, the majority of previous multimodal
models have concentrated on comprehending multi-
modal content and lacked the capability to generate
multimodal responses, such as content beyond text.
Several concurrent works, such as Emu (Sun et al.,
2023) and NExT-GPT (Wu et al., 2023), have uti-
lized diffusion models for multimodal generation.
Typically, these methods involve training a projec-
tion layer to align the output embedding space of
the LLM with the input embedding space of the
diffusion model (encoded by CLIP’s text encoder)
using an MSE loss. However, this approach may
lead to the underutilization of the semantic under-
standing and reasoning capabilities of the LLM,
and may introduce information loss in the align-
ment process, ultimately leading to lower image
generation quality compared to the original diffu-
sion model, as elaborated in Sec. 5.6 and Tab. 6.

In this work, we propose EasyGen, an end-to-
end model that facilitates multimodal generation
with a single bidirectional conditional diffusion
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Could you please provide an introduction 

to this model in the picture?

What other types of green energy 

irrigation systems are feasible?

I’m really intrigued by wind-powered 

irrigation systems. Could you please 

provide a brief introduction and show 

me some pictures related to it?

The image features a solar irrigation system 

working model that is displayed on a table. 

It is made of various materials, such as 

plastic, and features various components, 

including solar panels, water tanks, a pump, 

piping, valves, hoses, faucets, plants, soil, 

dirt, pebbles, bottles, cups, spoons, straws, 

screws and nuts, among others.

There are several other types of 

green energy irrigation systems apart 

from solar power. Some of them 

include wind-powered irrigation 

system, hydro-powered irrigation 

system, tidal-powered irrigation 

system …

A wind-powered irrigation system is a 

type of green energy irrigation system 

that utilizes wind energy to power the 

irrigation process. It involves the use of 

wind turbines, typically mounted on 

towers, which capture the kinetic 

energy of the wind and convert it into 

electrical energy. The generated 

electricity can be stored in batteries … 

Here are some possible pictures:

Figure 1: Our model EasyGen can understand multimodal inputs and generate multimodal responses, as illustrated
by model-generated speech bubbles in grey color, which include both text and images.

model and LLMs, as illustrated in Figure 2. The
diffusion model, called BiDiffuser, is obtained by
fine-tuning the UniDiffuser (Bao et al., 2023b),
with a specific focus on targeted image-to-text and
text-to-image tasks. This fine-tuning addresses Uni-
Diffuser’s limitation of attempting to fit all condi-
tional distributions, including those based on noisy
inputs, into a single model, which reduces its ef-
fectiveness on specific tasks like conditional gen-
eration from noise-free inputs. BiDiffuser plays a
pivotal role for both text and image generation. In
EasyGen, text generation is achieved by training
a projection layer that connects BiDiffuser and an
LLM, while image generation is facilitated by train-
ing an adapter that infuses the text representation
of the LLM into BiDiffuser. Figure 1 showcases
EasyGen’s ability to handle multimodal inputs and
generate appropriate multimodal responses.

EasyGen holds three significant advantages that
address the challenges in multimodal generation:

First, EasyGen offers competitive performance
in a data-efficient way compared to cutting-edge
models, as shown in Tab. 3 (Sec. 5.5). This is due
to BiDiffuser’s ability to simplify the alignment of
its embedding space with an LLM, which allows
for efficient training with less data for image-to-text
tasks such as image captioning and VQA.

Second, EasyGen exhibits superior image gener-
ation quality, surpassing other end-to-end MLLMs,
as shown in Tab. 6 (Sec. 5.6). This is attributed
to the adapter’s design (Sec. 4.2), which aligns the
LLM’s text space with the diffusion model’s image
space, thereby utilizing the LLM’s semantic under-
standing and reasoning capabilities. In contrast, the
projection layers in other MLLMs like NExT-GPT
only align the LLM’s text space with the diffusion
model’s text space and are not trained by the image
denoising objective.

   BiDiffuser

Projection Layer

Text

LLM

Embedding Layer    BiDiffuser

LM-Head

caption

Text Response

Adapter

Image

Image-to-text

Text-to-image

Instruction
Tuning

Figure 2: Overview of EasyGen.

Third, EasyGen can be readily adapted to man-
age complex vision-language tasks by incorpo-
rating more advanced visual encoders or by inte-
grating BiDiffuser into contemporary sophisticated
multimodal LLMs like LLaVA to enhance perfor-
mance, as shown in Tab. 5 (Sec. 5.7).

2 Related Work

Multimodal Language Models. Recent research
has witnessed a surge of interest in multimodal
LLMs, including collaborative models (Wu et al.,
2023a; Yang et al., 2023; Shen et al., 2023) and end-
to-end methods (Alayrac et al., 2022; Guo et al.,
2022; Li et al., 2022; Bao et al., 2021; Wang et al.,
2022b,a,a). More recently, some works also ex-
plore training LLMs with parameter-efficient tun-
ing (Li et al., 2023b; Zhang et al., 2023a) and in-
struction tuning (Dai et al., 2023; Liu et al., 2023b;
Ye et al., 2023; Zhu et al., 2023; Li et al., 2023a).
Different from them, EasyGen is built upon BiDif-
fuser, which promotes more efficient interactions
between modalities.
Multimodal Diffusion Models. Diffusion genera-
tive models (Rombach et al., 2022; Ramesh et al.,
2021; Nichol et al., 2022; Ruiz et al., 2023) have
achieved strong results in text conditioned image
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generation works. Specifically, Versatile Diffu-
sion (Xu et al., 2023) employs the U-Net (Ron-
neberger et al., 2015) architecture with a multi-
flow design to tackle multiple modalities and tasks,
while UniDiffuser (Bao et al., 2023b) adopts the
U-ViT (Bao et al., 2023a) framework to treat both
image and text as sequential token streams for dif-
fusion calculations. However, these models are
unable to complete complex language tasks. Easy-
Gen combines the advantages of diffusion models
and LLMs and achieves competitive performance
in both image-to-text and text-to-image tasks.

Multimodal Response Generation. Recent re-
search has made significant advancements in multi-
modal response generation (Koh et al., 2023b; Tang
et al., 2023; Zhang et al., 2023b; Wu et al., 2023b;
Pan et al., 2023; Koh et al., 2023a; Sun et al., 2023;
Dong et al., 2023) using text-to-image models such
as Stable Diffusion. However, the lack of semantic
understanding capability in the CLIP text encoder
may result in low-quality generated images. Easy-
Gen addresses this issue by transferring knowledge
from LLM to BiDiffuser via an adapter, enabling
the creation of high-quality textual semantic repre-
sentations for text-to-image generation.

3 Basics of Diffusion Models

Unconditional Generation. Given a data sample
taken from a real data distribution x0 ∼ q(x0),
diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) first destruct the data by constructing
a Markov forward process and gradually injecting
noise to the data:

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),

(1)

where βt ∈ (0, 1) is the variance added at diffusion
step t. Then, they learn to reverse the process:

p(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt),

pθ(xt−1|xt) = N (xt−1;µt(xt, t), σ
2
t I),

(2)

where p(xT ) = N (xT ; 0, I) is the standard Gaus-
sian distribution and µt(·) is the parameterization
of the predicted mean. Diffusion models are trained
to maximize the marginal likelihood of the data
E[log pθ(x0)], and the canonical objective is the
variational lower bound of log pθ(x0). Denoising

diffusion probabilistic models (Ho et al., 2020) gen-
erate samples xt ∼ q(xt|x0) by injecting noise
ϵ ∼ N (0, I) to the data x0, and train a network
ϵθ(·) to predict the added noise ϵ using a standard
mean squared error loss:

L := Ex0,ϵ,t[∥ϵ− ϵθ(xt, t)∥2]. (3)

Conditional Generation. For conditional gen-
eration, a paired data (x0,y0) is given, and the
aim is to model the conditional data distribution
q(x0|y0), where y0 can be image class or text
prompt. Conditional generation includes classi-
fier guidance (Dhariwal and Nichol, 2021) and
classifier-free guidance (Ho and Salimans, 2021).
Classifier guidance requires training an extra clas-
sifier on noisy data at inference time to improve
sample quality. For classifier-free guidance, no
classifier needs to be trained. The denosing net-
work ϵθ(xt|y0) simply conditions on the informa-
tion encoded in y0. At inference time, with a guid-
ance scale s, the modified score estimate is further
in the direction of ϵθ(xt|y0) and away from the
unconditional model ϵθ(xt|∅) (∅ is a null token):

ϵ̂θ(xt|y0) = ϵθ(xt|∅) + s · (ϵθ(xt|y0)− ϵθ(xt|∅)).

4 Proposed Model: EasyGen

We propose EasyGen, a model capable of process-
ing multimodal inputs and generating multimodal
outputs. It achieves easy multimodal generation
by leveraging a bidirectional conditional diffusion
model to effectively bridge the gap between differ-
ent modalities and an LLM to comprehend mul-
timodal tasks and produce textual responses con-
taining cues for multimodal message creation. In
the subsequent section, we outline the multimodal
generation process of EasyGen.

4.1 Pre-training BiDiffuser: A Bidirectional
Conditional Diffusion Model

Since the text space of LLMs is discrete, to min-
imize the disparity between the output of a dif-
fusion model and the input of LLMs, we lever-
age Unidiffuser, a unified diffusion model capa-
ble of transforming images into the discrete text
space. During the training process, UniDiffuser
injects noise ϵx and ϵy to a set of paired image-text
data (x0,y0) and generates noisy data xtx and yty ,
where 0 ⩽ tx, ty ⩽ T represent two individual
timesteps (perturbation levels). It then trains a joint
denoising transformer U-ViT (Bao et al., 2023a)
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Figure 3: The training of BiDiffuser involves finetuning
the denoising transformer U-ViT in UniDiffuser with a
joint objective of image-to-text and text-to-image tasks.

ϵθ(xtx ,yty , t
x, ty) to predict the noise ϵx and ϵy

by minimizing the mean squared error loss:

Eϵx,ϵy ,x0,y0 [∥[ϵx, ϵy]− ϵθ(xtx ,yty , t
x, ty)∥2],

where the output of ϵθ is the concatenation of the
estimated noise ϵxθ and ϵyθ , i.e., ϵθ = [ϵxθ , ϵ

y
θ ].

By predicting ϵθ(xtx ,yty , t
x, ty) for any tx and

ty, UniDiffuser learns all distributions related to
(x0,y0) simultaneously. This includes all condi-
tional distributions: q(x0|y0) for text-to-image
generation, q(y0|x0) for image-to-text genera-
tion, and those conditioned on noisy input, i.e.,
q(x0|yty) and q(y0|xtx), for 0 < tx, ty ≤ T .
Learning a conditional distribution q(x0|yty) or
q(y0|xtx) can be seen as learning a distinct task.
From a multitask learning perspective, due to lim-
ited network capacity, learning many tasks simul-
taneously (i.e., fitting all distributions to a single
network) may result in task competition or task con-
flict, ultimately leading to suboptimal performance
in particular tasks such as q(x0|y0) and q(y0|x0).

To resolve this issue and enhance the perfor-
mance of both image-to-text and text-to-image gen-
eration tasks, we finetune UniDiffuser with exclu-
sive emphasis on the two tasks:

Ld = Eϵx,ϵy ,x0,y0 [∥ϵx − ϵxθ (xtx ,y0, t
x, 0)∥2+

α∥ϵy − ϵyθ(x0,yty , 0, t
y)∥2].

where α is a hyperparameter to balance the learning
paces of the two tasks. As depicted in Figure 3,
our training objective entails predicting the text
y0 based on the input image x0 and vice versa,
where the input conditions for the model are noise-
free. We name the finetuned model “BiDiffuser”,
signifying its specialized ability in bidirectional
conditional generation.

4.2 Pre-training an Adapter to Enhance
BiDiffuser’s SUR Capability

BiDiffuser uses the text encoder of CLIP, which is
trained with image-text contrastive learning, lim-
iting its semantic understanding and reasoning
(SUR) ability for image generation. Drawing inspi-
ration from Zhong et al. (2023), we utilize LLMs to
enhance the SUR capability of BiDiffuser. Specif-
ically, we design an adapter that employs the at-
tention mechanism to integrate the semantic in-
formation from LLM’s last hidden state fLLM(·)
into the CLIP text encoder fCLIP(·). The adapter
consists of a projection layer MLP(·) and a cross-
attention layer Att(·). Given a paired image-text
data (x0,y0), we can get ysur with enhanced SUR
via the adapter:

ysur = Att(fCLIP(y0)W
Q,MLP(fLLM(y0))W

K ,

MLP(fLLM(y0))W
V ).

Then, the semantic input to BiDiffuser is the com-
bination of ysur and the CLIP text encoding of y0:

y0 = λ · ysur + (1− λ) · fCLIP(y0), (4)

where λ is a balancing parameter. We train the
adapter by freezing BiDiffuser and minimizing

Lada = Eϵy ,x0 [∥ϵx − ϵxθ (xtx , y0, t
x)∥2], (5)

where ϵxθ is not updated as BiDiffuser is frozen.

4.3 Image-to-Text Generation
BiDiffuser can convert images into vectors in the
text space, facilitating alignment with the vector
space of LLMs. In the following, we show how
BiDiffuser can be integrated with LLMs to per-
form image-to-text generation tasks such as image
captioning and visual question answering (VQA).

4.3.1 Aligning BiDiffuser with LLMs
We connect BiDiffuser and LLMs via a simple
projection layer, which maps text embeddings ob-
tained from the output of the diffusion model to the
embedding space of LLMs. As shown in Figure 4,
the alignment can take place either prior to the
LLM (Pre-Align manner) or between its encoder
and decoder components (Mid-Align manner).

Pre-Align Manner. As shown in Figure 4a, the
projection layer is placed before the LLM to map
the output of BiDiffuser (image representations)
to the text embedding space of the LLM. The text
embedding of the input image is then concatenated
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Two people standing on the top of a snowy mountain holding on to a ski pole.

Decode

<Textual Noise><Image>

BiDiffuser

LLM

Projection Layer

Text EmbeddingText Embedding Text Embedding

### Human: <Query> ### Assistant: 

Describe the image concisely.

(a) Pre-Align manner.

Two people standing on the top of a snowy mountain holding on to a ski pole.

Decode

<Textual Noise><Image>

BiDiffuser

LLM Decoder

Projection Layer

Text EmbeddingText Embedding Text Embedding

### Human: 

LLM Encoder LLM Encoder

<Query> ### Assistant: 

Describe the image concisely.

(b) Mid-Align manner.

Figure 4: Two different ways of aligning BiDiffuser with LLMs.

with the embeddings of the textual instructions and
fed to the LLM for decoding. To synchronize the
text space of BiDiffuser with that of the LLM, we
propose to use the image-grounded text generation
(ITG) objective to drive the model to generate texts
based on the input image by computing the auto-
regressive loss:

LITG = − 1

L

L∑

l=1

log pϕ(w
g
l |w

g
<l, I, TI), (6)

where wg = (wg
1, ..., w

g
L) represents the ground-

truth caption of image I with length L, TI is the
text instruction, and ϕ denotes the model parame-
ters, which include the parameters of the projection
layer and the LLM.

Mid-Align Manner. As shown in Figure 4b,
the projection layer is placed between the LLM’s
encoder and decoder, aiming to map the output of
BiDiffuser to the embedding space of the text that
is encoded by the LLM’s encoder. Particularly, we
argue that the output of BiDiffuser, once mapped
by the projection layer and denoted as ddiff , should
align with the image caption that is encoded by
the LLM’s encoder, denoted as dllm. Therefore, to
accurately learn the alignment between the image
and text representations, in addition to the ITG loss
in Eq. 6, we also employ an image-text distance
minimization (ITDM) loss:

LITDM =
1

N

N∑

i=1

∥ddiff − dllm∥22,

Lmid = LITG + LITM.

(7)

where N is the batch size, and Lmid is the overall
loss. In this manner, the model parameters θ only
include the parameters of the projection layer.

After the alignment, EasyGen gains the capabil-
ity of zero-shot image-to-text generation, including
tasks such as image captioning and VQA.

4.3.2 Instruction-Tuning LLMs

When aligning BiDiffuser with an LLM, we per-
form instruction-tuning on the LLM to equip it
with the capability of understanding multimodal
tasks. We designed different instructions for differ-
ent LLMs, as shown in Table 12. General instruc-
tion template is denoted as follows:
USER: <Img><image></Img> + Instruction. As-
sistant: <answer>.

For the <image> placeholder, we substitute it
with the output of BiDiffuser. To avoid over fitting
to the specific task and counter the model’s inclina-
tion to generate excessively short outputs, we have
devised specific instructions (see Table 11), which
enable the LLM to produce concise responses when
necessary. For different tasks, the distinct instruc-
tion templates are as outlined in Appendix F.

4.4 Text-to-Image Response Generation

Most of existing multimodal models, including the
BLIP series and LLaVA series are unable to pro-
vide a multimodal response as they are primarily
designed to generate only textual outputs. On the
other hand, Emu (Sun et al., 2023) takes a unified
approach to predict the subsequent visual or textual
token in an auto-regressive manner, but it is heavily
reliant on vast quantities of training data. Contrary
to the limitations of these existing models, Easy-
Gen, by leveraging the bidirectional generation ca-
pability of BiDiffuser and the inference capability
of LLMs, can produce accurate and high-quality
visual response with ease.
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A: We went out to go to a 

garage sale this morning. 

B: �at’s awesome! Do 

you play guitar?

<img> An acoustic 
guitar with a 
headstock on top of a 
brick wall. </img>
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Figure 5: Text-to-image generation by EasyGen. LLM
generates the response and description of the image.
BiDiffuser generates images based on the description.

To tackle multimodal response generation tasks
such as PhotoChat (Zang et al., 2021), we first
leverage the MLLM to generate detailed image
captions based on dialogue context. Then, we em-
ploy BiDiffuser to create the corresponding images
with the produced captions. Specifically, we re-
place the image featured in the dialogue with its
corresponding descriptive caption, encapsulating it
with task-specific tokens <Img>,</Img> and con-
structing the following instruction templates:
USER: Dialog history. Assistant: <response> +
<Img><caption></Img>.
When <caption> appears in response, it represents
the generated description of the image. So we
can use LLM’s original auto-regressive training
objective. Specifically, we compute the probability
of the target caption by:

Lt2t = − 1

L

L∑

l=1

log pϑ(w
c
l |wc

<l, H), (8)

where wc = (wc
1, ..., w

c
L) represents the caption of

image x0 with length L, H is the dialogue history,
and ϑ denotes the LLM’s parameters. Considering
the potential for alignment deviation in discrete
text alone, given the description of the image y0,
we utilize y0, which is the combination of the SUR
adapter’s output and the CLIP text encoder’s out-
put, as the conditional component of the diffusion
model. This directly contributes to the denoising
process. The loss function for the denoising pro-
cess of a noisy image xtx is formulated in a way
that is similar to Eq. 5:

Lt2i = Eϵy ,x0 [∥ϵx − ϵxθ (xtx , y0, t
x)∥2], (9)

where ϵxθ is not updated and we only train the pa-
rameters of LLM and adapter. The overall loss for
text-to-image task is:

Lall = Lt2i + Lt2t. (10)

Training with the instruction data enables our
model to not only produce text responses but also
perform image intent classification and generate
image captions that BiDiffuser can interpret.

5 Experiments

5.1 Experimental Setup

We initialize encoder-decoder LLM from FlanT5-
XL or decoder-only LLM from Vicuna-7B, along
with the utilization of the diffusion module from
BiDiffuser. During the alignment process, we main-
tain the frozen state of the BiDiffuser. The statis-
tics of the datasets for pre-training, alignment and
instruction-tuning can be found in Appendix B. For
the image captioning task, EasyGen is evaluated
on both the MS-COCO (Lin et al., 2014) Karpa-
thy test set and the NoCaps (Agrawal et al., 2019)
validation set. For the VQA task, we evaluated on
OK-VQA (Marino et al., 2019) validation set and
GQA (Hudson and Manning, 2019) test-dev set.

To adapt the model for multimodal dialogue gen-
eration, we fine-tune the LLM and projection layers
on the PhotoChat dataset. We incorporate photo-
sharing activities into the dialogue context by gen-
erating <Img><caption></Img>, and utilize cross-
entropy loss exclusively for fine-tuning the multi-
modal generation task. Given the limited expres-
siveness of image descriptions in the PhotoChat
dataset, as evidenced by Figure 7 in Appendix I,
we regenerate image annotations in a text format
similar to that used in MS-COCO.

5.2 Evaluation

We evaluate EasyGen on various vision-language
tasks including image captioning (MS-COCO (Lin
et al., 2014), NoCaps (Agrawal et al., 2019)), vi-
sual question answering (OK-VQA (Marino et al.,
2019), GQA (Hudson and Manning, 2019)), and
multimodal dialog generation (PhotoChat (Zang
et al., 2021)). We use BLIP (Li et al., 2022),
Flamingo (Alayrac et al., 2022), BLIP-2 (Li et al.,
2023b), InstructBlip (Dai et al., 2023), MiniGPT-
4 (Zhu et al., 2023), and LLaVA (Liu et al.,
2023b) as baselines for image-to-text tasks, and
Maria (Liang et al., 2021) and Divter (Sun et al.,
2021) as baselines for the multimodal response
generation task. See details in Appendix C and E.

5.3 Overall Results

Tab. 1 presents the evaluation results for each base-
line and our models on MS-COCO and VQA (zero-

6
1356



Model Dataset Size NoCaps (val) COCO (Karpathy) OK-VQA GQA

PT IT CIDEr SPICE BLEU@4 CIDEr Accuracy Accuracy

BLIP (Li et al., 2022) 129M - 113.2 14.8 40.4 136.7 - -
Flamingo (Alayrac et al., 2022) 1.8B - - - - 138.1 50.6 -
BLIP-2 OPT-6.7B (Li et al., 2023b) 129M - 121.0 15.3 43.5 145.2 36.4 36.4
BLIP-2 FlanT5XL (Li et al., 2023b) 129M - 121.6 15.8 42.4 144.5 39.4 44.4
InstructBlip 7B (Dai et al., 2023) 129M 1.2M 123.1 - 40.8 140.7 61.0⋆ 49.2⋆

MiniGPT-4 (Zhu et al., 2023) - 5M 42.4 - - - 37.5 30.8
LLaVA (Liu et al., 2023b) 558K 158K 33.1 - 7.9 30.0 54.4 41.3

EasyGen FlanT5XL 169K 90K 121.2 15.5 43.5 145.7 41.1 37.2
EasyGen Vicuna-7B 169K 90K 121.8 15.8 42.4 144.6 45.2 44.6

Table 1: Evaluations of EasyGen and baselines on various image understanding tasks. PT, IT indicate sample sizes
in the pretraining and instruction tuning stages respectively. EasyGen’s results on NoCaps, OK-VQA and GQA
were obtained in a zero-shot setting. ⋆ denotes that the model was trained on other VQA datasets.

Model Response Generation Image

BLEU-1/2 PPL↓ ROUGE-L FID↓

Divter Sun et al. 6.5/1.7 59.6 5.69 29.16
Maria Liang et al. 13.8/9.2 48.7 15.17 -

EasyGen FlanT5 22.3/18.7 13.3 17.24 10.30
EasyGen Vicuan 23.6/19.9 11.3 18.85 9.72
+ w/o adapter - - - 10.16

Table 2: Evaluation on the PhotoChat dataset.

MLLM Sample Size Cosine Similarity ↑ MSE ↓
MiniGPT-4 5M 0.0016 6.2031
LLaVA v1.5 558K -0.0026 0.8433
Emu 2B 0.0054 0.4062
EasyGen 169K 0.0128 0.0338

Table 3: Data efficiency. Avg. Cosine similarity and
mean square error between the projected representa-
tions and their respective captions embedded by LLM.

shot) datasets. EasyGen outperforms most of the
baseline models on both the COCO test set and
NoCaps validation set (zero-shot transfer). Despite
being pre-trained on a small dataset (MS-COCO),
EasyGen’s performance on the image captioning
generation task is comparable to models trained on
larger datasets. Additionally, on the OK-VQA and
GQA datasets, EasyGen demonstrates improved
performance compared to other models of a sim-
ilar scale, achieving higher accuracy even with a
simple greedy search decoding method.

In Tab. 2, the evaluation results on the PhotoChat
dataset are presented. Our method exhibits clear
advantages in terms of PPL, indicating strong per-
formance on response generation task. Because
of the image descriptions in the PhotoChat dataset
are overly concise, we utilized EasyGen to regen-
erate the image descriptions, which improved the
performance of our model on image generation
compared to other models. Additionally, with the
adapter, EasyGen is capable of generating images
of superior quality.

5.4 Ablation Study

In Tab. 4, we examine the impact of freezing/tuning
BiDiffuser and the LLM. It can be observed that
frozen Mid-Align method outperforms Pre-Align
method in image captioning, which shows ITDM
loss function is effective. However, the frozen Mid-
Align method exhibits inferior performance in the
VQA task. We hypothesize that this is due to the
integration of mid-aligned target image features
with query information, and the projection layer
is insensitive to instruction information. We con-
duct instruction-tuning on Pre-Align T5 and Vi-
cuna. Compared to models at the same scale, these
instruction-tuned models achieve superior results.

5.5 Data Efficiency in Training

In Tab. 3, we examine the data efficiency of dif-
ferent image encoders for alignment with LLMs.
EasyGen uses BiDiffuser, which maps images to
the text space, simplifying alignment with LLMs.
To assess the quality of visual representations, we
measured the distance between the projected rep-
resentations and their respective captions embed-
ded by an LLM. We randomly selected 1,000 im-
ages with their corresponding captions from the
MSCOCO dataset. The results show that our
model, EasyGen, aligns significantly better with
the LLM compared to other CLIP-based MLLMs,
despite using less data for alignment. This indi-
cates the effectiveness of our approach in achieving
strong alignment with LLMs.

5.6 Image Generation Quality

Tab. 6 evaluates the generated image’s quality of
MLLMs on MS-COCO validation set, using 30K
randomly selected prompts to compute the FID
score on generated images. To confirm the efficacy
of our approach, we fine-tuned our method on a
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LLM Diffusion
Model Alignment NoCaps COCO(Karpathy) OK-VQA

CIDEr SPICE BLEU@4 CIDEr Accuracy

T5 UniDiffuser Pre-Align 62.4 18.0 26.8 90.7 33.0
T5 BiDiffuser Pre-Align 119.1 25.5 42.6 145.1 41.1
T5 BiDiffuser Mid-Align 121.2 25.1 43.5 145.7 31.5
T5 BiDiffuser Mid-Align 121.5 25.3 43.6 145.7 36.4

Vicuna-7B BiDiffuser Pre-Align 121.8 24.9 42.4 144.6 45.2
Vicuna-7B BiDiffuser Pre-Align 119.0 24.6 40.3 140.3 42.7

Table 4: Ablation study on image captioning and VQA tasks. / denotes tuning/freezing the LLM.

Model IT VQAv2 (test-dev) TextVQA MMBench (test)

MiniGPT-4 (Zhu et al., 2023) 5M - 19.4 23.0
InstructBLIP Vicuna-7B (Dai et al., 2023) 1.2M - 50.1 33.9
LLaVA-1.5 Vicuna-7B (Liu et al., 2023a) 665K 78.5 58.2 65.2
LLaVA-1.5 Vicuna-13B (Liu et al., 2023a) 665K 80.0 61.3 67.8
EasyGen Vicuna-7B w/ ViT-L 251K 79.4 57.9 63.9
LLaVA-1.5 Vicuna-7B w/ EasyGen 665K 80.2 58.8 66.1
LLaVA-1.5 Vicuna-13B w/ EasyGen 665K 80.5 61.5 69.2

Table 5: Evaluation of EasyGen variants and baselines on more complex VQA tasks and the latest MMBench
benchmark. “w/ EasyGen” means incorporating the core components of our model into existing models as depicted
in Figure 6 in Appendix F. EasyGen variants rank among the top models on the leaderboard of MMBench.

MM-Model FID ↓ Diffusion Model FID ↓
Zero-Shot
NExT-GPT 11.28 (+0.07) SD 11.21
Emu 11.66 (+1.73) SD v1.5 9.93
EasyGen 9.16 (-0.55) UniDiffuser 9.71
+ w/o adapter 9.52 (-0.19) UniDiffuser 9.71

Fine-tuned on MS-COCO
EasyGen 7.68 (-0.44) UniDiffuser 8.12
+ w/o adapter 7.89 (-0.23) UniDiffuser 8.12

Table 6: Comparing the image generation quality of
end-to-end MLLMs and their corresponding diffusion
models on the MS-COCO validation set (256 × 256).
Our EasyGen surpasses the original diffusion model,
while other MLLMs fall short in comparison.

portion of the original data (LIAON-COCO) and
the MS-COCO train set, respectively. While other
models resulted in a decrease in image generation
performance compared to the corresponding dif-
fusion model, EasyGen outperformed the original
UniDiffuser due to the fine-tuned BiDiffuser and
the adapter module. Furthermore, Tab. 7 provides
CLIP-T scores from ImagenHub. We notice similar
trends to the results in Tab. 6 using the FID indica-
tor. This suggests that our method can better align
LLM with diffusion model’s text space.

5.7 Extendability

Tab. 5 explores the extensibility of our method from
two aspects. Firstly, we aim to enhance the perfor-
mance of EasyGen on complex tasks such as VQA
and OCR by integrating more powerful visual en-
coders. Considering the potential information dilu-

MM-Model CLIP-T ↑ Diffusion Model CLIP-T ↑
NExT-GPT 0.259 (-0.031) SD 0.290
Emu 0.262 (-0.023) SD v1.5 0.285
Emu2 0.266 (-0.023) SD XL 0.289
EasyGen 9.16 (-0.55) UniDiffuser 9.71

Table 7: Comparing the CLIP-T score of end-to-end
MLLMs and their corresponding diffusion models on
the ImagenHub.

tion or omission when using BiDiffuser to convert
images to text space, we choose to integrate CLIP
ViT-L/14 as the image encoder (as depicted in Fig-
ure 6 in the Appendix). During this process, we
freeze CLIP and BiDiffuser while fine-tuning the
parameters of the LLM and projection layers. The
results presented in Tab. 5 include performance on
traditional short QA and the modern benchmark
MMBench (Liu et al., 2023c). With CLIP ViT-L,
EasyGen’s performance is better than LLaVA on
the VQAv2 dataset, demonstrating that BiDiffuser
can effectively assist LLM in understanding images.
Secondly, we investigate the plug-and-play capabil-
ity of BiDiffuser, as it can also be integrated into
other MLLMs (with the same LLMs) to improve
their performance. The results demonstrate that
with BiDiffuser, LLaVA-1.5 could achieve better
performance. We speculate that BiDiffuser pro-
vides guidance information to MLLMs, enabling
them to better understand the details of CLIP en-
coded images.
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6 Conclusion and Future Work

We have introduced EasyGen, a model that facil-
itates multimodal understanding and generation.
Compared to existing models, EasyGen offers a
more efficient solution by employing BiDiffuser, a
bidirectional diffusion model. This allows for more
effective modal interactions, handling both image-
to-text and text-to-image generations by the fusion
of BiDiffuser and LLMs. Additionally, EasyGen
can be easily integrated into existing advanced mul-
timodal LLMs to further boost their performance.
In the future, we will explore adapting EasyGen
to perform a broader range of multimodal tasks,
including subject-driven image generation, image
editing, and controlled generation.

7 Limitations

This section aims to highlight the limitations of our
work and provide further insights into the research
in this area. Our model relies on diffusion for multi-
modal interaction, which means that the text-to-
image and image-to-text processes may take longer.
In our experiments, we tested the performance of
our model on one A100 (80G) GPU. During in-
ference, using 1000 image-caption pairs, EasyGen
took approximately 2.95 seconds for the caption
generation task (with the diffusion module taking
about 2.41 seconds) and around 4.96 seconds to
generate an image. We believe it would be bene-
ficial to explore more efficient sampling methods,
such as DPM-Solver++ (Lu et al., 2022), to im-
prove the overall efficiency of EasyGen. Further-
more, EasyGen may not be seamlessly adaptable
for jointly fine-tuning the BiDiffuser and Language
Model without altering the BiDiffuser’s sampling
mechanism. But based on our experimental find-
ings, that joint fine-tuning of the BiDiffuser and
LLM is not necessary for handling complex tasks.
This observation aligns with many established ap-
proaches that do not require fine-tuning of their
corresponding image encoders.
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A Ethics Statement

We adhere to the ACL Ethics Policy and have
conducted our research using publicly available
repositories and datasets. Our primary focus is on
investigating the integration of diffusion models
and LLMs for multimodal generation. Therefore,
the results should be seen as AI-generated content.
While we have not observed deliberate harmful
content, the model has the potential to generate
such content if triggered. We have taken steps to
minimize this risk through fine-tuning on public
datasets, but caution is still exercised. In future, we
will prioritize improving downstream performance
and exploring methods to enhance control over the
generation process. To ensure reproducibility and
support future research, we have made all resources
publicly available and provided proper citations to
previous research within the code.

B Datasets

We test the effectiveness of EasyGen by experi-
menting on different tasks including image caption-
ing, visual question answering (VQA), and multi-
modal dialogue tasks. Table 8 shows the statistics
of the pre-training datasets for BiDiffuser, align-
ment and VQA tasks.

We use the MS-COCO (Lin et al., 2014) dataset
for image captioning. Following BLIP-2 (Li et al.,
2023b), we fine-tune EasyGen on MS-COCO and
evaluate its performance on the Karpathy test set
and the NoCaps (Agrawal et al., 2019) validation
set. In MS-COCO, each image typically has five
captions that convey similar meanings. The train-
ing set consists of 82,783 images with 414,113
captions, while the COCO Karpathy test set has
5,000 images and the NoCaps validation set has
4,500 images.

For multimodal dialogue, we utilize the Pho-
toChat (Zang et al., 2021) dataset, which is a high-
quality dataset consisting of 10,917 images and
12,286 dialogues. Each dialogue is associated with
a user image and its corresponding text descrip-
tion. The dataset is divided into 10,286 training
instances, 1,000 development instances, and 1,000
testing instances. Moreover, PhotoChat includes
photo-sharing activities, defined as the process
of creating <Img><caption></Img> in this study.
Each conversation in PhotoChat is broken down
and constructed into multiple samples so that each
round of responses can be learned. Specifically,
we regard the first three turns as the dialog context,

and the subsequent turns as the prediction targets.
By converting the dialogues of this dataset into the
form mentioned in 4.4, we obtained 49,240 train,
4,792 dev, and 4,836 test dialogue pairs.

For the VQA task, we conduct a quantitative
evaluation on both the OK-VQA (Marino et al.,
2019) validation set (5,046 questions) and the
GQA (Hudson and Manning, 2019) test-dev set
(12,578 questions). As shown in Table 4, for the
frozen LLM, following BLIP-2, we employ the
length penalty in beam search to encourage short
answer generation. On the contrary, for the tuned
LLM, we use the VQA instructions (as shown in
Table 10) to do instruction tuning during the align-
ment process. The data for instruction tuning is
constructed by randomly selecting 5K data from
VQAv2 (Goyal et al., 2017) and 5K data from Vi-
sual Dialog (Murahari et al., 2019) training set.

C Baselines

We compare our proposed model with the follow-
ing state-of-the-art baselines:
BLIP (Li et al., 2022) is a multimodal mixture
of encoder-decoder. It can be used as an image-
based text encoder or decoder. We use it to perform
caption generation and VQA tasks.
BLIP-2 (Li et al., 2023b) is pre-trained through
bootstrapped learning from frozen visual encoder
and LLMs using an efficient pre-training strategy.
Flamingo (Alayrac et al., 2022) incorporates new
cross-attention layers into Chinchilla language
model (Hoffmann et al., 2022) to inject visual fea-
tures, and pre-trains the new layers on billions of
image-text pairs. We use it to perform caption gen-
eration and VQA tasks.
InstructBlip (Dai et al., 2023) is a vision-language
instruction tuning framework that is trained with
BLIP-2 and capable of solving various visual lan-
guage tasks.
MiniGPT-4 (Zhu et al., 2023) utilizes a single pro-
jection layer to align visual information from a pre-
trained vision encoder with an LLM. It employed
the same visual encoder as used in BLIP-2.
LLaVA (Liu et al., 2023b) employs a solitary pro-
jection layer to convert image features extracted
from the pre-trained CLIP-ViT-L/14 visual encoder
into the language embedding space of Vicuna.
Maria (Liang et al., 2021) is a neural conversation
agent which can leverage visual world experiences
sourced from a vast image index. It possesses the
ability to fetch a relevant image specific to the con-
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Data types Dataset Size BiDiffuser Alignment Fine-tuning

Caption MS-COCO caption (Lin et al., 2014) 83K " " %

Visual Genome (Krishna et al., 2017) 86K " % %

Multimodal instruction LLaVA dataset (Liu et al., 2023b) 80K % " "

VQA VQAv2 (Goyal et al., 2017) 83K % - "

AOK-VQA (Schwenk et al., 2022) 66K % % "

OCR-related tasks Text Captions (Sidorov et al., 2020) 22K % % "

TextVQA (Singh et al., 2019) % % "

Table 8: Description of datasets used in our alignment and VQA fine-tuning stages. Noting that in alignment process,
we used 5K images from VQAv2 dataset.

Dataset Task Split Metric

Image-to-Text
MS-COCO (Lin et al., 2014) Image captioning Test CIDEr, BLEU, SPICE
NoCaps (Agrawal et al., 2019) Image captioning Val CIDEr, SPICE
OK-VQA (Marino et al., 2019) VQA Val Accuracy
GQA (Hudson and Manning, 2019) VQA Test Accuracy

Multimodal Generation PhotoChat Zang et al., 2021 Image dialogue Test PPL, BLEU, ROUGE, FID

Table 9: Summary of the evaluation datasets and metrics.

versation and extract visual knowledge from it.
Divter (Sun et al., 2021) focuses on exploring mul-
timodal dialogue generative models. Given the
dialogue context, this model first generates a text
response or image description and then generates
an image according to the description.

   BiDiffuser

Projection Layer

  CLIP ViT-L

Projection Layer

Image EmbeddingText Embedding Text Embedding

What might be the purpose 
of the buses in this 
location? ### Assistant:

LLM

Embedding Layer

Figure 6: Model’s architecture for VQA finetuning. The
module with blue background is referred to as BiDif-
fuser, while the rest is the architecture of MLLM using
CLIP as the image encoder (such as LLaVA).

D Evaluation

For evaluating the quality of text generation, we
utilize metrics such as BLEU, Rouge-L, Accu-
racy, and PPL (Perplexity). Additionally, follow-
ing the approach of Vicuna (Chiang et al., 2023)
and LLaVA (Liu et al., 2023b), we employ Chat-
GPT to assess the generated responses from our
model. Specifically, for the image captioning task,

we randomly select 30 images from the MS-COCO
Karpathy split and then let ChatGPT score the re-
sponses generated by EasyGen and the baseline
models. ChatGPT evaluates the models’ responses
based on relevance, details, and accuracy and as-
signs an overall score between 1 and 10, with a
higher score indicating better performance. To eval-
uate the quality of image generation, we use the
Frechet Inception Distance (FID) score (Heusel
et al., 2017), which measures the divergence be-
tween two multivariate normal distributions.

E Implementation Details

LLM During the alignment process, we utilize
the AdamW optimizer with β0 = 0.9, β1 = 0.99,
and weight decay of 0. The LLMs are trained with
a cosine learning rate of 2e-5 and a warmup rate
of 0.03. We use a batch size of 96 for the frozen
LLMs and 32 for the tuned LLMs. During training,
we convert the LLMs (FlanT5XL/Vicuna-7B) to
BFloat16/FP16 and BiDiffuser to FP16. During the
VQA tuning process, we use CLIP ViT-L/14 336px
as additional image encoder. We finetune EasyGen
on mixture datasets for 1 epoch with a batch size
of 32. We adopt the AdamW optimizer with β =
(0.9, 0.99) with the learning rate is 2e-5. We use
a cosine learning rate decay with a learning rate is
2e-5 and warmup ration is 0.03.

Diffusion Module We inherit the settings from
UniDiffuser and utilize pre-trained weights from
its checkpoint for our text-to-image generator. The
model is fine-tuned on the MS-COCO and VG
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Task Instruction Template

Image Captioning USER: <image>+random[query] Assistant:

LLaVA 80K
USER: Please answer question from this image: <image> Question: <question> Assistant:
USER: Image: <image> Question: <question> Assistant:
USER: Answer question <question> through the image <image> Assistant:

Multimodal Dialogue USER: Dialog history+<photo>+Dialogue history Assistant:

VQA USER: Image: <image> Question: <question> Short answer: Assistant:
USER: Image: <image> Question: <question> Answer the option’s letter. Assistant:

Table 10: Examples of task instruction templates. <image> represents the input image, <question> denotes the
question in the VQA and LLaVA 80K dataset, and <photo> is the image description of the input image.

dataset, which contains images with a resolution
of 512 × 512, for 10 epochs with a batch size of
312. For all of our sampling processes, we employ
DPM-Solver with 50 steps.

1. Describe the image concisely.
2. Provide a brief description of the given image.
3. Can you describe this image briefly?
4. Provide a summary of visual elements depicted in the image.
5. Give me the essential characteristics of the photograph in a
concise manner.
6. Rephrase the image depicted in a concise manner.
7. Describe the objects in this image no in detail.
8. Please introduce the image for me briefly.
9. Give me the image’s short descriptions.
10. Please provide a general depiction of the image presented.

Table 11: For the image captioning task, a query instruc-
tion is randomly selected.

F Instruction Tuning

We list the instructions for different tasks in the
main paper in Table 10. Specifically, the queries
used to describe image contents are presented in
Table 11. Table 10 shows the templates used in
Vicuna, if the LLM is FlanT5, kindly use “Human”
to substitute “USER” in the instruction templates.
Model architecture for VQA finetuning is shown
in Figure 6. EasyGen integrates the outputs of
BiDiffuser with images encoded by CLIP ViT-L/14.
We freeze CLIP and BiDiffuser while only tuning
the parameters of the LLM and projection layers.

G Training Efficiency

Table 13 summarizes the key factors in training
EasyGen. The training process of EasyGen is com-
putationally efficient, especially with the utiliza-
tion of the parameter-efficient fine-tuning method
LoRa (Hu et al., 2021). To enable multimodal
response generation, we further train the aligned
EasyGen. This process entails fine-tuning the LLM
(FlanT5XL) on the PhotoChat dataset for 2 epochs,
which typically requires approximately 4 A100
(80G) GPU hours.

Different Instruction Templates:

Caption
Generation

Provide a brief description of the given im-
age. Assistant:

Response Buses parked with a snow mountain view be-
hind them.

VQA What numbers are displayed on the front of the
bus on the right? Short answer: Assistant:

Response 6044

Multimodal
Dialogue

What might be the purpose of the buses in this
location? Assistant:

Response It is plausible that they are in this location for
multiple reasons. Some possible reasons might
be: 1)...2)...

Table 12: Examples of different instructions with dif-
ferent output formats. We use bold fonts to indicate
different instructions.

H Impact of Alignment Manners

In Table 14, we investigate the impact of different
alignment manners on EasyGen. After removing
the ITDM loss, the performance is slightly weaker
than the original model. It is evident that the MSE
Loss can help to align the semantic spaces of the
two models. Furthermore, the performance of the
model will drop significantly after removing the
cross-entropy loss, suggesting that constraints via
the language model play a key role.

I More Qualitative Results

We present several instances on PhotoChat dataset
in Figure 7 and the image-captioning task in Fig-
ure 8. In Figure 9, 11, 10, we compare EasyGen
with state-of-the-art multimodal language models.
The responses of MiniGPT-4, LLaVA, mPLUG-
owl and InstructBlip are obtained from their offi-
cial demos. Morever, in Figure 12, 13, we show
EasyGen’s ability to accept multimodal inputs and
generate multimodal responses.
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Model Trainable Param. Training Images Training Cost
Pre-training

BiDiffuser 952M 169K 120 (A100 80GB) GPU hours

Alignment
Projection Layers + T5XL 4M 163K 20 (RTX3090 24GB) GPU hours
Projection Layers + T5XL 3B 173K 20 (A100 80GB) GPU hours
Projection Layers + Vicuna 7B 7B 173K 72 (A100 80GB) GPU hours
Projection Layers + Vicuna 7B(LoRa) 610M 173K 20 (A100 80GB) GPU hours

Table 13: EasyGen’s trainable parameters, training data size, and training cost during alignment process.

Model NoCaps (val) COCO (Karpathy) OK-VQA GQA

CIDEr SPICE SPICE BLEU@4 CIDEr Accuracy Accuracy

EasyGen Mid-Align FlanT5XL 121.2 15.5 25.1 43.5 145.7 31.5 22.6
+ w/o ITDM 118.6 15.3 24.8 42.2 141.5 - -
+ w/o ITG 93.2 12.9 23.0 35.1 127.6 - -

Table 14: Ablation studies on the instruction-tuning process and loss functions.

A: I just got back from the pet store and you wouldn’t believe what I saw? 

B: What you saw, can you tell me? 

A: I saw the cutest golden retriever ever… I couldn’t stop looking at this animal… 

A: Check it out - I took a picture. <Img>

A: What’s onn your mind?              B: Good. �anks. I am thinking to make a cake. 

A: Sound yummy, what kind? 

B: I saw a chocolate cake topped with whipped cream. It looks so yummy.  

B: I hope you can see the photo. <Img>

Objects in the photo: Animal, 

Golden retriever, Dog, Carnivore.

Objects in the photo: Baked goods, 

Cake, Dairy

B: Lovely and cute dude A: �e cake looks beautiful, but 

should not be hard to make.

A golden retriever puppy peeking 

through a stuffed animal

A chocolate cake covered with 

whipped cream

B: What a cute golden retriever, I 

want to play with him.

A: Delicious! Do you have a recipe in 

mind for your chocolate cake with 

whipped cream topping?

Ground Truth Ground TruthEasyGen (Ours) EasyGen (Ours)

Dialogue 

Context

Image 

Description

Response

Images

Figure 7: Examples of the generated responses on PhotoChat dataset. The text highlighted in red indicates the
objects present in the image. The turns prefixed with A/B denote the given context.

EasyGen: A giraffe eating 
grass on a green grass field.

EasyGen: A kitchen with a stove 
and oven in a fireplace.

EasyGen: Two children are 
riding on skis with their parents 
in a snowy street.

EasyGen: A snowboarder flying 
through the air on a frozen 
mountain slope.

EasyGen: Two cats separated by the 
window are looking forward at the 
same time.

EasyGen: A long wooden bench 
with pictures of the world.

Figure 8: Examples of image captioning results by EasyGen.
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MultiModal Chat Group

Please tell me the information about this picture.

Generating some pictures like this.

This painting is a classic representation of a young girl from the 17th century. The girl is depicted wearing a blue 

and white dress, with a pearl earring in her ear. The painting is a masterpiece of Dutch Golden Age art, a period of 

great cultural and economic prosperity in the Netherlands. The girl in the painting is likely depicted as a middle-

class citizen, and the painting may have been commissioned as a portrait or for a specific purpose, such as a 

family crest or a religious painting. The painting is known for its attention to detail, vivid colors, and beautifully 

rendered textures. It is a true masterpiece of Dutch art, and a must- see for anyone interested in the history of art.

EasyGen (ours):

EasyGen (ours):

mPLUG-Owl:

mPLUG-Owl:

LLaVA:

LLaVA:

MiniGPT-4:

MiniGPT-4:

The image is a painting depicting a young girl, likely a Dutch girl in a yellow dress, with her hair tied up in braids 

and a gold earring. She is looking directly into the viewer’s eyes, creating an intimate connection with the observer. 

The painting is set in an indoor scene with a table and chairs visible in the background. The girl is positioned in 

front of the table, and there is an additional person standing to her left. There are also several other people in 

various positions around the room, suggesting a social gathering or a family setting.

Here are a few examples of paintings that are similar in style to the one you described: 1. “Girl with a Pearl Earring” 

by Johannes Vermeer; 2. “The Procuress” by Pieter de Hooch; 3. “The Artist’s Mother” by Gerard van Honthorst …. 

These paintings are all from the 17th century and depict women or groups of people in various settings, often with 

a focus on everyday life. They are known for their attention to detail and realistic depiction of light and shadow.

The image is a portrait of a woman wearing a blue headscarf, a yellow dress, and a pearl earring. 

She is looking to her left, and her outfit and accessories create a visually appealing contrast against 

the background. The woman’s attire and appearance suggest a sense of style and elegance.

I’m sorry, as an AI language model, I am not able to generate images. However, I 

can suggest some ideas for paintings that share a similar style to the portrait of the 

woman in the blue headscarf, yellow dress, and pearl earring by Johannes Vermeer:

The painting depicts a young woman with a pearl earring looking out into the distance. The woman is 

wearing a yellow dress with a blue and white headband. The background is a mix of blue and green, 

with a few trees visible in the distance. The overall mood of the painting is peaceful and contemplative. 

The painting is likely a representation of a woman reflecting on her thoughts or feelings.

Here are some pictures that resemble the painting, featuring young girls with their hair up in braids and 

wearing gold earrings: A young girl in a yellow dress and braided hair, looking directly into the viewer’s eyes. 

Another young woman with her hair in similar braid styles, wears a white dress with gold accents, and has a 

gold necklace. Two girls in matching yellow outfits, with braiding and gold jewelry, standing together and 

looking into each other’ s eyes, creating a warm and inviting atmosphere.

Figure 9: In this case study, for the first question, EasyGen can give an accurate answer including the background
information of the image. With the image generation ability of BiDiffuser, EasyGen can generate visual responses.
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MultiModal Chat Group

Where can I see this object appeared in this image?

I plan to travel here, what should I pay attention to?

EasyGen (ours):

mPLUG-Owl:

LLaVA:

As you’re looking at a rendering of an iconic white and gold statue of a woman in a field, pay attention to the 
details of the sculpture, the sky, and the surroundings. The statue is situated in a green field, which provides a 
picturesque and serene atmosphere. The sky in the background is blue, suggesting a clear and sunny day. 
To fully appreciate the beauty and significance of the statue, it’s crucial to observe its detail, size, and the 
overall composition of the image. The statue may depict a woman, an important figure in history, or a 
symbol of liberty and freedom. Additionally, pay attention to the field’s surroundings, such as the grass, 
vegetation, and any other elements that contribute to the overall aesthetic.

When visiting the Statue of Liberty, there are a few things you should keep in mind: 
1. The Statue of Liberty is a colossal neoclassical sculpture on Liberty Island in New York Harbor within New York City, 
United States. It was a gift from the people of France to the people of the United States and was dedicated on October 28, 
1886, to commemorate the centennial of the signing of the United States Declaration of Independence. 
2. The statue is 301 feet (92 meters) tall, including its pedestal and base, and is made of iron and steel. It was designed by 
the French sculptor Frederic Auguste Bartholdi and the American architect Emmanuel Louis Masqueray. 
3. To get to the Statue of Liberty, you can take a ferry from Battery Park in Lower Manhattan. There are several ferry 
services that offer tours to the statue, and it’s important to plan ahead and book your tickets in advance to avoid long 
lines. Once you’re on Liberty Island, you can take an elevator or stairs to the top of the pedestal, where you’ll have a 
stunning view of 
4. New York Harbor and the surrounding city skyline. It’s important to note that the pedestal is closed to visitors, but you 
can still get a close-up view of the statue from the observation deck. 
5. Be sure to check the weather forecast before your visit, as the statue can be closed due to high winds or other inclement 
weather conditions. And don’t forget to bring your camera to capture the stunning views and memorable moments!

When planning a trip to visit the Statue of Liberty, there are several things you should pay attention to: 
1. Tickets: You will need to purchase tickets in advance to visit the Statue of Liberty and Ellis Island. You can 
do this through the official Statue of Liberty National Monument website or through authorized ticket sellers. 
2. Accessibility: The Statue of Liberty is accessible via ferry from Battery Park in Lower Manhattan. There are 
also guided tours available, which can provide more information about the history and significance of the 
statue. 
3. Closed areas: Some areas of the Statue of Liberty, such as the pedestal and the crown, are closed to visitors 
due to safety concerns. Make sure to check the official website for the most up-to-date information on 
accessibility and restrictions. 
4. Clothing and footwear: Wear comfortable shoes and dress appropriately for the weather, as you will be 
walking and standing for extended periods of time.

The Statue of Liberty is located in New York City, United States. It is a famous landmark and 
tourist attraction, and you can see it in person by visiting Liberty Island in New York Harbor.

EasyGen (ours):

mPLUG-Owl:

LLaVA:

You can see this blue and white 3D rendering of the Statue of Liberty located in the United States. 
The image features an artistically detailed representation of the famous landmark, which stands tall 
and proud in the skyline. The statue represents the ideals of freedom, democracy, and human rights. 
The scene is captured in a blue sky, emphasizing the beauty and grandeur of the iconic structure.

You can see the Statue of Liberty in the image, standing tall and proud in front of a blue sky.

Figure 10: In this case study, for the first question, EasyGen can give an accurate answer, but the responses of the
other two models are a bit biased. For the second question, EasyGen and LLaVA both give reasonable advice.
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How can the girl improve her working environment?

In the image, the young girl is sitting in a room with a laptop in front of her, which suggests that she 

might be working or studying. To improve her working environment, she can consider several factors: 

1. Ergonomics: Ensure that the laptop is placed at eye level or slightly below, and the desk is at a 

comfortable height for her to maintain a neutral posture. Adjustable furniture like a desk or a chair 

can help achieve a comfortable working height. 

2. Lighting: Ensure that the room is well-lit, with natural light or artificial lighting to minimize eye 

strain and improve focus. 

3. Organization: Keep the room clean and organized, with important items within easy reach. This 

can help maintain focus and prevent distractions. 

4. Comfortable environment: Creating a comfortable environment, such as a dedicated workspace 

separate from her bedroom, can help establish boundaries and promote productivity. 

5. Time management: Establish a routine and allocate specific time slots for studying or working on 

her laptop. This can help her stay on track and avoid procrastination. 

By implementing these suggestions, the girl can enhance her working environment and achieve 

better focus, productivity, and overall comfort while working on her laptop.

EasyGen (ours):

mPLUG-Owl:

MiniGPT-4:

To improve her working environment, the girl could consider several options: 

1. Organize her space: Ensure the area where she is working is clean, uncluttered, and well-lit. Remove 

distractions such as toys or other items that might cause her to lose focus. Arrange her books and laptop 

in a manner that is easy to access and comfortable for her to work in. 

2. Create a designated work area: Set up a designated space for her to work, such as a desk, table, or a 

specific corner in the living room. This helps her maintain her focus and minimize distractions. 

3. Provide a comfortable chair and proper lighting: Select a chair with good back support and proper 

ergonomics to ensure she is comfortable while working. Lighting should be bright and evenly distributed 

to minimize shadows and glare. 

4. Set reasonable work hours: Set a reasonable time limit for her to work, and let her know when it’s time 

to take a break. This can help her maintain focus and minimize fatigue. 

By creating a well-organized, comfortable, and productive working environment, the girl can improve her 

focus and efficiency while minimizing distractions during her time spent studying and doing homework.

There are several ways the girl can improve her working environment. One way is to make sure her desk and 

chair are comfortable and adjustable to her height. Another way is to have a clean and organized workspace, 

so she can easily find what she needs. Additionally, she could have a good lighting system to help her see her 

work better. Finally, she could have a cushion or pillow to sit on to help reduce fatigue.

InstructBlip:

The girl in the image can improve her working environment by organizing her surroundings and creating 

a designated study area. To achieve this, she could separate the laptop from other items in the room and 

create a consistent workspace. This can help her maintain focus and reduce distractions, which can 

ultimately enhance her productivity and creativity. Additionally, using a comfortable chair and positioning 

the laptop at a suitable height can help prevent eye strain and promote better posture during long 

periods of work. Using a calm atmosphere with adequate lighting and placing the laptop away from 

windows or other sources of glare can also aid in ensuring a more conducive working environment.

MultiModal Chat Group

Figure 11: From this example, we can find that the response from EasyGen is more comprehensive and coherent.
This shows EasyGen can give reasonable suggestions based on the given image.
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EasyGen

I like the flowers in this picture. Please 

introduce these flowers.

Show me some close up pictures 

about hydrangeas with pink petals.

The flowers in the picture are blue hydrangeas. 

Hydrangeas are a popular flowering plant that 

are known for their large, showy flowers and 

clusters of small, delicate flowers in shades of 

pink, blue, and white. The blue hydrangeas in the 

picture are likely the “Hydrangea macrophylla” 

variety, which is known for its large, cone-

shaped flowers and blue or pink petals. These 

flowers are often used in floral arrangements 

and as a decorative element in landscap

Figure 12: Example of multimodal response generation.

EasyGen

What is the object in the picture and who 

invented it?

What other things did he invent?

Wow, I am interested in phonograph, 

please introduce it and show me some 

picture about it.

The object in the picture is an old 

incandescent light bulb, which was invented 

by Thomas Edison.

In addition to the incandescent light bulb, 

Edison also invented numerous other things, 

including the electric motor, the 

phonograph, and the first practical electric 

lighting system. He was recognized as one of 

the most prolific inventors in history, with 

over 1,000 patents to his name.

A phonograph, also called a record player, is 

an apparatus that plays recorded sound 

using a disk or cylinder of grooved media, 

called a record or a cylinder. The record is 

placed onto a turntable, which is connected 

to a motor that rotates the record at a 

specific speed ….

Here are some possible pictures:

Figure 13: Example of multimodal response generation.
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