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Abstract

Embodied AI aims to develop robots that can
understand and execute human language in-
structions, as well as communicate in natu-
ral languages. On this front, we study the
task of generating highly detailed navigational
instructions for the embodied robots to fol-
low. Although recent studies have demon-
strated significant leaps in the generation of
step-by-step instructions from sequences of im-
ages, the generated instructions lack variety
in terms of their referral to objects and land-
marks. Existing speaker models learn strate-
gies to evade the evaluation metrics and obtain
higher scores even for low-quality sentences.
In this work, we propose SAS (Spatially-Aware
Speaker), an instruction generator or Speaker
model that utilises both structural and seman-
tic knowledge of the environment to produce
richer instructions. For training, we employ
a reward learning method in an adversarial
setting to avoid systematic bias introduced by
language evaluation metrics. Empirically, our
method outperforms existing instruction gen-
eration models, evaluated using standard met-
rics. Our code is available at https://github.
com/gmuraleekrishna/SAS.

1 Introduction

Incorporating language understanding in robots has
been a long-standing goal of the NLP and robotic
research community. Specifically, the Vision-
Language Navigation (VLN) task requires robots
to follow natural language instructions grounded
on vision to navigate in human living spaces. Al-
though humans generally follow navigational in-
structions well, training robots to follow natural lan-
guage instructions remains a challenging problem.
Detailed navigation instructions may include land-
marks, actions, and destinations. Recent work has
succeeded in improving instruction understanding
of robots by augmenting instruction and trajectory
training data (Hong et al., 2020; Wang et al., 2022,
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Figure 1: Extracting 3D scene relationships from house
environments (a,b) can improve instruction generation
by including object references (c).

2023). They showed that using machine-generated
instructions from a large number of navigational
paths sampled from real houses helps robots nav-
igate successfully even in previously unseen en-
vironments. However, there is still room for im-
provement, as the quality of machine-generated
instructions is clearly lower compared to human
annotations (Zhao et al., 2021).

In this work, we present a novel instruction gen-
eration model that can produce a variety of human-
like instructions using semantic and structural cues
from the environment. Our method uses rooms,
interesting landmarks, objects, inter-object rela-
tions, object locations, and spatial features to pro-
duce richer instructions that can be used by robots
and humans alike (Fig. 1). Our Spatially-Aware
Speaker (SAS) model generates information-rich
instructions by leveraging expert demonstrations
that map trajectories to verbal directions. Incorpo-
rating spatial references within these instructions
is critical, as they convey the environmental lay-
out, highlight key landmarks relevant to the actions
taken, and gauge the progression of navigation. At
its core, SAS employs a sequence learning frame-
work that is fine-tuned through a combination of
adversarial learning rewards and multiple objec-
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tives aimed at enhancing its linguistic generation
capabilities.

The architecture of SAS is based on an Encoder-
Decoder model, which processes a sequence of
viewpoints and corresponding actions that define a
navigational path, subsequently generating a coher-
ent set of instructions. During the encoding phase,
the model extracts vital information from visual
inputs, such as object categories (e.g., cupboard,
bed), spatial relationships between objects (e.g.,
on top of, near, under), object placements, and
significant landmarks within the viewpoint (e.g.,
bedroom, kitchen). These elements are combined
with navigational actions to form a comprehensive
vision-action representation that computes the tem-
poral order.

The decoding phase acquires linguistic capabili-
ties by linking this latent representation to the in-
structions encountered during training. An adver-
sarial learning objective is introduced to encourage
the generation of varied sentences, mitigating the
potential biases that automatic evaluation metrics
introduce. Through this novel approach, SAS out-
performs existing instruction generation models on
VLN datasets evaluated using standard language
evaluation metrics.

Our contribution is as follows.

• We introduce a novel speaker model (SAS)
that can incorporate semantic and structural
viewpoint features into the instruction.

• We develop an adversarial reward learning
strategy, that rewards diverse instructions, to
train our SAS model.

• We introduce a large scale silver dataset for
automatic data augmentation.

2 Related Work

2.1 Natural Language Navigational Guidance
and Following

Methods for modelling human and robot be-
haviours for the generation and execution of natural
language instructions span several disciplines, in-
cluding cognitive psychology (Ward et al., 1986),
sociology (Harrell et al., 2000), natural language
processing (NLP) (Daniele et al., 2017), and
robotics (Wang et al., 2023). Studies show that
adequate navigational instructions have directions,
landmarks, region descriptions and turn-by-turn
actions (Look et al., 2005). These instructions are

also beneficial to human-machine interaction, par-
ticularly in embodied agents.

The embodied navigation problem has been re-
ceiving attention from multiple research domains
such as robotics, NLP and scene understanding
(Anderson et al., 2018; Dorbala et al., 2023). Re-
cent studies have shown that VLN agents learn
better on machine-generated examples (Fried et al.,
2018; Tan et al., 2019; Wang et al., 2023). These
methods, generally called Speaker models, are still
far from generating human-like instructions, as ex-
hibited by their lower machine-generation evalua-
tion scores. Our work aims to improve the quality
of the generated instructions over baseline models
by including landmarks, actions, and directions.

2.2 Spatial and Semantic Scene
Understanding for Embodied Navigation

Neuroscience has shown that humans, like others
in the animal kingdom, use spatial and temporal
cues to build a cognitive map of their surround-
ings (Kuipers, 1978). These cognitive maps are
crucial for manipulating or navigating the environ-
ment. Inspired by this, recent studies in robotics
and embodied navigation have used vision mod-
els to infer the structure of the environment (Kuo
et al., 2023; Gopinathan et al., 2021), spatial re-
lationships among objects in the scene (Qi et al.,
2020; Moudgil et al., 2021) and environment layout
(Gopinathan et al., 2023) to learn about the envi-
ronment (Song et al., 2022). While these methods
utilise structure, spatial and semantic knowledge
in various combinations to learn vision-language
association, they are not applied to instruction gen-
eration task. In this work, we use all four aspects
of a satisfactory instruction - landmark through
visual encoding, directions through directional en-
coding, turn-by-turn actions using action encoding
and region descriptions as semantic encoding - to
generate richer instructions.

2.3 Reinforcement learning for Instruction
Generation

Reinforcement learning (RL) has been successful
in machine generation tasks such as translation, in-
struction generation, captioning, and storytelling.
In this paper, the primary objective is to maximise
the expected return of a word-generating policy. RL
instruction generation methods are found to learn
the target distribution better than traditional maxi-
mum likelihood estimation (MLE) algorithms due
to the inherent exposure bias (Arora et al., 2022).
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Applying RL to learn the target distribution re-
quires extensive feature and reward engineering.
Instead, inverse reinforcement learning (IRL) is
proposed to infer the expert’s reward function. Us-
ing an adversarial setting, IRL has been shown to
improve visual story telling (Wang et al., 2018).

Existing work in VLN have studied natural lan-
guage instruction generation (Fried et al., 2018;
Wang et al., 2022, 2019) as a sequence generation
problem, however, they focus on navigational suc-
cess of the overall agent over instruction quality.
Duo et al. Dou and Peng (2022) optimise their
Speaker by using the similarity between itself and
the gradient of the navigation model as a reward for
RL. The authors evaluated their method on BLEU,
a metric which does not guarantee high-quality in-
structions. Zhao et al. (2021) discovered that in
the context of dialogue generation and navigational
tasks, the majority of n-gram-based automatic lan-
guage evaluation metrics show a weak correlation
with human-annotated instructions.

Inspired by these studies, we adopt an IRL-based
reward learning strategy to produce high-quality
navigation instructions by indirectly learning the
reward from language metrics. This mitigates ex-
posure bias and avoids the model from gaming the
metrics to achieve high evaluation scores - even
with low-quality instructions.

3 Problem Definition

Here we present the task aimed at generating lin-
guistic instructions from navigational demonstra-
tions. The generation of instructions is posited as
the converse operation to the standard VLN task,
where an agent executes a navigation instruction in
a house. For this, we develop a Speaker agent that
synthesises a coherent set of natural language in-
structions from a sequence of navigational actions
along a trajectory.

At each discrete time step t, the Speaker agent is
presented with a panoramic visual observation Ot

and a directional action at that signifies the tran-
sition to the next viewpoint within the trajectory.
Upon completion of a navigational episode, the
agent outputs the complete instruction of the tra-
versed path, that is, X = {w0, . . . , wl}. Formally,
the objective of the Speaker is to minimise the neg-
ative log-likelihood for ground-truth instruction X
conditioned on trajectory T = {O1, . . . , ON} with
parameter θ:

Lθ = −
∑

θ

log(p(X|T ; θ))) (1)

4 Preliminaries

4.1 Path Mixing

Instruction 1: Exit the bedroom to the hallway and turn left. Walk forward towards
the bathroom. Turn right and enter the toilet. Stop near the sink.
Instruction 2: Walk towards the bed. Turn to your left and walk towards the
hallway. Enter the next bedroom and stop near the bed.
Mixed Instruction: Walk towards the bed. Turn to your left and walk towards the
hallway. Walk forward towards the bathroom.

Figure 2: Path Mixing (PM) using fine-grained paths
from R2R dataset. Original paths → and → are
mixed to generate → .

Prior work in VLN have shown that more instruc-
tion examples can improve an agent’s performance
in previously unseen environments (Moudgil et al.,
2021; Wang et al., 2022). Hence, to supplement
training data, we mix parts of trajectories from the
FGR2R dataset (Hong et al., 2020) (which is de-
rived from the R2R (Anderson et al., 2018) dataset)
to obtain additional instruction-trajectory pairs.

R2R dataset contains paths and human-
annotated instructions for navigating inside 3D
scanned house environments from the Matter-
port3D (MP3D) dataset (Chang et al., 2017).
Further fine-grained (turn-by-turn) or micro-
instructions are available in the FGR2R dataset.
We adopt FGR2R to enhance our training data by
algorithmically combining parts of its trajectories,
creating new instruction-trajectory pairs. Unlike
REM (Moudgil et al., 2021; Liu et al., 2021), which
randomly mixes data from different houses, we
only mix trajectories from the same house to en-
sure visual and object referral consistency.

First, we identify key edges in the graph to mix
trajectories, focusing on start edges εstart and end
edges εend of navigation paths. These edges are
crucial as they relate to start and end of instruc-
tions (e.g. "Walk away from the desk, Turn right").
Edges with micro-instructions1 that do not contain

1Part of the instruction pertinent to one edge of the path
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a NOUN, VERB are ignored to avoid partial or incon-
sequential (wait there) actions. Then, we mix the
remaining transition edges εtrans to form a trajec-
tory from εstart to εend. Nodes that are too close
to each other, leading to a lack of visual diversity
or repetitive micro-instructions are also avoided.
We connect edges based on the following criteria:
(1) the distance between any two nodes (except
the start and end nodes) should not exceed 3m, (2)
the angles between edges should prevent looping;
(3) the start and end nodes should not share an
edge; (4) micro-instructions from shared edges of
different trajectories are selected randomly.

The final instruction combines these micro-
instructions, and the trajectory is a sequence of
edges (as shown in Fig. 2). Using this method,
we generated 162k instruction-trajectory pairs with
path lengths ranging from 5m to 20m. The dataset2

averages 7.27 views per trajectory, a mean path
length of 14.4m, and about 82 words per instruc-
tion. More dataset statistics are added to the sup-
plementary material.

4.2 Action Parsing

To allow the speaker to learn action phrases by
associating them to the navigational actions, we
automatically extract the action phrases from the
instruction for training. For this, we use spaCy’s
(Honnibal et al., 2020) dependency parsing and
part-of-speech tagging to identify verb forms that
are transitive, indirect transitive, direct transitive
and also the part-of-speech forms such as nouns,
adverbs, adpositions, interjections and determiners
(refer Appendix B for more details). We use this
algorithm to identify action phrases from each step
of the instruction and classify parts of sentences
to either actions or other phrases. The identified
micro-instructions are used to train the decoder part
of SAS (§6.2).

5 Spatially-Aware Speaker (SAS) Model

In this section, we present our Spatially-Aware
Speaker model. SAS is an encoder-decoder model
which generates an instruction for a trajectory when
the sequence of viewpoints and actions are pro-
vided. The trajectory encoder produces visual-
action context from the trajectory viewpoints and
the corresponding actions. This context is used by
instruction decoder to generate instruction.

2Available at https://zenodo.org/records/10396782

To incorporate spatial and semantic awareness,
we provide three crucial pieces of information to
the model, namely: Action Encoding, Structural
Encoding and Semantic Encoding. These are ex-
plained in the following sections.

Action Encoding The action taken between
viewpoints in a trajectory is represented by Ac-
tion Encoding. The visual action encoding is the
current heading and elevation of the agent with
respect to the next view direction. The relative el-
evation (θ) and heading (ϕ) angles are encoded as
Ea = [cos θ, sin θ, cosϕ, sinϕ].

Structural Encoding Structural encoding pro-
vides knowledge of the egocentric locations of ob-
jects with respect to the Speaker. In the panoramic
view of each viewpoint, we extract an object’s lo-
cation in the image frame, as well as its size and
distance to the agent in order to represent a com-
plete pose of the object relative to the agent. The
image frame location is obtained from the loca-
tion of the object’s bounding box detected by a
Faster R-CNN (Ren et al., 2017) detector trained
on the Visual Genome (Krishna et al., 2017) dataset.
The size and distance of the object are obtained by
projecting (inverse pinhole camera projection) the
bounding box to the point cloud and measuring the
centroid and volume of the contained point cloud.
This provides an estimate of the size and distance to
form the object descriptions. Effectively, the struc-
tural encoding is a combination of object features
fo, object location (cx, cy), size so and distance do
, respectively, i.e. Eso = [fo, (cx, cy), so, do].

Semantic Encoding To provide inter-object re-
lationships we use 1600 object classes Faster-
RCNN and relationships extracted from Concept-
Net (Speer et al., 2017). The object-to-object-
room semantic features are a combination of
GloVe embedding G of the respective token, eobji,j,k=
{G(<obji>);G(<relj>);G(<objk>)}.

Furthermore, we encode the relationship from
room to object using the in the relation as
erooml,m ={G(<objl>);G(<in>);G(<roomm>)}. For
each viewpoint, we encode one eroom and
one eobj per view direction with the highest
detection confidence. In effect, we obtain
the semantic encoding per viewpoint, Esm =
{(eobj1 , eroom), . . . , (eobj36 , eroom)}.
Panoramic Room-Object Attention Finally, we
combine structural and semantic knowledge with
panoramic view to obtain a panoramic knowledge
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feature. For this we first concatenate the candidate
feature fc with the Structural Encoding Eso and
Semantic Encoding Esm:

fcs = W[fc;Esm;Eso] (2)

where W is the trainable projection. We apply an
attention module to make the model attend to in-
formation from different sub-spaces. The two pro-
jections Q(query) and K(key), which are from the
action embedding and the candidate-semantic em-
bedding, respectively, are applied to the attention
as:

αk = softmax

(
Q(hat )K

T (fcs)√
Dk

)
(3)

ck =
∑

i,j

αi,jfpi,j (4)

gt = tanh(W[ck;h
a
t ]) (5)

where cα is the context vector, Dk is the hidden
size of the attention layer, hat is the hidden action
state of the trajectory encoder and gt is the gated
output. The affinity matrix fp governs the informa-
tion flow between neighbouring view patches of
the panorama. Finally, we capture the panoramic
room-object feature using an LSTM:

hvt = LSTMv(gt, h
v
t−1), ∀t = 1, . . . , N (6)

5.1 Trajectory Encoder
The trajectory encoder consists of a multilayer bidi-
rectional LSTM to summarise the input sequence
at each time step conditioned on the navigational
trajectory. This bidirectional approach ensures ac-
tion context at each step is influenced by both the
historic and the future actions in the sequence.

The first BiLSTMA encodes navigation actions
from the ground truth action a. Scaled-dot atten-
tion is applied to the action hidden state ha and
the panoramic visual features fv giving a context
vector cw. A second LSTM encodes the change
of the context vector as hv,at . This hidden state is
used by the decoder to learn visual and language
alignment. Formally:

hat = BiLSTMA(at, h
a
t−1) (7)

αw = softmax

(
Qa(h

a
t )K

T
v (h

v
t )√

Dk

)
(8)

cw =
∑

i,j

αwh
a
t (9)

h̃ = tanh(W[cw;h
v
t ]) (10)

ĥv,at = BiLSTMV A(cw, h̃) (11)

where a is the action embedding, h is the hidden
state. Also, Qa = F a

q (h
a
t ), Kv = F v

k (fv), and Dk

are query and key vectors, hidden dimension size
of the soft attention, respectively.

5.2 Instruction Decoder
Our instruction decoder is guided by semantic and
structural knowledge from the environment. The
basic structure of the decoder is as follows. When
the decoder is provided with the previous instruc-
tion token and the visual-action context hv,at , it
applies an LSTM to encode the instruction token
embedding from the previous time step:

wemb
t−1 = embedding(wt−1) (12)

hXt = LSTMX(wemb
t−1 , h

v,a
t−1) (13)

we apply a scaled-dot attention on the projected
instruction context QX = Fq(h

X
t ) and the vision-

action context Kva = hv,at and V = Fv(h
X
t ):

ĥvaXt = Attention(QX ,Kva, VX) (14)

Finally, the next predicted word is the token of
maximum probability:

wt = argmax(WĥvaXt ) (15)

6 Training

The Encoder (§5.1) and Decoder (§5.2) modules of
SAS are trained end-to-end. SAS model predicts
the next token wt based on the complete trajectory
T = {O1, . . . , ON} and all previous tokens w<t.
The trajectory embedding from the encoder and
w<t is fed to the decoder to produce a probability
distribution pL over the next word token. This
distribution is sampled as in (15) to predict the next
token wt.

SAS model is trained using a mixture of a
Teacher-Forcing (TF) (Williams and Zipser, 1989)
and the ARL method (§6.1). In TF, the decoder gen-
erates the next token based on a ground truth token
instead of using its predicted token as in the Stu-
dent Forcing (SF) strategy. This method has been
shown to improve the baseline methods (Anderson
et al., 2018). Next, we describe reward learning in
detail.

6.1 Reward Learning
Applying Reinforcement Learning (RL) for an in-
struction generation task using automatic evalua-
tion metrics as reward functions, causes the model
to game the metrics. Instead, in reward learning,
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Speaker Policy

Reward
Model
 

Walk into the garage and
turn right. Walk into the
room with the two large
chairs. Turn right and
walk into the bathroom.
Wait near the sink.

Go straight into the garage.
Turn right and go into the
room. Turn right and go into
the bathroom. Stop at the sink.

t

Equation (17)
GT instruction

Generated Instruction

Figure 3: Adversarial training of SAS model. SAS
learns to generate instruction, while reward model learns
the reward function from ground truth data. The learned
reward function is employed to optimise the policy

a reward model learns the best reward for human-
annotated and speaker-generated instructions. In
this strategy, we use a Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2020) architec-
ture - with a Policy and Reward model - to learn
an association between the instruction and reward
distributions (Fig. 3). In an RL sense, this is a
Markov decision process (MDP) with SAS as a pol-
icy Gβ(·), generating words XG and receiving a
reward r(XG) score. The objective is to maximise
the expected reward of Gβ , EXG∼Gβ

[r(XG)]. In
reward learning, the reward distribution is learned
from the demonstrations, rather than adopting a
function to provide a reward.

We adapt the idea of Reward-Boltzmann dis-
tribution from Wang et al. (2018) to approximate
a reward obtained for identifying fake (speaker-
generated) or real (human-annotated) instructions.
The approximate reward distribution Πα for an in-
struction X is defined as:

Πα(X) =
eRα(X)

∑
X

eRα(X)
(16)

where Rα is the reward function. The optimal re-
ward function is achieved when (16) is equal to
the distribution of human-annotated instructions.
We optimise this using an adversarial two player
min-max game between (1) Πα maximising its sim-
ilarity (measured by KL-divergence) with the em-
pirical distribution Πϵ(X) of the training dataset
and minimising its similarity with the distribution
of fake instructions from the policy Πβ and (2)
maximising the similarity of the policy distribution
Πβ with that of Πα. Formally, the objective is:

max
β

min
α

KL(Πϵ||Πα)−KL(Πβ||Πα) (17)

This is optimised through a policy-gradient-based
reinforcement learning method.

Reward Model We investigate two reward mod-
els Rω based on the CNN and RNN models. The
CNN-based discriminator uses the GloVe embed-
ded instruction Xemb and visual feature Oi to pro-
duce a reward score Rω after the activation func-
tion. Formally, the CNN and RNN rewards are,
respectively:

RCNN
ω = WR(Conv(Xemb);WOOi) (18)

RRNN
ω = WR(Xemb;WOAvgPool(Oi)) (19)

where WR and WO are linear learnable weights,
Conv represents the convolution layers followed
by the mean pooling operation, and [; ] is the feature
concatenation. The final sigmoid activation is not
shown for brevity.

Both the Speaker policy and the reward models
are trained alternately using the Adversarial Re-
ward Learning (ARL) algorithm (Algorithm A).
Reward models are evaluated in our ablation stud-
ies (§8.3).

6.2 Supervised Learning

The supervised learning objectives used for both
the teacher-forcing (used in the final model) and the
student-forcing (for the ablation study) strategies
are as follows.

Language modelling Conditioned on path T and
linguistic embedding w<t, the probability of de-
coded words is optimised as a maximum likelihood
estimation (MLE) problem:

LLM = −
∑

t∈{1:N}
log(pL(wt|w<t, T )) (20)

where pL is the likelihood of a token given trajec-
tory T and ground truth instruction tokens wGT

<t .

Unlikelihood training Even low-perplexity ma-
chine generation models are prone to repeating
tokens when presented with small examples (Holtz-
man et al., 2020). To mitigate this, we apply
Sequence-Level unlikelihood loss (Welleck et al.,
2020) on the decoded instruction that penalises
repetition of word tokens w. The objective is to
minimise the logarithmic likelihood of negative
candidates (repeated tokens) Ct conditioned on pre-
vious tokens w<t:

LULS = −
∑

c∈Ct

log(1− pµ(c|w<t)) (21)
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Table 1: Benchmarking results of Speaker-based models (§7) on R2R dataset

Methods
R2R ValSeen R2R ValUnseen

SPICE CIDEr METEOR ROUGE BLEU-4 SPICE CIDEr METEOR ROUGE BLEU-4

Speaker-Follower (Fried et al., 2018) 22.1 43.7 23.0 49.5 28.3 18.9 37.9 21.7 48.0 26.3
EnvDrop (Tan et al., 2019) 24.3 47.8 24.5 49.6 27.7 21.8 41.7 23.6 49.0 27.1
CCC (Wang et al., 2022) 23.1 54.3 23.6 49.3 28.7 21.4 46.1 23.1 47.7 27.2
LANA (Wang et al., 2023) 25.6 53.3 24.5 50.3 31.4 22.6 45.7 23.8 49.8 29.8
SASTF (Ours) 27.9 53.1 28.3 54.9 30.2 22.2 44.9 26.3 55.4 30.2
SASARL+TF (Ours) 28.1 51.6 29.7 56.8 31.4 24.8 43.5 25.7 56.5 33.8

Table 2: Benchmarking results of Speaker-based models (§7) on R4R dataset

Methods
R4R ValSeen R4R ValUnseen

SPICE CIDEr METEOR ROUGE SPICE CIDEr METEOR ROUGE

Speaker-Follower (Fried et al., 2018) 16.4 9.9 21.3 45.3 20.7 13.9 17.2 35.9
EnvDrop (Tan et al., 2019) 20.9 21.6 24.5 47.3 21.8 20.0 18.7 36.3
CCC (Wang et al., 2022) 21.9 24.5 25.2 48.0 23.3 20.6 19.3 36.5
LANA (Wang et al., 2023) 24.5 28.7 26.1 48.4 26.2 23.1 20.0 37.6
SASTF (ours) 25.8 26.5 27.6 50.1 27.4 21.7 21.1 38.4
SASARL+TF (ours) 26.2 22.3 28.9 50.3 28.1 22.5 22.8 39.2

Temporal Alignment Loss We introduce a tem-
poral alignment loss (TAL) to train the decoder to
attend between action phrases and visual-action
context. The decoder’s attention matrix AD, which
represents attention between word tokens and the
panoramic action context, is compared to the
ground truth vision language alignment scores
(§4.2). Formally,

AGT =

{
1, w ↔ oi;w ∈ X, oi ∈ O

0, otherwise
(22)

where↔ denotes action phrase-viewpoint align-
ment. LTAL is the binary cross-entropy loss be-
tween AGT and AD.

Total Objective The total training objective is
the weighted sum of all losses, that is, L =
λLMLLM + λULSLULS + λTALLTAL.

7 Experiments

7.1 Datasets

Our method is assessed using two datasets from
the Vision-and-Language Navigation (VLN) field:
R2R, which features brief trajectory paths and in-
structions for locating rooms, and R4R, an exten-
sion of R2R that links two adjacent tail-to-head
trajectories along with their associated instructions
to produce longer instructions. For training, we
augment R2R dataset with the Path Mixing (PM)
dataset §4.1.

7.2 Evaluation Metrics

We evaluate the performance of SAS instruction
generation using standard language metrics such
as SPICE (Anderson et al., 2016), CIDEr (Vedan-
tam et al., 2015), ROUGE (Lin, 2004), METEOR
(Denkowski and Lavie, 2014) and BLEU-4 (Pap-
ineni et al., 2001). SPICE is considered the main
metric in navigational instruction generation tasks
(Zhao et al., 2021; Wang et al., 2022). A high
SPICE score indicates high lexical and semantic
similarities of sentences and higher success of an
embodied agent, which is important for naviga-
tional instructions (Zhao et al., 2021).

7.3 Implementation Details

We use Speaker-Follower (Fried et al., 2018), a
popular baseline used in previous work, for our
experiments. The model is trained for 100k epochs
(≈14h) using NVIDIA RTX A6000 with batch size
8 and AdamW (Loshchilov and Hutter, 2019) op-
timiser with learning rate 5e-4. The visual feature
and GloVe embedding sizes are 2048 and 300, re-
spectively. The hidden size for the attention layers
Dk is 512. The training objective weights are set
in the ratio λLM : λULS : λTAL = 2 : 1 : 1
to prioritize language learning over repetition and
alignment.. The hidden dimensions for the two-
layer BiLSTM and the QKV sizes in Attention
are set to 768d. We report the evaluation values of
a single run.
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8 Results

We evaluate two variations of SAS to measure
the effectiveness of the proposed method (1) SAS
with teacher-forced SASTF using PM augmen-
tation and temporal alignment (TAL) and (2)
SASARL+TF a mixture of TF and ARL using all
augmentation and supervised learning objectives.
From the results (Table 1), we see that our SAS
method improves on the baseline by a large mar-
gin. Reward learning has absolute improvements
of +5.9 (SPICE), +5.6 (CIDEr), +4 (METEOR),
+8.5 (ROUGE), and +7.5 (BLEU-4) in the R2R
ValUnseen split compared to the Speaker-Follower
baseline. In the long instruction dataset R4R (Table
2), both variations show better scores on all metrics
(SPICE: +7.4, METEOR: +8.6, ROGUE: +3.3 and
CIDEr +8.6). In both ValUnseen splits, the CIDEr
score is markedly impacted (R2R: -2.6 and R4R:
-0.6) when comparing the overall best model to the
baseline models.

8.1 Discussion

SAS shows a better instruction generation capa-
bility with TAL, which goes to show that super-
vising the speaker with action-only sentences is
useful. In addition, our method outperforms the
baseline in most of the major metrics, specifically
in SPICE. This shows that spatial awareness is ben-
eficial for Speaker models. In the R2R and R4R
datasets, both SASTF and SASARL+TF have the
best scores compared to the previous models, ex-
cept for CIDEr. CIDEr rewards lexical similarity
over semantic similarity. As temporal alignment
of actions is pertinent in instruction generation and
not in the lexical order, lower scores in these met-
rics definitely do not reflect wrong actions. Among
these metrics, a higher SPICE score shows that
our model generates temporally consistent instruc-
tions. Zhao et al. (2021) observe that SPICE corre-
lates with human way-finding performance, VLN
agent navigation performance, and subjective hu-
man judgements of instruction quality, when aver-
aged over many instructions. This correlation is
not observed at the instruction level due to the high
variance between the words used in the instruc-
tions. Human evaluation of generated instructions
should be performed to ensure the actual quality
of the instruction. In our study, we consider the
high SPICE score as an early indicator of robust
pathfinding performance for both agents and hu-
mans. It also reflects that human judgement of the

GT: Walk through the kitchen passed the sink and around the corner out into
the hallway. Walk into the arched entry to the left of the stairwell. Continue
into the room with the armchair and bed.
Speaker-Follower: Exit the kitchen. Walk to the hallway and turn left. Walk
into the room.
SAS: Walk through the kitchen past the oven and into the hallway. Walk
through the hallway on the left into the bedroom. Wait near the bed.

Figure 4: An example of a trajectory and the correspond-
ing generated instruction using SASARL+TF model.

quality of SAS-generated instructions is also high.

8.2 Qualitative Results
Our SAS model is able to generate meaningful in-
structions by including object and scene relevant
tokens (such as "oven") as shown in Fig. 4 that
are not referenced in the ground-truth instruction,
while the Speaker-Follower baseline model pro-
duces shorter and action-focused sentences.

8.3 Ablation Studies

Table 3: Ablation Study (§8.3) on R2R dataset
ValUnseen split

Met. PM TAL CNN GRU SPICE CIDEr METEOR ROUGE BLEU-4

#1 22.5 38.0 23.9 48.3 26.2
#2 22.8 39.1 23.9 49.5 27.3
#3 21.2 39.9 23.6 50.1 27.8
#4 22.1 40.4 24.1 53.2 28.6
#5 22.2 44.9 26.3 55.4 30.2
#6 24.3 42.9 26.3 54.4 30.3
#7 24.8 43.5 25.7 56.5 33.8

Here we ablate on different augmentation and
training methods (Table 3) evaluated on R2R
ValUnseen split. Method #1 uses the aforemen-
tioned Student forcing (SF) and #2 represents
Teacher forcing (TF) for training. When Path Mix-
ing is applied to the SAS model (#3), the Speaker
learns the frequent object tokens in the instruction
and how to correlate them with the visual features.
Models #4 and #5 (SASTF ), trained using TAL,
learn to associate the object tokens with the actions
from the trajectory and inversely co-relate naviga-
tional actions with action phrases in the ground
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truth instructions (Walk through the double door...).
The models #6 and #7 (SASARL+TF ) are trained
to improve the SPICE score using ARL. Using
ARL and a GRU-based reward model (#7) has an
advantage over using the CNN-based reward model
(#6), which produces the highest scores.

8.4 Spatial and Semantic effectiveness
To study the effectiveness of the proposed spatial
and semantic encoding, we measure the amount of
object and spatial phrases mentioned in the gener-
ated instructions for the speakers evaluated in the
R2R ValUnseen environment.

Table 4: Spatial and Semantic referrals (§8.4) on R2R
ValUnseen environment

Method Obj. Act. NonStop

Human 14123 (6.01) 8933 (3.80) 36689 (15.61)
LANA 2861 (3.62) 2842 (3.62) 9685 (12.36)
SAS 3379 (4.31) 3184 (4.06) 10790 (13.78)

In Table 4, the values outside the parentheses
represent the total counts of objects/landmarks
(Obj.) i.e. chair, bathroom, etc., actions/direction
phrases (Act.) i.e. turn left, top of, etc., and non-
stopwords (NonStop). Meanwhile, the values in
parentheses denote the average number of entities
per instruction for each respective category. We ob-
served that the SAS speaker includes 18.11% more
objects and landmark entities and 12.03% more
action/direction phrases compared to the LANA
speaker. Furthermore, the average length of the in-
structions is also higher for SAS, indicating richer
or more detailed instructions. Although the SAS
model did not refer to all the objects or landmarks
in the ground truth instructions (SAS: 4.31, Human:
6.01), it includes more action/direction phrases
(SAS: 4.06, Human: 3.80). This suggests a bet-
ter specificity for actions and spatial awareness.

8.5 Limitations
Large-scale datasets featuring a broad variety of
human-annotated navigation instructions are rare,
presenting a significant challenge in the field. Our
approach seeks to navigate this obstacle by leverag-
ing a small-scale dataset originally compiled with a
different objective: to facilitate the learning of navi-
gation from instructions. It is important to consider
this context when evaluating our method’s perfor-
mance, as it operates under the constraint of limited
data diversity and volume. Next, we explain some
of the challenges in the dataset.
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Figure 5: Unique instruction words present in R2R
dataset splits. (a) common words between splits, (b)
shows the ratio of number of different words to number
of common words in between the splits.

R2R dataset exhibits a notable variation in
unique tokens across its different splits: Train,
ValSeen, ValUnseen, and TestUnseen. Figure 5
(a) underscores the differences in token commonal-
ity across these splits, the disparities being largely
attributed to the frequency of tokens in each split.
Figure 5 (b) shows the ratio of different words to
that of common words in each split, revealing that
the Train split, in particular, contains a signifi-
cant number of unique word tokens compared to
common words with respect to other splits. This
variation poses a unique challenge for our SAS
model, which aims to mimic the instruction distri-
bution of the training set, but may diverge from
the linguistic characteristics of the ValSeen and
ValUnseen splits, potentially negatively impacting
evaluation scores.

9 Conclusion

This work proposes a novel navigation instruction
generation model that can produce diverse instruc-
tions by attending to several structural and semantic
cues from the environment. By providing objects,
their locations, and their relationships from the
scene, Spatially-Aware Speaker can refer to im-
portant aspects of the scene in the instruction. An
adversarial reward learning method encourages the
model to generate diverse instructions. The results
show that our method improves on the standard
evaluation metrics and performs better than the
baselines.

Future work In future work, integrating the SAS
model with multimodal transformer architectures
will be crucial for enhancing the generation of open-
vocabulary embodied instructions. This direction
promises to overcome the limitations posed by cur-
rent dataset constraints and improve performance
in instruction generation tasks.
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Supplementary material for the
manuscript titled "Spatially-Aware
Speaker for Vision Language Naviga-
tion Instruction Generation"

Appendix A Adversarial Reward
Learning algorithm

We use Reward Learning (ARL) extended from
(Wang et al., 2018). We alternatively train SAS
policy and reward models for 100 epochs each. The
speaker policy is optimised using the loss functions
(§6) explained in the main text.

Algorithm 1 Adversarial Reward Learning Algo-
rithm

for epoch← 1 to K do
Obtain instruction X ← Πω ▷ SAS Speaker

Policy
if Train-Policy then

Obtain instruction X̃ ← D
Update Speaker Policy gradient

else if Train-Reward then
Update Reward gradient ▷ CNN or GRU

end if
end for

Appendix B Algorithm to extract action
phrases from instruction

Algorithm 2 Algorithm to extract action phrases

Input: Navigation Instruction X
Output: Action phrases lX
Initialise the empty action phrase list lX .
ltyp ← {TRANVERB,DITRANVERB,INTRANVERB,
NOUN}
lpos ← {ADV,ADP,INTJ,DET,INTRANVERB}
for wj , wj+1 in X do

cwj ← check_verb(wj)
cwj+1 ← check_verb(wj+1)
if cwj in ltyp then

if cwj+1 in lpos then
lX ← (wj ;wj+1) ▷ Join words as

a phrase
else if cwj ̸= NOUN then

lX ← wj ▷ Verb as a phrase
end if

end if
end for
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Appendix C Implementation Details

We implement our method with PyTorch library.
The instruction speaker is trained with AdamW Op-
timizer (Loshchilov and Hutter, 2019) for 100k iter-
ations. Consistent with previous work, panoramic
visual features are extracted using a ResNet-152
model, and the angle feature used is 128 dimen-
sional. We retrieve K = 6 objects and relation-
ships from Visual Genome for each view direction.
The dimension of the hidden state is set to 512.
All experiments were performed on an NVIDIA
RTX A6000 GPU. SASTF model is trained to
100K iterations. The SASTF+ARL model uses
pre-trained SASTF weights for initialisation. In
ARL strategy, policy and reward models are trained
alternatively every 100 iterations. All parame-
ters were chosen based on the performance on the
ValUnseen split. SAS model has 14.3M learnable
parameters. The losses are mixed using the weights
λLM : λULS : λTAL is 2 : 1 : 1. The imple-
mentation of the metrics is obtained from the pub-
licly available COCO Caption Evaluation Toolkit 3.
spaCy package uses the en_core_web_lg model.

C.1 Hyperparameter Search

The hyper parameters for the final model are
selected from the highest SPICE score on the
ValUnseen split. The learning rate is fixed based
on observing the reward, IRL scores, and supervi-
sion losses to prevent model from over-fitting.

C.2 Dataset Statistics

R2R It has four splits, i.e., Train (61 scenes,
14k instructions), ValSeen (61 scenes, 1k instruc-
tions), ValUnseen (11 scenes, 2k instructions), and
TestUnseen (18 scenes, 4k instructions). Train
and ValSeen splits share house scenes but not with
the unseen splits.

R4R It extends R2R and contains three sets, i.e.,
Train (61 scenes, 233k instructions), ValSeen (61
scenes, 1k instructions), and ValUnseen (11 scenes,
45k instructions).

Appendix D Qualitative Examples

Here we list some successful instructions generated
by the SAS model against the speaker follower
(Fried et al., 2018) baseline.

3https://github.com/tylin/coco-caption

D.1 Successful Example 1

Baseline: Walk into the garage and turn right. Turn
right and walk into the room. Walk into the bath-
room. Stop.
SASTF : Walk into the garage and turn right. Walk
into the room with the two large chairs. Turn right
and walk into the bathroom. Wait near the sink.
SASARL+TF : Walk through the garage and turn
right at the cupboard. Walk into the living room
towards the couches. Walk into the bathroom and
wait near the sink.
GT: Go straight into the garage. Turn right and go
into the room. Turn right and go into the bathroom.
Wait near the sink.

D.2 Successful Example 2

Baseline: Walk the stairs.
SASTF : Walk out of the bedroom. turn left and
walk up the stairs . stop on the second step from
the bottom .
SASARL+TF : Walk past the television and out of
the bedroom. Turn left and walk up the stairs. Stop
on the third step from the bottom.
GT: Walk through the bedroom and out into the
hall way. Turn left and walk up to the stairs. Walk
up to the first step and stop.

Appendix E More visualisation of
trajectories

E.1 Successful Example 1

Figure 6 shows one of the success cases. Here,
SASTF generated the correct transition phrases,
but failed to mention any stop locations. On the
other hand, SASARL+TF refers to objects out-
side of reference sentences and also identifies the
correct stop location. This is a good example of
Panoramic Room-Object Attention in working.

E.2 Failure Example 1

Figure 7 shows one of the failure cases. Here both
SAS models fail to generate the correct instruction
even though the rooms (living room, kitchen, din-
ing room) and objects (table, chair) are identified.
The models failed to align the objects, rooms and
actions in the correct sequence.

E.3 Learning Curves

Figure 8 shows the average ARL rewards and
SPICE scores from training the model with CNN
and GRU reward models. Both models approach
a reward close to 1, while the GRU reward model

13613

https://github.com/tylin/coco-caption


GT: Continue up the stairs, walk towards the sitting area, go straight passed
the table on the left. stop by the double doors.

: Walk past the fireplace and up the stair. Walk past the dining table
and through the doorway. Walk past the dining table and through the
doorway.

: Walk up the stairs and turn left. Walk past the dining room
table and chairs . Stop in front of the door .

Figure 6: Example of a Successful Instruction Genera-
tion.

GT: Walk towards the ovens and take a left. Walk towards the fireplace and
enter the dining room to the right of the fireplace. Stop in front of the white
chair.

: walk past the kitchen and into the kitchen . walk past the dining
room table and chair . stop in front of the couch .

: Walk through the kitchen and turn left. Walk through the
dining room and into the living room. Stop in the doorway to the living room .

Figure 7: Example of a Failed Instruction Generation.
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Figure 8: SPICE Scores and Rewards for (a) CNN-based
and (b) GRU-based reward models.

obtains a higher SPICE score. This shows that
recurrence can help the discriminator learn the dif-
ference between policy-generated and ground-truth
instructions. A CNN can extract global information
from the instruction but loses temporal information.
As temporal information is crucial for navigational
instructions and GRU can encode temporal aspects
of the instruction as well as visual observations, it
produces a higher reward for instructions closer to
the ground truth.

Appendix F Ethical Considerations

Embodied navigation stands as a promising frontier
with the potential to revolutionise the landscape of
language understanding for robots, thus facilitating
their seamless integration into everyday human life.
However, any effort that involves human-robotic
interaction requires a steadfast commitment to up-
holding ethical, privacy, safety, and legal standards.
Although the metrics employed to assess our work
align with those commonly used in the machine
generation domain, further investigations are imper-
ative to ensure the ethical and safety considerations
associated with the instructions generated using
automatic methods and their use in the real world.

Our research draws on the R2R (Anderson et al.,
2018), FGR2R (Hong et al., 2020) and R4R (Jain
et al., 2020) datasets under the MIT licence, which
feature an extensive collection of indoor photos
captured from American houses, licenced by Mat-
terport3D4. The Matterport3DSimulator, used in
our experiments, is also under MIT license. To
protect privacy and confidentiality, the providers of
the datasets have anonymised both the houses and
the associated photos. In addition, the navigational
instructions derived from these datasets are devoid
of explicit language. As a result, our work shows
minimal ethical, privacy, or safety concerns.

4https://kaldir.vc.in.tum.de/matterport/MP_
TOS.pdf
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