
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13445–13464
August 11-16, 2024 ©2024 Association for Computational Linguistics

Advancing Parameter Efficiency in Fine-tuning via Representation Editing

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv
Zixuan Ling, Jianhao Zhu, Cenyuan Zhang, Xiaoqing Zheng*, Xuanjing Huang

School of Computer Science, Fudan University, Shanghai, China
{mlwu22,whliu22,xiaohuawang22,tlli22,czlv22}@m.fudan.edu.cn

{zhengxq,xjhuang}@fudan.edu.cn

Abstract

Parameter Efficient Fine-Tuning (PEFT) tech-
niques have drawn significant attention due to
their ability to yield competitive results while
updating only a small portion of the adjustable
parameters. However, existing PEFT methods
pose challenges in hyperparameter selection,
such as choosing the rank for LoRA or Adapter,
or specifying the length of soft prompts. To
address these challenges, we propose a novel
fine-tuning approach for neural models, named
Representation EDiting (RED), which modifies
the representations generated at some layers
through the application of scaling and biasing
operations. While existing PEFT methods still
demonstrate over-parameterization that could
potentially undermine the generalization ability
acquired from pre-training, RED can substan-
tially reduce the number of trainable param-
eters by a factor of 25, 700 compared to full
parameter fine-tuning and by a factor of 32 rel-
ative to LoRA. Remarkably, RED achieves re-
sults comparable or superior to both full param-
eter fine-tuning and other PEFT methods. Ex-
tensive experiments across various model archi-
tectures and scales, including RoBERTa, GPT-
2, T5, and LLaMA-2, have demonstrated the
effectiveness and efficiency of RED1, thereby
positioning it as a promising PEFT strategy for
large-scale neural models.

1 Introduction

Pre-training on large-scale unlabeled datasets fol-
lowed by fine-tuning on task-specific dataset has
demonstrated remarkable efficacy across various
natural language processing (NLP) tasks, estab-
lishing itself as the prevailing training paradigm
(Devlin et al., 2018; Raffel et al., 2020; Radford
et al., 2018). However, conducting full parameter
fine-tuning for each task can be exceedingly costly

*Corresponding author.
1The code is accessible at https://github.com/mlwu22/

RED.

and increasingly daunting as model scales continue
to grow (Brown et al., 2020). For instance, BERT
comprises up to 220 million parameters, T5 scales
up to 11 billion parameters, and GPT-3 boasts an as-
tounding 175 billion parameters. Consequently, the
efficient and effective adaptation of large models
to specific downstream tasks presents an intriguing
research challenge (He et al., 2021).

In response to this challenge, researchers have
put forward three main lines of Parameter Effi-
cient Fine-Tuning (PEFT) techniques (Ding et al.,
2022). Firstly, addition-based methods involve the
introduction of additional trainable neural mod-
ules or parameters that were not present in the
original model (Houlsby et al., 2019; Karimi Ma-
habadi et al., 2021; Li and Liang, 2021a; Lester
et al., 2021a). Specification-based methods, on
the other hand, identify certain parameters in the
original model to be trainable, while the rest are
kept frozen (Zaken et al., 2021; Guo et al., 2020).
Lastly, reparameterization-based methods recon-
figure trainable parameters into a more parameter-
efficient form through certain transformations (Hu
et al., 2021; Zhang et al., 2023a; Ding et al., 2023).

Among these PEFT methods, Low-Rank Adap-
tation (LoRA) stands out as one of the most effi-
cient techniques with its effectiveness empirically
validated across various models of diverse scales.
Despite its impressive performance, LoRA still de-
mands a significant number of trainable parame-
ters. Recent studies by Aghajanyan et al. (2020)
and Kopiczko et al. (2023) indicate that the up-
per bound for intrinsic dimensions is substantially
smaller than what is typically used in such methods.
For example, the d90 value (the minimum number
of trainable parameters required to reach 90% of
the performance of the fully-parameter fine-tuned
model) for the RoBERTa base is reported to be 896.
However, when LoRA is applied to fine-tune this
model, the number of trainable parameters esca-
lates to 0.3 million, suggesting the potential for

13445

https://github.com/mlwu22/RED
https://github.com/mlwu22/RED


further reduction in parameter count.
In addition to the issue of requiring too many ad-

justable parameters, existing PEFT methods (Mao
et al., 2021; He et al., 2021; Ding et al., 2022) pri-
marily focus on the design of lightweight modules
and their integration (or placement) within base
models. Nonetheless, the implementation of these
PEFT techniques introduces additional complexi-
ties in hyperparameter selection, such as choosing
the rank of LoRA and Adapter, or deciding on the
length of Soft Prompt and Prefix.

Inspired by the concept of representation engi-
neering (Zou et al., 2023), we shift our focus away
from the weights of models and turn our attention
to their representations. In the neural architecture,
network weights govern neural activities (or repre-
sentations), which in turn determine the networks’
output, and the networks’ output ultimately shapes
the networks’ behavior. Rather than concentrating
on neurons and their interconnections (or weights),
we explored to achieve control over network be-
havior by manipulating its internal representations.
Specifically, we fine-tune neural network models
by directly editing the representation generated at
each layer while maintaining the model parameters
frozen, as illustrated in Figure 1 (b). It is worth not-
ing that the number of parameters required to edit
representations is substantially fewer than that of
weights within neural networks. Taking LLaMA-2
(7B) as an example, the proposed representation
editing (RED) method achieves competitive perfor-
mance by adjusting only 0.26M parameters. This
is approximately 25, 700 times less than what is
required for full-parameter fine-tuning, rendering
the method both storage and computation efficient.

The contributions of this study are summarized
as follows:

• We propose a novel perspective on fine-tuning
by directly editing model representations, di-
verging from exiting PEFT methods that fo-
cused on adjusting the model’s weights. Our
proposed PEFT technique, termed RED, em-
bodies this new perspective.

• Extensive experiments are conducted across
models of varying structures and scales, in-
cluding RoBERTa, GPT-2, T5, and LLaMA-2.
The effectiveness of RED is validated across a
range of natural language understanding and
generation tasks. Notably, RED demonstrates
both efficacy and efficiency while requiring
only a minimal number of trainable parame-

ters and maintaining ease of implementation.
• A comprehensive ablation study is conducted

to dissect the individual components of RED
and understand their impacts on performance.

2 Related Work

Existing PEFT methods can be broadly classified
into three categories (Ding et al., 2022), each char-
acterized by the particular parts of parameters that
they tune efficiently: addition-based, specification-
based, and reparameterization-based methods.

Addition-based methods perform fine-tuning by
integrating additional lightweight learnable com-
ponents into foundational models. More specifi-
cally, Houlsby et al. (2019); Stickland and Murray
(2019); Karimi Mahabadi et al. (2021) and Rücklé
et al. (2020) proposed the integration of learnable
bottleneck neural modules into the transformer lay-
ers. Brown et al. (2020) and Shin et al. (2020)
found that the models’ performance could be en-
hanced by appending discrete tokens (or prompts)
at the beginning of the input texts without modify-
ing the models’ parameters. However, the manual
creation of such prompts demands substantial ef-
fort, and optimization in a discrete space is compar-
atively more challenging. Consequently, later stud-
ies substituted these discrete tokens with continu-
ous vectors, also referred to as soft prompts, which
can be optimized using the gradient descent algo-
rithm (Lester et al., 2021b; Li and Liang, 2021b;
Wu et al., 2023; Wang et al., 2023).

Specification-based methods achieve parameter-
efficient fine-tuning by designating a subset of pa-
rameters for modification while leaving the remain-
ing parameters untouched. Within this category,
Lee et al. (2019) suggested a method to exclusively
update the parameters in certain top layers of BERT
and RoBERTa. BitFit (Ben-Zaken et al., 2021), on
the other hand, fine-tunes a model by only optimiz-
ing the bias terms used in the model. Contrary to
these methods that pre-determine which parameters
should be altered, Guo et al. (2020) and Zhao et al.
(2020) implemented a learnable masking strategy
to automatically choose the parameters for tuning.

Reparameterization-based methods aim to opti-
mize some parameters within a model, typically in
their low-dimensional subspace. Hu et al. (2021)
introduces the use of low-rank matrices, termed
LoRA, to approximate the weight modifications
during the fine-tuning process. QLoRA (Dettmers
et al., 2023) combines low-rank adaptation with

13446



Figure 1: Comparison of previous representative PEFT methods with the proposed RED. (a) LoRA incorporates
learnable bottleneck-shaped modules (highlighted in orange) by integrating additional connections parallel to
the Wq and Wv matrices of attention blocks, along with modifying the weights of these matrices in a low-rank
fashion. Adapter, on the other hand, introduces learnable modules within similar structures (also highlighted in
orange) by incorporating additional connections following both the attention and feed-forward sub-layers. (b) RED
introduces two learnable vectors, lscaling and lbias, to directly edit the representations (marked in green) generated by
feed-forward sub-layers, which significantly reduces the number of parameters required for fine-tuning.

model quantization to further reduce storage usage
during the fine-tuning phase. AdaLoRA (Zhang
et al., 2023b) proposes to use SVD decomposition
to approximate the changes in weights, which allo-
cates more trainable parameters to more important
weight matrices, leading to a better performance.

Zou et al. (2023) proposed an approach to ana-
lyzing and manipulating the behavior of neural net-
works through representation engineering, thereby
shifting the focus from neurons and their circuits
to representations and the transformations among
them. Liu et al. (2023) extended this work to align
large language models with human preferences,
achieving results comparable or superior to RLHF
(Ouyang et al., 2022), but at a lower computational
cost. Subramani et al. (2022) investigated the ex-
traction of “steer vectors” from the hidden layers
and performed unsupervised text style transfer by
altering the hidden representations using these vec-
tors. To control the style and sentiment expressed
in a model’s outputs, Turner et al. (2023) integrated
a similar “steer vector” into the representation of
each hidden layer at the inference time. Inspired by
the recent advance in representation engineering
Zou et al. (2023), we suggested a novel perspective
for fine-tuning models by directly editing their rep-
resentations. This new perspective was embodied
in the RED training method, which demonstrated
both effectiveness and efficiency while requiring
only a minimal number of trainable parameters.

This study is closely related to two recent works:

IA3 (Liu et al., 2022) and SSF (Lian et al., 2022).
To fulfill the in-context learning capability with
lower computational costs, Liu et al. (2022) pro-
posed to modify the key and value vectors of the
multi-head attentions and those generated by feed-
forward networks (FFNs) by scaling operations. In
the domain of computer vision, Lian et al. (2022)
presented a similar method, called SSF, which was
motivated by batch and layer normalization tech-
niques. To ensure features fall in a discriminative
space for better classification, SSF also necessitates
the adjustment of feature vectors across nearly all
transformer layers, including multi-head attentions,
FFNs, and normalization layers. As a result, the
size of parameters adjusted in their method approxi-
mates those manipulated in other PEFT techniques,
such as Adapter and VPT (Jia et al., 2022).

In contrast, our RED method requires only the
modification of activation patterns generated by
FFN sub-layers, constituting a significantly smaller
portion of the entire neural network’s parameters
for model fine-tuning. While SSF achieves a reduc-
tion in the number of fine-tuning parameters by a
factor of 300 compared to original models, RED
accomplishes a reduction of approximately 25, 700
times. Moreover, SSF’s evaluation was restricted
to a limited range of simple image classification
tasks using relatively small models (under 100M
parameters), whereas RED has demonstrated its
effectiveness across a variety of natural language
understanding and generation tasks, with signifi-

13447



cantly larger models of up to 7B parameters.

3 Method

We in this section give a concise overview of previ-
ous PEFT methods and introduce a new, parameter-
efficient fine-tuning method known as Represen-
tation Editing (RED) by highlighting its distinc-
tive features compared to existing PEFT methods.
RED facilitates the adaptation of pre-trained neural
network models to downstream tasks by directly
editing the model’s representations.

3.1 Recap of PEFT Methods
The predominant large language models (LLMs)
have been constructed based on the transformer ar-
chitecture proposed in a seminal work on attention
mechanisms (Vaswani et al., 2017). This architec-
ture is characterized by a series of layered blocks,
each incorporating two fundamental sub-layers:
multi-head self-attention and fully connected feed-
forward networks. Many existing PEFT methods
usually achieve fine-tuning by adjusting the param-
eters of these two sub-layers in some parameter-
efficient manner. Figure 1 (a) illustrates two ex-
emplar PEFT methods: Adapter and LoRA. With
the exception of a few additional parameters that
require tuning, the parameters of the pre-trained
LLM remain fixed.

Specifically, LoRA (Hu et al., 2021) incorporates
learnable bottleneck-shaped modules through the
connections parallel to the Wq and Wv matrices of
attention blocks, as illustrated in Figure 1 (a), and
models the weight changes of these two matrices
in a low-rank manner. Given a pre-trained weight
matrix W ∈ Rd×k, LoRA represents its changes,
denoted as ∆W, through two low-rank decompo-
sition matrices: ∆W = α · WdownWup, where
Wdown ∈ Rd×r and Wup ∈ Rr×k (the value of r
is typically much smaller than both d and k). The
coefficient α is a hyperparameter that determines
the significance of ∆W relative to the original W.
Given an input x, LoRA produces the result of the
forward pass as follows:

h = xW + α · xWdownWup (1)

In the initial version of the Adapter, Houlsby
et al. (2019) suggested the insertion of trainable
adapter modules between two sub-layers within the
transformer architecture. These adapter modules
are structured to include a down-projection matrix,
denoted as Wdown ∈ Rd×r, which transforms a hid-
den representation h1 ∈ Rd to a lower-dimensional

space with a pre-specified dimensionality r. Sub-
sequently, this dimensionally reduced vector un-
dergoes a nonlinear activation function f(·) and an
additional up-projection matrix Wup ∈ Rr×d to re-
vert it to its original dimension d. The adapter mod-
ule also incorporates a residual connection. The
resultant output h2 ∈ Rd generated by this module
can be formally represented as follows:

h2 = h1 + f(h1Wdown)Wup (2)

Expanding on this research, Pfeiffer et al. (2020)
proposed a more efficient variant of the Adapter
that is only applied following the FFN sub-layer.

3.2 Representation Editing

Previous PEFT methods refine pre-trained models
by updating their weights in a parameter-efficient
manner, typically within a low-dimensional space.
To approximate the effect of full-parameter tuning,
they are required to choose the values of hyperpa-
rameters properly for one downstream task or a
set of tasks. However, it could be troublesome to
choose a suitable value for a hyperparameter, such
as the ranks of weight matrices in Equations (1) and
(2) for LoRA and Adapter respectively. Enhancing
their modeling capacities by using a higher rank
r could demand too much computation resources
and tend to overfit, while aggressively setting r
smaller may degrade model performance and lead
to from-scratch re-training (Ding et al., 2023).

Our hypothesis posits that by altering the internal
representations of neural models rather than their
connected weights, the fine-tuning process could
be significantly more efficient. This is because that
direct manipulation of the representations neces-
sitates O(n) parameters, whereas adjusting their
weights theoretically demands O(n2) parameters,
with n denoting the dimensionality of hidden repre-
sentations. Turner et al. (2023) have demonstrated
that the behaviors of neural models can be influ-
enced by adding a “steer vector” to each hidden
layer during inference. We postulate that such steer
vectors can be learned during the fine-tuning phase.
Inspired by this concept and the emerging field of
representation engineering Zou et al. (2023), we
introduce a novel PEFT method that fine-tunes the
model by directly altering the representation with
two learnable vectors, as depicted in Figure 1 (b).

Specifically, we first incorporate a learnable scal-
ing vector lscaling ∈ Rd and apply it to perform the
Hadamard product with a hidden representation h1

13448



Method # Param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
FT (base) 125M 87.3 94.4 87.9 62.4 92.5 91.7 78.3 90.6 85.6
Adapter (base) 0.4M 87.0 93.3 88.4 60.9 92.5 90.5 76.5 90.5 85.0
LoRA (base) 0.3M 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7
Adapter-FFN (base) 0.3M 87.1 93.0 88.8 58.5 92.0 90.2 77.7 90.4 84.7
BitFit (base) 0.1M 84.7 94.0 88.1 54.0 91.0 87.3 69.8 89.5 82.3
IA3 (base) 0.06M 85.4 93.4 86.4 57.8 91.1 88.5 73.5 88.5 83.1
RED (base) 0.02M 83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4 84.3
FT (large) 355M 88.8 96.0 91.7 68.2 93.8 91.5 85.8 92.6 88.5
Adapter (large) 0.9M 90.1 95.2 90.5 65.4 94.6 91.4 85.3 91.5 88.0
LoRA (large) 0.8M 90.2 96.0 89.8 65.5 94.7 90.7 86.3 91.7 88.1
Adapter-FFN (large) 0.8M 90.3 96.1 90.5 64.4 94.3 91.3 84.8 90.2 87.7
IA3 (large) 0.15M 90.1 94.5 87.1 63.2 93.9 89.3 85.3 91.5 86.9
RED (large) 0.05M 89.5 96.0 90.3 68.1 93.5 88.8 86.2 91.3 87.9

Table 1: Performance comparison of RoBERTa base and large models fine-tuned by RED and other PEFT baseline
methods on the GLUE benchmark. The standard deviations of results across different methods are given in Table 17.

Method # Param BLEU NIST MET ROUGE-L CIDEr
FT (medium) 355M 65.95 8.52 45.95 69.13 2.35
FTtop2 (medium) 25.2M 65.94 8.53 44.28 68.83 2.23
Adapter (medium) 0.9M 64.31 8.29 44.91 67.72 2.28
LoRA (medium) 0.8M 67.43 8.65 46.01 69.64 2.42
Adapter-FFN (medium) 0.8M 64.41 8.30 44.74 67.53 2.29
Prefix Tuning (medium) 0.8M 63.92 8.26 41.81 66.86 2.03
IA3 (medium) 0.17M 63.63 7.99 40.49 66.36 1.89
RED (medium) 0.05M 64.86 8.36 44.99 67.62 2.28
FT (large) 774M 65.56 8.50 45.40 68.38 2.27
Adapter (large) 1.8M 65.94 8.46 45.78 68.65 2.34
LoRA (large) 1.5M 68.24 8.76 46.23 69.92 2.42
Adapter-FFN (large) 1.5M 65.53 8.41 45.65 68.46 2.33
Prefix Tuning (large) 1.5M 65.50 8.45 43.97 67.32 2.23
IA3 (large) 0.32M 65.08 8.5 42.72 66.80 2.15
RED (large) 0.09M 65.77 8.42 46.12 69.03 2.36

Table 2: Performance comparison of GPT-2 medium and large models fine-tuned by RED and other PEFT baseline
methods on the E2E NLG Challenge. The standard deviations of results across different methods are given in Table
18.

by scaling the feature of each dimension within h1
via element-wise multiplication. Additionally, we
introduce another learnable bias vector lbias ∈ Rd

that is subsequently added to the scaled vector. This
process can be formalized as follows:

h2 = lscaling ⊙ h1 + lbias (3)

where ⊙ represents element-wise multiplication,
also known as the Hadamard product. Here, h1 ∈
Rd denotes a hidden representation generated by a
certain layer, and h2 ∈ Rd represents the resultant
edited representation. During implementation, we
initialize the scaling vectors lscaling as unit vectors
(i.e., with all elements set to 1) and the bias vectors
lbias as zero vectors. This initialization approach
ensures that the introduction of these “edit vectors”
does not initially alter the hidden representations
of a neural model.

4 Experiments
Extensive experimentation was conducted to assess
the efficacy of our Representation Editing (RED)
method across a diverse array of natural language

understanding and generation tasks, employing a
range of foundational models spanning different
scales. These models include RoBERTa (Liu et al.,
2019), T5 (Raffel et al., 2020), GPT-2 (Radford
et al., 2019), and LLaMA-2 (Touvron et al., 2023).
Specifically, we evaluated RED and the baseline
methods on the GLUE benchmark (Wang et al.,
2018) with RoBERTa and T5, as previously con-
ducted in (Hu et al., 2021) and Asai et al. (2022).
To ensure consistency with previous studies, we ad-
hered to the experimental setup outlined in (Li and
Liang, 2021a) and (Hu et al., 2021) for compara-
tive analysis with GPT-2. Moreover, we conducted
instruction tuning experiments on LLaMA-2 using
the UltraFeedback dataset (Cui et al., 2023) to fur-
ther assess the applicability of our proposed RED
on generative large language models. For further
details on the datasets and evaluation metrics used,
please refer to Appendix A.

4.1 Baselines

We ensured that different PEFT methods were com-
pared systematically in a more fair setting. There-

13449



Method # Param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
FT (base)* 220M 86.8 94.6 90.2 61.8 93.0 91.6 71.9 89.7 84.9
Adapter (base)* 1.9M 86.5 93.8 85.3 64.0 93.2 90.2 71.9 90.7 84.5
AdapterDrop (base)* 1.1M 86.3 93.6 86.3 62.7 93.2 90.2 71.2 91.4 84.4
BitFit (base)* 0.3M 85.3 94.2 86.8 58.2 93.0 90.1 67.6 90.9 83.3
PT (base)* 0.08M 81.3 90.9 68.1 10.6 92.8 89.7 54.7 89.5 72.2
RED (base) 0.04M 85.9 93.0 91.7 61.1 91.2 89.2 72.7 88.2 84.1

Table 3: Performance comparison of T5 base fine-tuned by RED and other PEFT baseline methods on the GLUE
benchmark. Results marked with an asterisk (*) are excerpted from published literature.

fore, we strictly followed the well-established train-
ing protocol, evaluating on the validation set after
each epoch training, and selecting the checkpoint
with the best performance on the validation set as
the final model for testing on the test set. The fol-
lowing baseline methods were used for comparison
with the proposed RED:

• Fine-Tuning (FT) trains models by updating
all their parameters. A variant of FT was pro-
posed by Lee et al. (2019), which selectively
updates certain layers while freezing others.
We incorporate a baseline established in prior
research by Li and Liang (2021a) with GPT-2,
which specifically adapts only the final two
layers, denoted as FTtop2.

• Bias-terms Fine-tuning (BitFit) involves the
selective freezing of a majority of the trans-
former parameters, with the training process
focused exclusively on the bias-terms (Ben-
Zaken et al., 2021).

• IA3 introduces scaling operations to modify
the key and value vectors of the multi-head at-
tentions and those generated by feed-forward
networks (FFNs) (Liu et al., 2022).

• Adapter introduces a learnable, lightweight
module situated between two sub-layers of the
transformer. During the forward pass, inputs
are processed in sequence by the sub-layers of
the foundation models and the adapters, yield-
ing the final output. However, during the back-
propagation phase, only these adapters receive
gradients for parameter updates, while the
remaining parameters of the model are kept
fixed and unaltered (Houlsby et al., 2019).

• Adapter-FFN is a variant of Adapter method
proposed by Pfeiffer et al. (2020). Contrasting
with the original Adapter, which necessitates
the insertion of the learnable module between
all sub-layers, Adapter-FFN only requires the
application of an adapter following each Feed-
Forward Network (FFN) sub-layer.

• AdapterDrop is another variant of Adapter

proposed by Rücklé et al. (2020), which incor-
porates a strategy of omitting certain adapter
layers, thereby enhancing overall efficiency.

• Low-Rank Adaption (LoRA) employs a
low-rank decomposition on the matrix ∆W,
thereby modeling weight updates as the prod-
uct of two low-rank matrices. These two learn-
able matrices are aligned in parallel with the
corresponding matrices in pre-trained models.
They process inputs in parallel and combine
their results to generate the final outputs in
each transformer block (Hu et al., 2021).

• Prompt Tuning (PT) prefixes a set of continu-
ous vectors at the embedding layer, which are
subjected to learning during the fine-tuning
phase (Lester et al., 2021b).

• Prefix Tuning is a generalized version of
prompt tuning (PT), which incorporates learn-
able continuous vectors at every hidden state.
These continuous vectors also contribute to
the computation of attention, serving as both
key and value vectors (Li and Liang, 2021b).

4.2 Results with RoBERTa

We conducted fine-tuning experiments on both the
RoBERTa base (125M) and large (355M) models
by using RED and its competing baselines. Subse-
quently, we evaluated these fine-tuned models on
the widely-adopted GLUE benchmark, renowned
for its comprehensive evaluation of natural lan-
guage understanding capabilities. The pretrained
RoBERTa models were sourced from the Hugging-
Face Transformers Library (Wolf et al., 2019).

We noticed that the previous evaluation settings
of PEFT methods encountered two issues. Firstly,
for datasets such as MRPC, RTE, and STS-B, they
trained the models on the MNLI dataset first and
selecting the best performance checkpoint on the
MNLI dataset as initialization for transfer learning
to improve the performance of the model trained
on these datasets (Liu et al., 2019; Hu et al., 2021).
However, such a pipeline adds complexity that can
be challenging for other researchers to replicate.

13450



Secondly, there is no split between the validation
set and the test set. Instead, after each epoch train-
ing is completed, evaluation is directly conducted
on the test set, and the best test result is selected as
the final evaluation result of the model, which vio-
lates the established standard that the test set should
not influence model selection during the training
phase. In this study, we ensured a more system-
atic comparison of different PEFT methods in a
fairer setting. To achieve this, we adhered strictly
to a well-established training protocol. After each
epoch of training, evaluation was conducted on the
validation set, and the checkpoint demonstrating
the best performance on the validation set was se-
lected as the final model for testing on the test set.
For comprehensive details regarding our reimple-
mentation, please refer to Appendix B.1.

As presented in Table 1, both the RoBERTa base
and large models fine-tuned by RED yielded accu-
racies comparable to those achieved by other PEFT
methods across all tasks within the GLUE bench-
mark. For instance, RED’s performance was only
marginally inferior to that of LoRA, differing by
a negligible 0.2% with the RoBERTa large and by
0.4% with the RoBERTa base on average, while
requiring the tuning of significantly fewer parame-
ters. It is noteworthy that RED demonstrated supe-
rior performance on tasks such as SST-2, MRPC,
CoLA, STS-B, and RTE, all of which had data sizes
less than 100k. This suggests that RED helps to
maintain the generalization capability acquired dur-
ing the pre-training phase and can deliver enhanced
performance when the volume of training data is
relatively small.

Moreover, RED exhibits an unprecedented level
of parameter efficiency. Although having substan-
tially fewer trainable parameters—approximately
7, 200 times fewer than full parameter fine-tuning
and 16 times fewer than LoRA—it maintains com-
parable performance. This observation suggests
that there is still potential for further reduction in
the number of trainable parameters and this finding
aligns with conclusions drawn by Aghajanyan et al.
(2020) and Kopiczko et al. (2023).

4.3 Results with GPT-2
Beyond natural language understanding tasks, our
study expanded to include experiments on natural
language generation tasks. These experiments were
conducted using the GPT-2 medium (355M) and
large (774M) models on the E2E NLG Challenge
(Novikova et al., 2017). The pre-trained GPT-2

models were also obtained from the HuggingFace
Transformers Library. To ensure a fair comparison,
we reproduced other PEFT methods following the
settings defined by Li and Liang (2021a) and Hu
et al. (2021). Please refer to Appendix B.2 for the
comprehensive details of our implementation.

The data presented in Table 2 reveals that RED
achieved performance comparable to other PEFT
baselines across all metrics in the E2E NLG Chal-
lenge. This highlights the efficacy of fine-tuning
through representation editing, not only for natural
language understanding tasks but also for language
generation tasks. Remarkably, RED accomplished
this performance while still necessitating minimal
fine-tuning of parameters. To compare RED with
the most parameter-efficient variants of other PEFT
methods, we set the rank of LoRA and Adapter
to 1. Under these conditions, RED outperformed
all such variants while still employing the fewest
number of parameters (see Section 5.3 for details).

Figure 2: Performance scores achieved by RED and
other PEFT methods on the MT-Bench. Refer to Table
19 and Appendix D for raw scores and additional details.

Method # Param AlpacaEval (win %)
FT 6739M 80.93
LoRA 8.39M 81.48
RED 0.26M 81.69

Table 4: Win rates against reference responses evaluated
by GPT-4 on AlpacaEval. Higher win rates indicate su-
perior generated responses, reflecting better alignment
with human preferences. Example responses generated
by RED and other PEFT baselines can be found in Fig-
ures 3 and 4 as well as in Appendix D.

4.4 Results with T5

In order to assess the versatility of RED, we con-
ducted experiments using the encoder-decoder ar-
chitecture. More specifically, we obtained the pre-

13451



Method # Param BLEU NIST MET ROUGE-L CIDEr
Adapter (rank 1) 0.25M 63.76 8.37 42.74 66.70 2.09
Adapter-FFN (rank 1) 0.07M 62.99 8.09 40.88 66.39 1.98
LoRA (rank 1) 0.10M 64.51 8.38 44.78 67.35 2.28
RED 0.05M 64.86 8.36 44.99 67.62 2.28

Table 5: Comparison of GPT-2 fine-tuned by RED and other PEFT baselines (rank 1) on the E2E NLG Challenge.

trained T5-base model (220M) from the Hugging-
Face Transformers Library and evaluated models
fine-tuned with RED and other PEFT baselines on
the GLUE benchmark. As shown in Table 3, RED
achieved accuracies that were on par with other
PEFT methods across all tasks in the GLUE bench-
mark, indicating its versatility across diverse net-
work architectures. We excerpted the results from
the study of (Asai et al., 2022) as they conducted
experiments under the settings similar to ours. The
inclusion of their results does not undermine the
fairness or outcome of the comparison. Please refer
to Appendix B.3 for the implementation details.

It is noteworthy that RED surpassed the prompt
tuning (PT) baseline with a significant margin of
11.9% on average. Despite PT methods necessitat-
ing the fewest parameters during fine-tuning among
other PEFT baselines, they still require a modifi-
cation of parameters that is twice as large as that
required by RED. This finding indicates that al-
locating a few number of learnable parameters to
each layer for representation editing is both more
parameter-efficient and effective compared to the
PT method, which assigns all learnable parameters
to the model’s embedding layer.

4.5 Results with LLaMA-2

We are interested in exploring whether RED can
be effectively scaled to large neural networks con-
taining billions of parameters. Therefore, we eval-
uated RED and compared it against full parameter
fine-tuning and LoRA using LLaMA-2 up to 7 bil-
lion parameters. Our assessments were conducted
across three widely-used benchmarks: Open LLM
Leaderboard (Beeching et al., 2023), AlpacaEval
(Li et al., 2023), and MT-Bench (Zheng et al.,
2023). The implementation details of this experi-
ment can be found in Appendix B.4.

Table 4 presents the win rates obtained by dif-
ferent fine-tuning methods, compared against the
reference responses generated by text-davinci-003
on the AlpacaEval. Remarkably, RED yielded the
highest win rate, even though its number of train-
able parameters was 25, 700 times less than that of
full parameter fine-tuning and 32 times less than

that of LoRA. This suggests that the RED method,
which directly edits hidden representations during
the fine-tuning phase, continues to be effective for
large language models, and the trained models are
capable of generating high-quality responses.

Moreover, Figure 2 illustrates the performance
scores achieved by three training methods on the 1-
turn question-answer dataset from MT-Bench. The
overall performance of RED is on par with other
baseline methods, and it notably excels in assessing
the capabilities of humanities and reasoning. As
presented in Table 12, RED also delivers competi-
tive results on six distinct datasets from the Open
LLM Leaderboard.

Method MRPC CoLA QQP Avg.
RED 90.3 68.1 88.7 82.4
w/o scaling 89.8 65.9 87.6 81.1
w/o bias 75.8 46.9 87.2 70.0

Table 6: Results of the ablation studies on three differ-
ent datasets from the GLUE benchmark. The term “w/o
scaling” denotes the removal of scaling operations, with
representation editing performed only by bias vectors.
In contrast, “w/o bias” indicates the omission of bias
vectors, with representation editing conducted exclu-
sively through the use of scaling vectors.

5 Ablation Study
In this section, we conducted a series of ablation
studies to examine the impact of different editing
operations used in RED and to explore potential ap-
plication points within transformer-based networks.
We also evaluated the parameter efficiency of RED
by comparing it with the most parameter-efficient
variants of other PEFT methods.

5.1 Impact of Different Editing Operators
We introduce two operators to edit the hidden rep-
resentations of neural network models: one scales a
hidden representation using a learnable vector, and
the other adds a bias vector to the hidden represen-
tation. To assess the contribution of each operator,
we performed ablation studies by removing one
operator at a time and examining the impact on the
models’ performance.

From Table 6, it is evident that both editing oper-
ators are crucial for enhancing model performance.

13452



Method # Param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
LoRA (base) 0.29M 86.6 93.9 88.7 59.7 92.6 90.4 75.3 90.3 84.7
RED (base) 0.02M 83.9 93.9 89.2 61.0 90.7 87.2 78.0 90.4 84.3
RED+ (base) 0.09M 85.9 93.2 88.9 62.4 90.9 89.1 78.6 90.9 85.0
LoRA (large) 0.79M 90.2 96.0 89.8 65.5 94.7 90.7 86.3 91.7 88.1
RED (large) 0.05M 89.5 96.0 90.3 68.1 93.5 88.8 86.2 91.3 87.9
RED+ (large) 0.25M 90.6 95.6 89.2 69.6 94.0 90.2 85.6 91.4 88.3

Table 7: Performance comparison of RoBERTa base and large models fine-tuned by RED, RED+ and other PEFT
baselines on the GLUE benchmark. RED+ denotes an enhanced variant of RED where the representation vectors of
Q, K, and V in attention blocks are also modified via representation editing in addition to FFN sub-layers.

Method # Param BLEU NIST MET ROUGE-L CIDEr
LoRA (medium) 0.79M 67.43 8.65 46.01 69.64 2.42
RED (medium) 0.05M 64.86 8.36 44.99 67.62 2.28
RED+ (medium) 0.25M 66.68 8.53 46.28 69.63 2.38
LoRA (large) 1.47M 68.24 8.76 46.23 69.92 2.42
RED (large) 0.09M 65.77 8.42 46.12 69.03 2.36
RED+ (large) 0.46M 68.31 8.78 46.12 69.80 2.41

Table 8: Performance comparison of GPT-2 medium and large models fine-tuned by RED, RED+ and other PEFT
baselines on the E2E NLG Challenge. RED+ denotes an enhanced variant of RED where the representation vectors
of Q, K, and V in attention blocks are also modified via representation editing in addition to FFN sub-layers.

Analyzing results from three different datasets from
the GLUE benchmark, we found that the scaling
operator boosted accuracy by an average of 1.3%,
while the biasing operator contributed to a signifi-
cant 12.4% increase in accuracy. Compared to the
scaling operator, the addition of a learnable bias
vector to the original representation plays a more
substantial role in the fine-tuning of neural models.

5.2 Impact of Editing Positions
The motivation of this study is to explore the feasi-
bility of fine-tuning large language models with as
few parameters as possible. Therefore, in our cur-
rent implementation, we only consider modifying
the representations produced by FFN sub-layers.
However, it is still possible to further improve the
performance of the model by increasing the num-
ber of trainable parameters if the representation
vectors of Q (query), K (key), and V (value) in
attention blocks are allowed to be modified via rep-
resentation editing. To demonstrate this possibility,
we conducted additional experiments in which the
representations of Q, K, and V were also modified.

The experimental results reported in Table 7 and
Table 8 show that the performance of RED has been
improved on all these datasets but with slightly
more trainable parameters (increasing from 0.07M
to 0.37M). It suggests that it is feasible to increase
the number of trainable parameters to further boost
the performance by editing additional feature repre-
sentations. This strategy is particularly effective for
datasets with a larger number of training instances,
such as MNLI, QNLI, QQP, and E2E while the per-
formance did not exhibit significant improvement

on datasets with fewer training examples.

5.3 Parameter Efficiency and Efficacy

When using Adaptor or LoRA for fine-tuning, the
ranks of their decomposition matrices were typi-
cally set to 8 or 16. These ranks can be reduced
to decrease the number of parameters used dur-
ing fine-tuning. To compare RED with the most
parameter-efficient versions of Adpator or LoRA,
we adjusted the rank of their decomposition ma-
trices to 1. We then made a comparative analysis
with GPT-2 medium on the E2E NLG Challenge.

Table 5 shows that RED outperformed all the
baselines on four out of five tasks, while it slightly
underperformed LoRA by a negligible difference
of 0.02 on the NIST dataset. It is worthy noting that
RED accomplished this with the minimal number
of parameters, demonstrating that RED is not only
parameter-efficient but also parameter-effective.

6 Conclusion

In this study, we proposed a novel perspective on
fine-tuning by editing model representations rather
than adjusting the model’s weights. Through exten-
sive experimentation across various NLP tasks and
neural models of varying structures and scales, we
demonstrated that RED can deliver performance
comparable or superior to existing PEFT methods
while employing a minimal number of trainable
parameters. We are hopeful that this study could in-
spire novel methods for fine-tuning LLMs, thereby
contributing to the advancement of both effective
and computationally efficient PEFT techniques.

13453



Limitations

We have demonstrated the efficacy of a new promis-
ing PEFT approach for fine-tuning models through
direct manipulation of representations across vari-
ous NLP tasks with networks of varying structures
and scales. It would be intriguing to extend this
method to other modalities, such as image, speech,
and video. Recent advancements in representation
engineering have indicated that only a very few ex-
amples are sufficient for achieving precise control
over the model’s output through representation ma-
nipulations. We plan to apply the proposed RED to
few-shot scenarios in the future.

Reproducibility Statement

We have made our code publicly accessible via a
repository on GitHub (github.com/mlwu22/RED).
To further ensure replicability, we had a colleague
unfamiliar with our method install and test RED.
The experiment yielded results nearly identical to
ours, which strengthens our confidence that other
researchers will successfully execute our code and
reproduce our findings.

References
Armen Aghajanyan, Luke Zettlemoyer, and Sonal

Gupta. 2020. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv
preprint arXiv:2012.13255.

Akari Asai, Mohammadreza Salehi, Matthew E. Peters,
and Hannaneh Hajishirzi. 2022. Attempt: Parameter-
efficient multi-task tuning via attentional mixtures of
soft prompts. In Conference on Empirical Methods
in Natural Language Processing.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In IEEvalua-
tion@ACL.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge.

Edward Beeching, Clémentine Fourrier, Nathan Habib,
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.
Open llm leaderboard. https://huggingface.co/
spaces/HuggingFaceH4/open_llm_leaderboard.

Anja Belz and Ehud Reiter. 2006. Comparing automatic
and human evaluation of nlg systems. In Conference
of the European Chapter of the Association for Com-
putational Linguistics.

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. ArXiv, abs/2106.10199.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Daniel Matthew Cer, Mona T. Diab, Eneko Agirre, Iñigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity multilingual
and crosslingual focused evaluation. In International
Workshop on Semantic Evaluation.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. ArXiv,
abs/2310.01377.

Dorottya Demszky, Kelvin Guu, and Percy Liang.
2018. Transforming question answering datasets
into natural language inference datasets. ArXiv,
abs/1809.02922.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. ArXiv, abs/2305.14314.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023.
Sparse low-rank adaptation of pre-trained language
models. arXiv preprint arXiv:2311.11696.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:
A comprehensive study of parameter efficient meth-
ods for pre-trained language models. arXiv preprint
arXiv:2203.06904.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In International Joint Conference on Natural Lan-
guage Processing.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

13454

https://api.semanticscholar.org/CorpusID:254125751
https://api.semanticscholar.org/CorpusID:254125751
https://api.semanticscholar.org/CorpusID:254125751
https://api.semanticscholar.org/CorpusID:7164502
https://api.semanticscholar.org/CorpusID:7164502
https://api.semanticscholar.org/CorpusID:7164502
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://api.semanticscholar.org/CorpusID:10438447
https://api.semanticscholar.org/CorpusID:10438447
https://api.semanticscholar.org/CorpusID:231672601
https://api.semanticscholar.org/CorpusID:231672601
https://api.semanticscholar.org/CorpusID:231672601
https://api.semanticscholar.org/CorpusID:263605623
https://api.semanticscholar.org/CorpusID:263605623
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:16639476
https://api.semanticscholar.org/CorpusID:16639476
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836


Demi Guo, Alexander M Rush, and Yoon Kim. 2020.
Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
ArXiv, abs/2110.04366.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Xiaodong Song, and
Jacob Steinhardt. 2020. Measuring massive multitask
language understanding. ArXiv, abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Xiaodong
Song, and Jacob Steinhardt. 2021. Measuring math-
ematical problem solving with the math dataset.
ArXiv, abs/2103.03874.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire
Cardie, Serge Belongie, Bharath Hariharan, and Ser-
Nam Lim. 2022. Visual prompt tuning. In Euro-
pean Conference on Computer Vision, pages 709–
727. Springer.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems, 34:1022–1035.

Dawid Jan Kopiczko, Tijmen Blankevoort, and
Yuki Markus Asano. 2023. Vera: Vector-based ran-
dom matrix adaptation. ArXiv, abs/2310.11454.

Jaejun Lee, Raphael Tang, and Jimmy J. Lin. 2019.
What would elsa do? freezing layers during trans-
former fine-tuning. ArXiv, abs/1911.03090.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021a.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021b.
The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Nat-
ural Language Processing.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien
Plu, Lewis Tunstall, Joe Davison, Mario vSavsko,

Gunjan Chhablani, Bhavitvya Malik, Simon Bran-
deis, Teven Le Scao, Victor Sanh, Canwen Xu,
Nicolas Patry, Angelina McMillan-Major, Philipp
Schmid, Sylvain Gugger, Clement Delangue, Th’eo
Matussiere, Lysandre Debut, Stas Bekman, Pierric
Cistac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander M. Rush, and Thomas Wolf.
2021. Datasets: A community library for natural
language processing. ArXiv, abs/2109.02846.

Xiang Lisa Li and Percy Liang. 2021a. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Xiang Lisa Li and Percy Liang. 2021b. Prefix-tuning:
Optimizing continuous prompts for generation. Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), abs/2101.00190.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B Hashimoto. 2023. Alpacaeval: An auto-
matic evaluator of instruction-following models.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xin-
chao Wang. 2022. Scaling & shifting your features:
A new baseline for efficient model tuning. ArXiv,
abs/2210.08823.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Annual Meeting of the
Association for Computational Linguistics.

Stephanie C. Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. In Annual Meeting of the Association for
Computational Linguistics.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. ArXiv,
abs/2205.05638.

Wenhao Liu, Xiaohua Wang, Muling Wu, Tianlong Li,
Changze Lv, Zixuan Ling, Jianhao Zhu, Cenyuan
Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2023.
Aligning large language models with human prefer-
ences through representation engineering.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Wen tau Yih, and Madian
Khabsa. 2021. Unipelt: A unified framework for
parameter-efficient language model tuning. In An-
nual Meeting of the Association for Computational
Linguistics.

13455

https://api.semanticscholar.org/CorpusID:238583580
https://api.semanticscholar.org/CorpusID:238583580
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:207847573
https://api.semanticscholar.org/CorpusID:207847573
https://api.semanticscholar.org/CorpusID:233296808
https://api.semanticscholar.org/CorpusID:233296808
https://api.semanticscholar.org/CorpusID:237431340
https://api.semanticscholar.org/CorpusID:237431340
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:252918870
https://api.semanticscholar.org/CorpusID:252918870
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:237532606
https://api.semanticscholar.org/CorpusID:237532606
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:266551232
https://api.semanticscholar.org/CorpusID:266551232
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:238857301
https://api.semanticscholar.org/CorpusID:238857301


Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In Conference on Empirical Methods in Natural
Language Processing.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. ArXiv, abs/1706.09254.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS
2022).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Annual Meeting of
the Association for Computational Linguistics.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. ArXiv, abs/2005.00247.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020. Adapterdrop: On the efficiency
of adapters in transformers. In Conference on Empir-
ical Methods in Natural Language Processing.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. An adversarial winograd
schema challenge at scale.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric
Wallace, and Sameer Singh. 2020. Eliciting knowl-
edge from language models using automatically gen-
erated prompts. ArXiv, abs/2010.15980.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, A. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Conference on Empirical Methods in Natural Lan-
guage Processing.

Asa Cooper Stickland and Iain Murray. 2019. Bert and
pals: Projected attention layers for efficient adapta-
tion in multi-task learning. In International Con-
ference on Machine Learning, pages 5986–5995.
PMLR.

Nishant Subramani, Nivedita Suresh, and Matthew E.
Peters. 2022. Extracting latent steering vectors from
pretrained language models. ArXiv, abs/2205.05124.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Alexander Matt Turner, Lisa Thiergart, David S.
Udell, Gavin Leech, Ulisse Mini, and Monte Stu-
art MacDiarmid. 2023. Activation addition: Steer-
ing language models without optimization. ArXiv,
abs/2308.10248.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Systems.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2014. Cider: Consensus-based image descrip-
tion evaluation. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4566–
4575.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP.

Zhen Wang, Rameswar Panda, Leonid Karlinsky,
Rogério Schmidt Feris, Huan Sun, and Yoon Kim.

13456

https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:52183757
https://api.semanticscholar.org/CorpusID:19662556
https://api.semanticscholar.org/CorpusID:19662556
https://doi.org/10.48550/ARXIV.2303.08774
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:218470208
https://api.semanticscholar.org/CorpusID:218470208
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:225040886
https://api.semanticscholar.org/CorpusID:225040886
https://api.semanticscholar.org/CorpusID:199370376
https://api.semanticscholar.org/CorpusID:199370376
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:226222232
https://api.semanticscholar.org/CorpusID:990233
https://api.semanticscholar.org/CorpusID:990233
https://api.semanticscholar.org/CorpusID:248693452
https://api.semanticscholar.org/CorpusID:248693452
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:261049449
https://api.semanticscholar.org/CorpusID:261049449
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:9026666
https://api.semanticscholar.org/CorpusID:9026666
https://api.semanticscholar.org/CorpusID:5034059
https://api.semanticscholar.org/CorpusID:5034059


2023. Multitask prompt tuning enables parameter-
efficient transfer learning. ArXiv, abs/2303.02861.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. In North
American Chapter of the Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Muling Wu, Wenhao Liu, Jianhan Xu, Changze Lv, Zix-
uan Ling, Tianlong Li, Longtao Huang, Xiaoqing
Zheng, and Xuanjing Huang. 2023. Parameter effi-
cient multi-task fine-tuning by learning to transfer
token-wise prompts. In Conference on Empirical
Methods in Natural Language Processing.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a ma-
chine really finish your sentence? In Annual Meeting
of the Association for Computational Linguistics.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023a. Adaptive budget allocation
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512.

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023b. Adaptive budget alloca-
tion for parameter-efficient fine-tuning. ArXiv,
abs/2303.10512.

Mengjie Zhao, Tao Lin, Martin Jaggi, and Hinrich
Schütze. 2020. Masking as an efficient alternative to
finetuning for pretrained language models. In Con-
ference on Empirical Methods in Natural Language
Processing.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong
Zhang, Joseph Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
ArXiv, abs/2306.05685.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,

Shashwat Goel, Nathaniel Li, Michael J. Byun,
Zifan Wang, Alex Mallen, Steven Basart, Sanmi
Koyejo, Dawn Song, Matt Fredrikson, Zico Kolter,
and Dan Hendrycks. 2023. Representation engineer-
ing: A top-down approach to ai transparency. ArXiv,
abs/2310.01405.

13457

https://api.semanticscholar.org/CorpusID:257365136
https://api.semanticscholar.org/CorpusID:257365136
https://api.semanticscholar.org/CorpusID:44072099
https://api.semanticscholar.org/CorpusID:208117506
https://api.semanticscholar.org/CorpusID:208117506
https://api.semanticscholar.org/CorpusID:266176660
https://api.semanticscholar.org/CorpusID:266176660
https://api.semanticscholar.org/CorpusID:266176660
https://api.semanticscholar.org/CorpusID:159041722
https://api.semanticscholar.org/CorpusID:159041722
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:216553665
https://api.semanticscholar.org/CorpusID:216553665
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:263605618
https://api.semanticscholar.org/CorpusID:263605618


A Datasets

A.1 GLUE Benchmark
The General Language Understanding Evaluation
(GLUE) benchmark comprises a variety of datasets,
including CoLA (Warstadt et al., 2018), SST-2
(Socher et al., 2013), MRPC (Dolan and Brock-
ett, 2005), QQP (Wang et al., 2018), STS-B (Cer
et al., 2017), MNLI (Williams et al., 2017), QNLI
(Demszky et al., 2018), and RTE (Bar-Haim et al.,
2006). These datasets have been widely-used to
measure the performance of language understand-
ing models. The GLUE benchmark was sourced
from Huggingface Datasets (Lhoest et al., 2021),
and all datasets within this benchmark were em-
ployed for our evaluation.

Following (Ding et al., 2023) and (Hu et al.,
2021), we evaluated models trained with different
PEFT methods on the validation dataset. To ensure
a fair and systematic comparison of different PEFT
methods, we randomly sampled 1, 000 instances
from the validation set to form a new validation
set if the validation set contains more than 2, 000
instances (otherwise, we randomly selected half of
the instances for the new validation set), and the
remaining instances were used as the test set. This
allowed us to adhere rigorously to the established
training protocol, which involves evaluating on the
new validation set after each epoch of training and
selecting the checkpoint that yields the best perfor-
mance on the validation set as the final model for
testing on the test set. The sizes of the training, val-
idation, and test sets as well as their corresponding
metrics for all datasets are given in Table 9.

For all the experiments with RoBERTa, we ran
experiment 5 times for each PEFT method using
distinct random seeds to initialize the trainable
weights and reported the average results. During
the evaluation of the RTE and CoLA datasets, some
researchers reported that specific random seeds
could potentially lead to anomalous experimental
outcomes2. Therefore, we randomly chose other
five different random seeds (i.e., 42, 43, 44, 45, and
46) to conduct the experiments.

A.2 E2E NLG Challenge
The E2E NLG Challenge was first introduced by
Novikova et al. (2017) to train and evaluate end-to-
end, data-driven natural language generation mod-
els and systems. All datasets in the E2E NLG Chal-
lenge were sourced from Huggingface Datasets.

2Refer to github.com/microsoft/LoRA/issues.

Dataset #Train #Validation #Test Metric
CoLA 8.5K 522 521 MCC
SST-2 67K 436 436 ACC
MRPC 3.7K 204 204 ACC
QQP 364K 1K 39K ACC
STS-B 5.7K 750 750 CORR
MNLI 393K 1K 8K ACC
QNLI 105K 1K 4.5K ACC
RTE 2.5K 139 138 ACC

Table 9: The sizes of the training, validation, and test
sets, along with their corresponding metrics for all
datasets in the GLUE benchmark. “MCC”, “ACC” and
“CORR” denote Matthews correlation coefficient, accu-
racy, and Pearson correlation coefficient respectively.

This benchmark includes 42.1K training instances,
4.67K validation instances, and 4.69K testing in-
stances. Following previous studies, we used the
official evaluation script to compute BLEU (Pap-
ineni et al., 2002), NIST (Belz and Reiter, 2006),
METEOR (Banerjee and Lavie, 2005), ROUGE-
L (Lin, 2004) and CIDEr (Vedantam et al., 2014)
scores. For evaluations using GPT-2, we ran ex-
periment for 3 times using distinct random seeds
and reported the average results. The random seeds
used for these experiments were 42, 43, and 44.

A.3 UltraFeedback

UltraFeedback (Cui et al., 2023) comprises 64, 000
prompts, each of them accompanied by four LLM
responses evaluated by GPT-4 based on criteria
such as instruction-following, honesty, and help-
fulness. To construct the training dataset from Ul-
traFeedback, we selected the responses with the
highest mean scores3.

A.4 Open LLM Leaderboard

The Open LLM Leaderboard includes six datasets
that assess various capabilities such as science ques-
tions, commonsense inference, multitask accuracy,
mathematical reasoning, and the truthfulness of
generated answers. It consists of ARC (Mihaylov
et al., 2018), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2019), MMLU
(Hendrycks et al., 2020), TruthfulQA (Lin et al.,
2021), and GSM8K (Hendrycks et al., 2021). We
used the Eleuther AI Language Model Evaluation
Harness library (Gao et al., 2023) to evaluate lan-
guage models trained using various methods. Table
11 details the leaderboard evaluation configuration
and the experimental settings applied in this study.

3The constructed dataset can be accessed at:
huggingface.co/datasets/argilla/
\ultrafeedback-binarized-preferences-cleaned.

13458

github.com/microsoft/LoRA/issues
huggingface.co/datasets/argilla/ \ ultrafeedback-binarized-preferences-cleaned
huggingface.co/datasets/argilla/ \ ultrafeedback-binarized-preferences-cleaned


A.5 AlpacaEval

AlpacaEval is an automated evaluation benchmark
for LLMs, employing GPT-4 (OpenAI, 2023) as an
annotator to compare the responses generated by
the models against reference answers produced by
text-davinci-003. The benchmark consists of 805
samples focused on simple instruction-following
tasks. Previous research has shown a high cor-
relation between GPT-4’s annotations and human
evaluator assessments (Li et al., 2023).

A.6 MT-Bench

MT-Bench (Zheng et al., 2023) comprises 80 chal-
lenging questions, each structured as a two-turn
dialogue. GPT-4 was also used to evaluate the re-
sponses generated by the models, assigning a score
from 1 to 10 for each turn.

B Hyperparameters

B.1 Experiments with RoBERTa

We trained the models using AdamW with a linear
learning rate decay schedule. To ensure a fair com-
parison, we maintained the same sequence length
across all baseline PEFT methods. The hyperpa-
rameters used in our experiments for RoBERTa
base are detailed in Table 13, and for RoBERTa
large in Table 15.

B.2 Experiments with GPT-2

We trained the models using AdamW with a linear
learning rate decay schedule. To ensure a fair com-
parison, we maintained the same sequence length
across all baseline PEFT methods. We used the
Huggingface PEFT package to replicate Prefix Tun-
ing and LoRA, and the OpenDelta package to repli-
cate Adapter and Adapter-FFN. The hyperparam-
eters used in our experiments for GPT-2 medium
and GPT-2 large are detailed in Table 16s.

B.3 Experiments with T5

We trained the models using AdamW with a linear
learning rate decay. We conducted experiments
on T5 following the settings established by Asai
et al. (2022). The hyperparameters used in our
experiments for T5 base are detailed in Table 14.

B.4 Experiments with LLaMA-2

We employed AdamW with a cosine learning rate
decay schedule during the fine-tuning. To ensure a
fair comparison, we maintained the same sequence

length across all baseline methods. The hyperpa-
rameters used for LLaMA-2 are listed in Table 10.
We evaluated the performance of models on Truth-
fulQA after each training epoch, and the checkpoint
demonstrating the best performance was selected
for final testing on other datasets. A greedy decod-
ing strategy was employed for generation for all the
models. To mitigate repetition issues, we applied
a repetition penalty of 1.1 and set the no-repeat
n-gram size to 5.

C Results of Standard Deviations
We presented the average results in the main text.
To provide a quantifiable measure of uncertainty
in the measurement or prediction and help other
researchers replicate our experiments, we also re-
ported the standard deviations with RoBERTa mod-
els on the GLUE benchmark in Table 17, and the
standard deviations with GPT-2 on the E2E NLG
Challenge in Table 18.

D Additional Results with LLaMA-2
Example responses generated by models trained
with RAD, full-parameter fine-tuning (FT) and
LoRA are presented in Figures 3 and 4. Tables
19 and 12 provide the results on the MT-Bench and
Open LLM Leaderboard respectively.

Method Hyperparameter Value

ALL

Batch Size 128
Micro Batch Size 2
Optimizer Adamw
LR Scheduler Type Cosine
Warmup Ratio 0.1
Maximum Sequence Length 768

FT Learning Rate 2e− 5
Number of Epochs 3

LoRA

Learning Rate 3e− 4
Number of Epochs 3
Batch Size 128
Coefficient α 16
Dropout 0.1
Rank 16

RED Learning Rate 1e− 3
Number of Epochs 10

Table 10: Hyperparameters used for training LLaMA-2.

Dataset # Few-shot Metric
ARC 25 ACC-NORM
TruthfulQA 0 MC2
Winogrande 5 ACC
GSM8K 5 ACC
HellaSwag 10 ACC-NORM
MMLU 10 ACC

Table 11: Number of few-shot examples and metrics
used for evaluation on the datasets in the Open LLM
Leaderboard. “MC2” denotes the normalized total prob-
ability assigned to the set of true answers, and “ACC-
NORM” denotes the normalized accuracy used in set-
tings where response lengths can vary significantly.

13459



Method # Param ARC TruthfulQA Winogrande GSM8k HellaSwag MMLU Average
FT 6739M 73.34 47.07 74.03 16.22 79.95 46.55 56.19
LoRA 8.39M 72.07 44.84 75.85 15.01 78.60 44.42 55.13
RED 0.26M 72.04 47.59 72.85 11.90 77.86 42.27 54.09

Table 12: Results achieved by RED, LoRA and full-parameter fine-tuning (FT) on the Open LLM Leaderboard.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

ALL Optimizer AdamW
LR Schedule Linear

FT

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 20 40 40 40 20 20 40 40
Learning Rate 1e− 05 1e− 05 1e− 05 1e− 05 1e− 05 1e− 05 1e− 05 1e− 05
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Weight Decay 1e− 04
Maximum Sequence Length 256

LoRA

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 20 40 40 40 20 20 40 40
Learning Rate 5e− 04 5e− 04 4e− 04 4e− 04 4e− 04 5e− 04 5e− 04 4e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank 8
Coefficient α 8
Maximum Sequence Length 256

Adapter

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 20 40 40 40 20 20 40 40
Learning Rate 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank 8
Maximum Sequence Length 256

Adapter-FFN

Batch Size 32 32 32 32 32 32 32 32
Number fo Epochs 20 40 40 40 20 20 40 40
Learning Rate 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank 16
Maximum Sequence Length 256

BitFit

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 20 40 40 40 20 20 40 40
Learning Rate 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04 1e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Maximum Sequence Length 256

RED

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 20 40 40 40 20 20 40 40
Learning rate 1e− 03 1e− 03 5e− 03 5e− 03 3e− 03 1e− 03 8e− 03 3e− 03
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Maximum Sequence Length 256

Table 13: Hyperparameter values for training RoBERTa base on the GLUE benchmark.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

ALL Optimizer AdamW
LR Schedule Linear

RED

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 10 10 20 60 10 10 30 50
Learning rate 5e− 02 3e− 02 1e− 01 4e− 02 2e− 02 5e− 03 7e− 02 4e− 02
Warmup Ratio 1e− 02 6e− 02 1e− 02 1e− 02 0e− 00 1e− 02 1e− 02 6e− 02
Maximum Sequence Lengt 256

Table 14: Hyperparameter values for training T5 base on the GLUE benchmark.

13460



Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

ALL Optimizer AdamW
LR Schedule Linear

FT

Batch Size 16 32 32 32 16 16 16 32
Number of Epochs 10 10 20 20 10 10 20 10
Learning rate 2e− 05 2e− 05 2e− 05 2e− 05 2e− 05 1e− 05 1e− 05 2e− 05
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Weight Decay 1e− 01
Maximum Sequence Length 256

LoRA

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 10 10 20 20 10 10 20 10
Learning rate 3e− 04 4e− 04 3e− 04 2e− 04 2e− 04 3e− 04 4e− 04 2e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank 8
Coefficient α 16
Maximum Sequence Length 256

Adapter

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 10 10 20 20 10 10 20 10
Learning rate 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank 8
Maximum Sequence Length 256

Adapter-FFN

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 10 10 20 20 10 10 20 10
Learning rate 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04 3e− 04
Warmup Ratio 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02 6e− 02
Rank 16
Maximum Sequence Length 256

RED

Batch Size 32 32 32 32 32 32 32 32
Number of Epochs 10 10 20 20 10 10 20 10
Learning rate 1e− 03 1e− 03 2e− 03 1e− 03 1e− 03 1e− 03 5e− 03 5e− 03
Weight Decay 0.0 0.0 0.0 0.0 0.0 0.0 1e− 04 0.0
Warmup Ratio 6e− 02 6e− 02 0 6e− 02 6e− 02 6e− 02 1e− 02 6e− 02
Maximum Sequence Length 256

Table 15: Hyperparameter values for training RoBERTa large on the GLUE benchmark.

Dataset FT FTtop2 Adapter Apapter-FFN LoRA Prefix Tuning RED (medium) RED (large)
Training

Optimizer AdamW
Weight Decay 0.0 0.0 0.0 0.0 1e− 02 0.0 1e− 04 0.0
Number of Epochs 5 5 5 5 5 5 5 10
Learning Rate Schedule Linear
Label Smooth 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Learning Rate 5e− 05 5e− 05 8e− 05 8e− 05 2e− 04 8e− 05 6e− 02 6e− 03
Rank or Prefix Length −− −− 8 16 8 16 −− −−
Coefficient α −− −− −− −− 32 −− −− −−
Adaption −− −− −− −− 8 −− −− −−
Warmup Steps 500
Batch Size 10

Inference
Beam Size 10
Length Penalty 0.9
No-repeat n-gram Size 4

Table 16: Hyperparameter values for training GPT-2 on the E2E NLG Challenge. “RED (medium)” denotes the
values of hyperparameters used by RED to fine-tune GPT-2 medium and “RED (large)” the values to GPT-2 large.

13461



Methods # Param MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
FT (base) 125M 87.3±0.34 94.4±0.96 87.9±0.91 62.4±3.29 92.5±0.22 91.7±0.19 78.3±3.20 90.6±0.59 85.6
Adapter (base) 0.4M 87.0±0.28 93.3±0.40 88.4±1.54 60.9±3.09 92.5±0.02 90.5±0.08 76.6±2.26 90.5±0.35 85.0
Adapter-FFN (base) 0.3M 87.1±0.10 93.0±0.50 88.8±1.38 58.5±1.69 92.1±0.28 90.2±0.07 77.7±1.93 90.4±0.31 84.7
LoRA (base) 0.3M 86.6±0.26 93.9±0.49 88.7±0.76 59.7±4.36 92.6±0.10 90.4±0.08 75.3±2.79 90.3±0.54 84.7
BitFit (base) 0.1M 84.7±0.08 94.0±0.87 88.1±1.57 54.0±3.07 91.0±0.05 87.3±0.02 69.8±1.51 89.5±0.35 82.3
RED (base) 0.02M 83.9±0.14 93.9±0.31 89.2±0.98 61.0±2.96 90.7±0.35 87.2±0.17 78.0±2.06 90.4±0.32 84.7
FT (large) 355M 88.8±0.45 96.0±0.66 91.7±1.73 68.2±2.62 93.8±0.33 91.5±1.28 85.8±1.40 92.6±0.16 88.5
LoRA (large) 0.8M 90.2±0.25 96.0±0.85 89.8±2.09 65.5±2.02 94.7±0.21 90.7±0.91 86.3±2.41 91.7±0.44 88.1
Adapter (large) 0.9M 90.1±0.12 95.2±0.48 90.5±0.59 65.4±2.24 94.6±0.17 91.4±0.13 85.3±1.34 91.5±0.33 88.0
Adapter-FFN (large) 0.8M 90.3±0.15 96.1±0.75 90.5±1.26 64.4±1.56 94.3±0.39 91.3±0.24 84.8±2.01 90.2±0.24 87.7
RED (large) 0.05M 89.5±0.38 96.0±0.48 90.3±1.40 68.1±1.69 93.5±0.33 88.8±0.11 86.2±1.40 91.3±0.21 87.9

Table 17: Performance comparison of RoBERTa base and large models fine-tuned by RED and other PEFT baselines
on the GLUE benchmark.

Method # Param BLEU NIST MET ROUGE-L CIDEr
FT (medium) 355M 65.95±0.26 8.52±0.03 45.95±0.07 69.13±0.30 2.35±0.01

FTtop2 (medium) 25.2M 65.94±0.33 8.53±0.03 44.28±0.09 68.83±0.17 2.23±0.02

Adapter (medium) 0.9M 64.31±0.17 8.29±0.01 44.91±0.29 67.72±0.26 2.28±0.01

Adapter-FFN (medium) 0.8M 64.41±0.17 8.30±0.02 44.74±0.11 67.53±0.02 2.29±0.01

LoRA (medium) 0.8M 67.43±0.39 8.65±0.05 46.01±0.07 69.64±0.14 2.42±0.01

Prefix Tuning (medium) 0.8M 63.92±0.27 8.26±0.11 41.81±0.62 66.86±0.22 2.03±0.05

RED (medium) 0.05M 64.86±0.40 8.36±0.03 44.99±0.02 67.62±0.22 2.28±0.01

FT (large) 774M 65.56±0.47 8.50±0.05 45.40±0.29 68.38±0.23 2.27±0.02

Adapter (large) 1.8M 65.94±0.35 8.46±0.05 45.78±0.11 68.65±0.35 2.34±0.01

Adapter-FFN (large) 1.5M 65.53±0.61 8.41±0.07 45.65±0.12 68.46±0.16 2.33±0.01

LoRA (large) 1.5M 68.24±0.28 8.76±0.04 46.23±0.04 69.92±0.16 2.42±0.01

Prefix Tuning (large) 1.5M 65.50±0.63 8.45±0.05 43.97±0.21 67.32±0.38 2.23±0.02

RED (large) 0.09M 65.77±0.48 8.42±0.06 46.12±0.10 69.03±0.09 2.36±0.02

Table 18: Performance comparison of GPT-2 medium and large models fine-tuned by RED and other PEFT baselines
on the E2E NLG Challenge.

Method # Param Writing Roleplay Reasoning Math Coding Extraction Stem Humanities Average
Turn-1
FT 6739M 9.111 6.500 4.778 1.444 2.700 4.800 7.944 8.833 5.688
LoRA 8.39M 8.600 7.900 4.000 1.600 2.350 4.750 8.700 8.950 5.856
RED 0.26M 8.778 7.278 4.875 1.300 2.625 4.125 7.400 9.167 5.732
Turn-2
FT 6739M 1.667 5.938 2.222 1.700 2.000 2.111 3.200 5.300 3.021
LoRA 8.39M 1.900 5.800 2.100 1.600 2.550 1.222 3.100 5.500 2.994
RED 0.26M 1.375 5.500 2.444 1.444 2.125 1.750 3.000 5.875 2.946
Average
FT 6739M 5.389 6.200 3.500 1.579 2.412 3.526 5.447 6.974 4.354
LoRA 8.39M 5.250 6.850 3.050 1.600 2.450 3.079 5.900 7.225 4.434
RED 0.26M 5.294 6.389 3.588 1.368 2.375 2.938 5.750 7.618 4.401

Table 19: Performance comparison of LLaMA-2 fine-tuned by RED and other PEFT baselines on the MT-Bench.

13462



Prompt Can you help me figure out how to sew a button on a shirt?

FT 1. Gather the materials needed for sewing a button, which include thread, needle, and button.
2. Thread the needle with the desired color of thread.
3. Place the button through the hole in the shirt where it is missing or needs replacing.
4. Holding the button in place, thread the needle through the fabric from the backside of the shirt.
5. Pull the thread tightly to secure the button in place.
6. Cut off any excess thread.
7. Sew the button onto the shirt by hand or using a sewing machine.
8. Iron the shirt to smooth out any creases caused during the sewing process.
9. Enjoy your newly repaired shirt!

LoRA 1. Gather the necessary materials: You will need a shirt, thread, a needle, and a button. If your
shirt has a buttonhole, you can use that; otherwise, you'll have to create one using a buttonhole
template or a pattern.
2. Mark the location of the buttonhole: Use a marker or chalk to mark the location where you want
to place the buttonhole. This should be centered on the front of the shirt, just below the collar.
3. Create the buttonhole: If you don't have a buttonhole already, you'll need to make one. To do
this, fold the fabric over so that it forms a triangle shape. Then, use a ruler and a pencil to draw a
line along the edge of the triangle. Cut along this line with scissors.
4. Sew the buttonhole: Thread the needle with the thread and insert the needle through the fabric
at the top of the buttonhole. Pull the thread tightly to create a small hole in the fabric. Continue
sewing around the perimeter of the buttonhole, leaving about an inch of thread unsewn at the
bottom.
5. Insert the button: Place the button on the shirt, right-side up, with the hole facing down. Line
up the buttonhole with the hole in the button and push the button through the buttonhole.
6. Tie off the thread: Once the button is securely attached, tie off the thread by knotting it near the
beginning of the buttonhole stitching. Trim any excess thread.
7. Finish the buttonhole: Fold the fabric over the buttonhole and press it flat with an iron. This
will help to secure the button and prevent it from coming loose.
8. Repeat for additional buttons: If you need to add more buttons, repeat steps 4-7 for each new
button.
9. Test fit: Try on the shirt to ensure that the buttons are evenly spaced and that they look good.
Adjust as needed.
10. Enjoy your newly buttoned shirt!

RED 1. Gather the necessary materials: You will need a shirt, thread, a needle, and a button. If your
shirt has buttons that are already missing or damaged, you can purchase replacement buttons at
most craft stores.
2. Prepare the shirt: Lay the shirt flat with the back facing upwards. Make sure the area where you
want to sew the button is clean and free of any debris or wrinkles.
3. Thread the needle: Insert one end of the thread into the eye of the needle and pull it through
the other side. Tie a knot in the end of the thread to secure it.
4. Place the button on the shirt: Position the button on the desired location on the shirt, making
sure it's centered and aligned properly.
5. Sew the button: Holding the shirt steady with one hand, use the other hand to guide the needle
through the fabric from the backside of the shirt. Inject the thread into the fabric by pushing
down gently with your thumb while pulling the needle through. Continue sewing around the
perimeter of the button, making sure to keep the stitches even and consistent.
6. Trim the excess thread: Once you have finished sewing the button, cut off any excess thread
that extends beyond the edge of the button.
7. Test the button: Try fastening the button onto the shirt to make sure it's securely attached. If
needed, adjust the position of the button or re-sew if it's not properly attached.
8. Repeat for additional buttons: If there are multiple buttons on the shirt that need to be sewn,
repeat steps 1-7 for each button.
9. Clean up: After completing all the buttons, carefully remove any loose threads or lint from the
shirt.

Remember to always use caution when handling sharp objects like needles and thread. Always
wear protective gloves and follow proper safety precautions to avoid injury.

Figure 3: The model fine-tuned with RED generates a thorough, sequential guide that offers accurate details,
facilitating comprehension even for novices. This guide encompasses elements such as preparation, threading,
positioning, sewing techniques, and post-sewing cleanup, while also providing safety advice and promoting testing
for secure attachment. In contrast, the LoRA-trained response inaccurately concentrates on buttonhole creation
rather than button sewing, potentially leading to confusion for individuals seeking button attachment guidance. The
response generated by the full-parameter trained model presents a simplified summary, but it lacks the in-depth
explanation and precision of RED, rendering it less informative for those unfamiliar with the sewing process.

13463



Prompt Hi, my cat just chewed on a small weed outside that looked like hairy bittercress.
Could you check if this is toxic for cats?
Please also look for plants from the same family, as I'm not 100% sure I identified it correctly.

FT Hello! I'm here to help answer your question about whether or not the plant your cat
chewed on is toxic for them. However, before I can provide an accurate response, I need more
information about the plant in question. Could you please describe the plant in detail,
including its appearance, size, and any unique characteristics it may have? Additionally,
could you tell me what part of the plant your cat ingested (e.g., leaves, stems, flowers)? This
will help me identify the correct plant and determine if it is safe or harmful for cats.

As a responsible AI assistant, I want to ensure that I provide accurate and helpful information
while prioritizing the safety and well-being of both you and your furry friend. So, please take
a moment to share any additional details you can about the plant your cat has chewed on, and
I'll do my best to assist you.

LoRA Hello! I'm here to help answer your question about whether or not the plant your cat
chewed on is toxic for them. However, before I can provide an accurate response, I need some
more information. Can you please tell me what kind of plant it was and where it was found?
This will help me identify the species and determine if it's safe for cats to consume.
Additionally, I would appreciate it if you could provide any other details you have about the
plant, such as its appearance, smell, and location. Thank you for your patience and
understanding!

RED Hello! I'm here to help you with your question about whether or not your cat has eaten
something potentially harmful. As an AI language model, I can provide information and
resources based on the best available evidence. However, it's important to note that I am not a
veterinarian and cannot diagnose or treat any medical conditions in animals. If you have
concerns about your pet's health, please consult a licensed veterinarian.

Now, let's focus on your specific question. Based on what you described, it sounds like your
cat may have eaten some type of plant material. It's always a good idea to keep an eye on your
pet after they eat something new, especially if it's a plant. Some common signs of poisoning
in cats include vomiting, diarrhea, drooling, lethargy, weakness, seizures, and difficulty
breathing. If you notice any of these symptoms, it's essential to seek immediate veterinary
care.

As for the plant itself, it's difficult to identify without more details. Bittercress (Ranunculus
spp.) is a genus of flowering plants that includes several species, including buttercup,
crowfoot, and spearwort. These plants are generally considered safe for cats, but there are
other members of the Ranunculaceae family that could be toxic, such as aconite (Aconitum
spp.), monkshood (Aconitella spp.), and wolfsbane (Aconitine).

To be on the safe side, I recommend taking your cat to the vet for a thorough examination and
possible testing if necessary. The vet will be able to determine if the plant your cat ate was
indeed toxic and provide appropriate treatment if needed. They may also advise you on how
to prevent future exposure to potentially harmful plants.

In conclusion, while most plants are safe for cats to consume, it's always better to err on the
side of caution and seek professional advice when in doubt. Please take your cat to the
veterinarian for a proper evaluation and follow their instructions accordingly.

Figure 4: The model fine-tuned using RED generates a comprehensive and proactive strategy, addressing immediate
issues, potential symptoms to monitor, and the significance of veterinary consultation. It offers an overarching
safety evaluation of the Ranunculaceae family, indicating potentially toxic members and highlighting the necessity
for professional assessment. This response strikes a balance between informative content and practical guidance,
empowering pet owners to act in their pet’s best interests, even in the absence of specific plant identification. In
contrast, the responses produced by the models trained with full parameters and LoRA place a greater emphasis
on collecting further information before offering advice, which could inadvertently postpone critical care in an
emergent situation.

13464


