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Abstract

Logical reasoning task has attracted great in-
terest since it was proposed. Faced with such
a task, current competitive models, even large
language models (e.g., ChatGPT and PaLM 2),
still perform badly. Previous promising LMs
struggle in logical consistency modeling and
logical structure perception. To this end, we
model the logical reasoning task by transform-
ing each logical sample into reasoning paths
and propose an architecture PathReasoner. It
addresses the task from the views of both data
and model. To expand the diversity of the log-
ical samples, we propose an atom extension
strategy supported by equivalent logical for-
mulas, to form new reasoning paths. From
the model perspective, we design a stack of
transformer-style blocks. In particular, we pro-
pose a path-attention module to joint model
in-atom and cross-atom relations with the high-
order diffusion strategy. Experiments show
that PathReasoner achieves competitive perfor-
mances on two logical reasoning benchmarks
and great generalization abilities.

1 Introduction

With the emergence of pre-trained language mod-
els (PLMs) (Kenton and Toutanova, 2019; Brown
et al., 2020), recent years have witnessed remark-
able progress in the task of machine reading com-
prehension (MRC) (Rajpurkar et al., 2016; Lai
et al., 2017). To tackle more complex scenarios in
reality, the challenging logical reasoning task (Yu
et al., 2019; Liu et al., 2021a) has been proposed
to exploit the model reasoning capability (Huang
and Chang, 2023) over text1. Similar to the tradi-
tional MRC task, it also takes the context, question
and options as inputs and requires the model to
predict the final answer. Due to the diverse logical
characteristics implied in the text, logical reasoning

∗Correspondence to Qika Lin and Jun Liu.
1Logical reasoning is a broad concept covering various

tasks, but we mainly address the task in the form of MRC.

Figure 1: Probing tests on representative LMs (e.g.,
RoBERTa). (a) is about model prediction consistency.
(b) is related to the perception of logical connectives.
Detailed pilot experiments are shown in the Appendix.

task brings huge challenges to current LMs. Espe-
cially, faced with such tasks, large language models
(LLMs), e.g., ChatGPT2 and PaLM 23, also strug-
gle a lot which is proved by previous evaluation
works (Xu et al., 2023a; Liu et al., 2023). Under
such circumstances, this paper will focus more on
addressing logical reasoning tasks with small LMs,
which are light-weighted and more flexible for fu-
ture applications4.

Previous competitive LMs expose two limita-
tions in the performance. Firstly, it lacks consistent
model predictions on samples with equal logical
semantics. For example in Figure 1(a), we make
changes to the expression of the original context
while maintaining the semantic unchanged, where
not...unless is equally transformed into the expres-
sion of only if. However, the LMs give inconsistent
predictions between the original sample and the

2https://chat.openai.com
3https://ai.google/discover/palm2/
4The focus of this paper is mainly on small LMs, since they

are more efficient and effective compared with LLMs on the
logical reasoning tasks. But we still report LLM performances
for comparison in the experiment section.
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modified one. We blame the problem on the lack of
training samples in logical reasoning. Compared
with some classic MRC datasets like SQuAD (Ra-
jpurkar et al., 2016, 2018), CoQA (Reddy et al.,
2019) with over 100,000 training samples, logical
reasoning datasets like ReClor (Yu et al., 2019) and
LogiQA (Liu et al., 2021a) are much more sparse
with only several thousand samples. Thus, such
sparsity limits the learning of logic semantics. Pre-
vious work (Jiao et al., 2022) leverages general
corpus to conduct continual pretraining, but it does
not address the sparsity of logical text in essential.

Secondly, it remains a challenge to enhance the
model perception for logical structures. For exam-
ple in Figure 1(b), we randomly replace the explicit
logical relation words or inverse the negations for
the context, which destroys the original semantics.
But the LMs fail to change the prediction accord-
ingly. It demonstrates that current LMs are insensi-
tive to the logical connectives, instead they focus
more on facts within the text. Considering that cur-
rent LMs are pre-trained with general objectives on
the fact corpus (e.g., Wikipedia), they are naturally
weak in capturing the logical structures usually
existing in logical-specific scenarios. Some stud-
ies like DAGN (Huang et al., 2021), Logiformer
(Xu et al., 2022), and AdaLoGN (Li et al., 2022)
have attempted to model the explicit logical rela-
tions from various perspectives, such as causal and
co-occurrence. All of them build text graphs to
conduct the reasoning, which limits the scalability
to larger text and more complex scenarios.

In view of the above challenges, we propose an
architecture PathReasoner, which considers a new
paradigm for logical reasoning tasks via reasoning
path modeling. Based on the predefined logical
rule forms, we represent each natural sentence as
an atom and transform each sample into reason-
ing paths with confidence scores. Under such a
paradigm, PathReasoner addresses the task from
two views. From the view of expanding the data
diversity, we first obtain equivalent atom combina-
tions through external logical formulas, generating
new reasoning paths and textualizing them as new
samples. From the model view, we propose a rea-
soning path modeling network. It encodes both
function symbols and variables in atoms and forms
an atom embedding sequence as the input. In a
path-attention module, we model high-order rela-
tions from both in-atom and cross-atom perspec-
tives. Through the fusion of token, atom, and path

embedding, the prediction can be derived.
Our technical contributions are as follows, and

additional key values are in Appendix I:
(1) We unify the text inputs into atoms and reason-
ing paths. Based on it, an architecture PathRea-
soner is proposed to improve both the diversity of
samples and logic perception capability.
(2) In light of the sparsity of training data, we pro-
pose an atom extension strategy to form new train-
ing samples. To better capture logical structures,
we introduce a path-attention module with high-
order relation modeling, enabling joint updates of
information within atoms and across atoms.
(3) Extensive experiments show superior perfor-
mances on two logical reasoning benchmarks. Sig-
nificant generalization capabilities are also verified.

2 Related Work

Recent progress in MRC promotes the emergence
of more complex tasks like logical reasoning. Pre-
viously, several datasets on logical reasoning have
been proposed, including ReClor (Yu et al., 2019),
LogiQA (Liu et al., 2021a) and AR-LSAT (Zhong
et al., 2021). They have attracted much attention
since some LMs fail to show superiority. Previous
works on the logical reasoning task can be catego-
rized into two folds.

Sequence-based. These models are usually ac-
companied by data augmentation strategies. LRea-
soner (Wang et al., 2022) proposes to extend text
with logical formulas to enrich the context infor-
mation. MERIt (Jiao et al., 2022) proposes a con-
trastive strategy based on the meta-path and lever-
ages the extra data to pre-train the model. However,
both of them lack the relation modeling of logical
units in the sequence.

Graph-based. DAGN (Huang et al., 2021) is the
first work to divide the text into discourse units
and utilize the graph neural networks (Zhou et al.,
2020) to update the representations. But its chain-
type graph structure limits the expression of com-
plex relations between logical units. FocalRea-
soner (Ouyang et al., 2021) focuses on the fact
triplet extracted from the text and builds a super-
graph for reasoning. But it ignores the effects of
the logical connectives within the text. To better
model the logic within text, AdaLoGN (Li et al.,
2022) designs an adaptive network to update the
text graph progressively. Logiformer (Xu et al.,
2022) proposes a two-branch graph transformer
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network to address the text from syntax and logic.
However, it is costly to form and update the text
graph during the reasoning process. In general, the
graph-based methods naturally lack expansibility,
especially when the text becomes larger.

Considering the above drawbacks, we propose a
reasoning pattern based on the reasoning paths (in-
stantiated logical rules) for the first time. It models
the logical reasoning task from a special perspec-
tive and combines the advantages of both sequence
and graph-based methods.

3 Preliminary

This work considers unifying the inputs into the
form of logical rules (Lin et al., 2021) since it is
a more natural way to uncover logical structures
of the text while maintaining the important facts.
The distinctive values of such definitions over first-
order logic (Xu et al., 2023c) and propositional
logic are in Appendix C. We introduce the follow-
ing two definitions.
Definition 1: atom. We transform each natural
sentence into one atom (Hinman, 2018), which
consists of one function symbol and several vari-
ables. For example, given the sentence Paula will
visit the dentist only if Bill goes golfing, we define
the expression OnlyIf(A,B) as the atom. OnlyIf
is the function symbol that denotes the explicit con-
nective phrase in the sentence. And A,B are called
variables to represent abstract sentence constitutes,
whose instantiation are Paula will visit the dentist
and Bill goes golfing respectively. Similarly, we
can also derive other atoms from the text, such as
Unless(A,B), Since(A,B), InFact(A).

According to the reasoning patterns, we define
four categories of function symbols, shown in Table
1. The first is causal relations for deterministic
facts. The second and third ones are conditional
assumptions, where NA focuses on the uniqueness
of the condition. The last one is facts with no
explicit logical relations.
Definition 2: reasoning path. Based on Definition
1, we can unify the context, question and options
of each input into the form of the logical rule (Lin
et al., 2022; Pan et al., 2022), such as Eq. 1:

ε, F1(A,B) ∧ F2(C,A) ∧ F3(D) ∧ · · ·︸ ︷︷ ︸
rule body

⇒ Q(ai)︸ ︷︷ ︸
rule head

. (1)

Rule body functions as the modeling of the context
part, which is represented as the conjunction of

Category Representative Connectives
Cause Because, Since, DueTo, TheReasonsWhy...

SA If, When, Once, AsLongAs, ...
NA OnlyIf, Unless, ...
Fact InFact, Actually, InAll, ToConclude ...

Table 1: Categories of function symbols. ‘SA’ and
‘NA’ are short for Sufficient Assumption and Necessary
Assumption respectively.

atoms. Rule head consists of the concatenation
of the question sentence and option ai, which is
also represented as the conjunction of atoms in
the implementation. The symbol ε indicates the
confidence score of the logical rule. Since each
option is bounded with one logical rule, ε is also
equal to the confidence of option ai. In actual cases,
the function symbols (e.g., F1, F2) and variables
(e.g., A,B) are instantiated as the natural language.
Therefore, this paper defines the instantiated logical
rule as the reasoning path.

Implementation We use over 100 pre-defined
function symbols, grouped into four categories,
and apply hand-crafted rules to match them in the
sentence. The function symbols along with the
punctuation can be divided into one or two parts,
as instantiated variables. This strategy is relatively
complete, illustrated in Appendix B.

4 Methods

To tackle the challenges in the logical reasoning
task, we propose the architecture PathReasoner,
shown in Figure 2. It includes two main parts: (a)
Equivalent Path Extension (EPE) and (b) Reason-
ing Path Modeling (RPM). The former module is
aimed at expanding the sample diversity to improve
the consistency of model prediction. The latter one
targets at improving the logic perception capability
of the reasoning model.

4.1 Equivalent Path Extension

After unifying the inputs into the logical rule form,
it is natural to exploit the equivalent logic to facili-
tate the equivalent extension.

4.1.1 External Logical Formulas
In the beginning, we introduce external logical for-
mulas to achieve the atom extension. Correspond-
ing to the function symbols, we employ the follow-
ing logical formulas.
(A) Equivalence Logic. It defines the bi-directional
derivation between atoms as Eq. 2, where □ ∈
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Figure 2: The architecture of PathReasoner. Part (a) is Equivalent Path Extension, which aims to improve the
diversity of samples. Part (b) is Reasoning Path Modeling, which is designed to model logical structures.

{Cause,SA} and ¬ denotes the negation.

□(A,B) ⇔ □(¬B,¬A). (2)

(B) Single Atom Derivation. Such logical formula
is targeted at transforming NA atoms to SA, i.e.,

NA(A,B) ⇒ SA(¬A,¬B). (3)

(C) Multiple Atom Derivation. Depending on the
conjunction of atoms, we can generate more diverse
text. We only present the logical formulas with
two atom conjunction in Eq. 4 and 5, since more
complex situations can be derived by repeating the
extension process.

⋆(A,B) ∧△(B,C) ⇒ ⋆(A,C), (4)

Fact(A) ∧▽(A,B) ⇒ Fact(B). (5)

In above equations, ⋆ ∈ {Cause,NA,SA},△ ∈
{Cause,NA,SA} and ▽ ∈ {Cause,NA,SA}.

4.1.2 Reasoning Path Engine and Filter
Taking original reasoning paths and equivalent log-
ical formulas as inputs, the reasoning path engine
module aims to generate the candidate samples.

Firstly, we conduct multi-round atom extension.
For example in Fig. 2(a), there exist four atoms in
the original reasoning path. At the first round, the
atom Unless(C,B) can derive If(¬C,¬B), and

also a new atom OnlyIf(C,A) can be added into
the atom base through the conjunction derivation
of Unless(C,B) and OnlyIf(B,A). We repeat
the extension process to include all potential atoms.
Thus, an extended atom base is formed.

Secondly, our purpose is to mine atom com-
binations to form new reasoning paths. By enu-
merating all possible combinations, we select the
ones which can recover the original path in reverse.
For example, the combination of OnlyIf(B,A),
OnlyIf(C,B), Fact(¬C) and If(¬C,¬A) is a
valid candidate because it can derive the original
path with external logical formulas.

Thirdly, we replace the variables with the cor-
responding text and textualize the reasoning path
form into regular sample form (with context, ques-
tion and options).

To reduce noise (e.g., incorrect syntax) in the
newly generated candidates, we introduce the path
filter module. Specifically, we leverage the PLM
(e.g., RoBERTa (Liu et al., 2019)) to train the orig-
inal samples from the downstream datasets. There-
fore, a set of weight parameters is obtained, which
is defined as the pre-trained filter in this paper.

When feeding each sample into the pre-trained
filter, we can obtain the confidence score εi of the
ith reasoning path related to option ai. The pre-
dicted option ak is derived with the maximum con-
fidence scores. We keep the samples with both
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correct predictions and high scores, which means
ak = a∗ and εk > ε∗. ak is the predicted option
with confidence score εk. a∗ is the ground-truth
option and ε∗ is the threshold that controls the ef-
fectiveness of the reasoning path filter.

4.2 Reasoning Path Modeling

From the model view, we propose the reasoning
path modeling module. Given the input context,
question, and options of one sample, we first unify
them into the form of the reasoning path based on 3.
The initial representation of instantiated variable
set V = {V1, V2, ..., VK} and function symbols set
S = {S1, S2, ..., SM} can be acquired respectively,
where K and M are the number of variables and
function symbols in the sample.

For the variable Vk with token sequence
{v(k)1 , v

(k)
2 , ..., v

(k)
|Vk|}, we leverage the LM as the

encoder to obtain the token-level embedding
{v(k)1 , v(k)2 , ..., v(k)|Vk|}. Thus, its initial representa-

tion Vk ∈ Rd is calculated by the average pooling.
We randomly initialize the representations for the
function symbol Sm:

Vk =
1

|Vk|

Vk∑

i=1

v
(k)
i , Sm = Init(Sm). (6)

By aligning the variables and function symbol
for each atom, we can form the atom embedding se-
quence A ∈ R(M+K)×d. To take the order feature
into consideration, we include the position embed-
ding (Vaswani et al., 2017) to the input sequence:

Ai = Ai + PosEmbed(Ai), (7)

where Ai is the embedding of the ith unit in A,
which can be either a variable or a function symbol.
In this way, PathReasoner implements the sequen-
tial representation of logical rules.

To perform message passing over the reasoning
paths, we propose a stack of L layer blocks in a
similar style of Transformer. Specifically, we feed
the input sequence into both the self-attention and
the proposed path attention module.

For the self-attention module of the lth layer,
we follow the regular method, which projects the
input sequence into query Q(l) ∈ R(M+K)×d, key
K(l) ∈ R(M+K)×d and value V(l) ∈ R(M+K)×d

by the projection matrices. Then, the output of the
self-attention module can be derived as H(l)

SA.

For simplicity, we omit the description of multi-
head attention in the main paper, but the selection
of head number will be discussed in Appendix E.3.

For the path attention module, we first obtain
the interaction matrix M

(l)
seq ∈ R(M+K)×(M+K)

by self multiplication of the input sequence A. It
models the interaction between any two units. Be-
sides, the importance of each unit can be further
considered from the perspective of in-atom and
cross-atom.

In-atom interaction models the information
aggregation within one atom. Take the atom
Si(Vj , Vk) with two variables Vj , Vk and one func-
tion symbol Si as an example (i,j and k are index
in the input sequence), the attention score can be
computed as:

s
(l)
in = LeakyReLU(W

(l)
in tanh(V

(l)||S(l)
i )), (8)

where S
(l)
i ∈ Rd denotes the embedding of func-

tion symbol Si. V(l) ∈ Rd is obtained by aver-
aging the variable embedding V

(l)
j and V

(l)
k . For

atom with a single variable, the average step can be
omitted. || represents the concatenation between
feature vectors. W is the trainable projection pa-
rameters (the same below).

To embed the in-atom attention, we leverage a
score matrix M

(l)
in ∈ R(M+K)×(M+K):

M
(l)
in (i, j) = M

(l)
in (i, k) =

{
s
(l)
in , Si(Vj , Vk) exists
−∞, otherwise

.

(9)
We define M

(l)
in as a symmetric attention matrix,

thus there also exist M(l)
in (j, i) = M

(l)
in (i, j) and

M
(l)
in (k, i) = M

(l)
in (i, k).

Cross-atom interaction models the message pass-
ing over different atoms. For the same variable Vp

and Vq (p, q are unit index of the input sequence),
the attention score is obtained:

s(l)crs = LeakyReLU(W(l)
crs((V

(l)
p +V(l)

q )/2)),
(10)

where V
(l)
p and V

(l)
q are the embeddings of two

instantiated variables.
Similar to in-atom attention, we obtain a cross-

atom score matrix M
(l)
crs ∈ R(M+K)×(M+K):

M(l)
crs(p, q) =

{
s
(l)
crs, if Vp, Vq co-occurs
−∞, otherwise

(11)
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Since these two attention matrices only model
one-order interaction between related units, the
long-distance message passing is limited. Also, we
extract the atom based on the explicit logical con-
nectives, it ignores the implicit interactions within
the logical text. Therefore, we introduce a diffusion
aggregation strategy (Zhao et al., 2021; Liu et al.,
2021b) to achieve high-order attention:

M
(l)
in−h =

N∑

i=1

αi(M
(l)
in )

i, (12)

M
(l)
crs−h =

N∑

i=1

βi(M
(l)
crs)

i, (13)

where N is the maximum order number, αi and βi
are the trade-off coefficients to control the diffusion
procedure. In this way, the one-order attention flow
can be efficiently diffused to high-order relations.
We can update the feature of sequence H

(l)
seq ∈

R(M+K)×d through joint utilization of these three
attention matrices:

H(l)
seq = softmax(M(l)

seq +M
(l)
in−h +M

(l)
crs−h)A.

(14)
Within each atom, we aggregate the instantiated

variable embedding in the function symbol to ac-
quire a sequence of atom embedding, which can be
represented as {H(l)

S1
, ...,H

(l)
SM

}. Next, we define

the reasoning path H
(l)
p ∈ Rd embedding as:

H(l)
p = MeanPool(

M

||
i=1

H
(l)
Si
). (15)

To align the output embedding of the self-
attention module, we repeat and stack the reasoning
path embedding for M+K times, obtaining the out-
put of path-attention module H

(l)
PA ∈ R(M+K)×d.

Note that the multi-head strategy is also applied in
the path-attention module.

We obtain the optimized sequence embedding
by adding H

(l)
SA and H

(l)
PA. Following the common

practice in the Transformer architecture, we feed
the sequence into the feedforward block and obtain
the final output H(l)

t of lth layer.
After the respective mean pooling process on

Hcls, H
(L)
t and H

(L)
p , the three features are con-

catenated and projected for the final prediction.

5 Experiments

This section provides comparison experiments with
other strong baselines on two logical reasoning
benchmarks. Extensive ablation studies and gener-
alization evaluations are also followed.

5.1 Datasets and Baselines

The main experiments are conducted on two log-
ical reasoning datasets ReClor (Yu et al., 2019)
and LogiQA (Liu et al., 2021a). To verify the
superiority of PathReasoner, we compare it with
strong baselines, including RoBERTa-large (Liu
et al., 2019), DAGN (Huang et al., 2021), Focal-
Reasoner (Ouyang et al., 2021), LReasoner (Wang
et al., 2022), AdaLoGN (Li et al., 2022), MERIt
(Jiao et al., 2022), Logiformer (Xu et al., 2022), as
well as LLMs like text-davinci-003, GPT-3.5-turbo
and PaLM 2. All the experiments are conducted
with a single GPU of Tesla A100. All detailed
experimental settings are listed in Appendix E.3.

5.2 Comparison Results

The results of comparison experiments are pre-
sented in Table 2. Compared with previous SOTA
baselines, PathReasoner presents superiority.

In ReClor dataset, PathReasoner outperforms
all the graph-based methods. Compared with the
SOTA method Logiformer, PathReasoner achieves
improvements of 2.00% and 0.60% on the valida-
tion and test splits respectively. PathReasoner also
shows superiority over all sequence-based meth-
ods, especially outperforming MERIt by 2.50% on
the test split. Importantly, it surpasses human per-
formance, i.e., 64.10% vs 63.00%, which greatly
pushes the boundary of machine reasoning. In
LogiQA dataset, PathReasoner still shows compet-
itive performances, improving the SOTA results by
2.46% on the test split. PathReasoner demonstrates
excellent performance and generalization in logical
reasoning, as evidenced by its consistent results
across two benchmarks.

Compared with representative LLMs, PathRea-
soner exhibits great superiority with a wide mar-
gin in the ReClor dataset. Also in the LogiQA
dataset, it outperforms both text-davinci-003 and
GPT-3.5 with obvious advantages and only falls
behind PaLM 2 which is over x1000 in size.

5.3 Ablation Studies

Ablation studies for two main parts EPE and RPM
in Table 3. For w/o whole of EPE, we remove
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Model ReClor LogiQA
Valid Test Test-E Test-H ∆ Valid Test ∆

Se
qu

en
ce

Random 25.00 25.00 25.00 25.00 - 25.00 25.00 -
Human Performance - 63.00 57.10 67.20 -1.10 - 86.00 -
BERT-Large 53.80 49.80 72.00 32.30 -14.30 34.10 31.03 -13.98
XLNet-Large 62.00 56.00 75.70 40.50 -8.10 - - -
RoBERTa-Large 62.60 55.60 75.50 40.00 -8.50 35.02 35.33 -9.68
LReasoner 66.20 62.40 - - -1.70 38.10 40.60 -4.41
MERIt † 69.40 61.60 79.30 47.80 -2.50 39.50 42.40 -2.61

G
ra

ph

DAGN 65.80 58.30 75.91 44.46 -5.80 36.87 39.32 -5.69
FocalReasoner 66.80 58.90 77.05 44.64 -5.20 41.01 40.25 -4.76
AdaLoGN 65.20 60.20 79.32 45.18 -3.90 39.94 40.71 -4.30
Logiformer 68.40 63.50 79.09 51.25 -0.60 42.24 42.55 -2.46

L
L

M

text-davinci-003♣ 53.00 - - - - - 41.00 -
GPT-3.5-turbo♣ 58.80 - - - - - 40.25 -
GPT-4-0125-preview 84.40 - - - - - 58.37
PaLMv2♣ 56.00 - - - - - 48.00 -
PathReasoner 70.40 64.10 80.91 50.89 - 43.16 45.01 -

Table 2: Experimental results on ReClor and LogiQA. The percentage signs (%) of accuracy values are omitted.
The optimal and sub-optimal results are marked in bold and underlined (comparisons do not include LLMs). The
column ∆ presents the improvements of PathReasoner on the test split. † means the utilization of extra data. ♣
denotes results from (Xu et al., 2023a).

Model ReClor LogiQA
Valid Test Valid Test

PathReasoner 70.40 64.10 43.16 45.01
EPE Part

w/o whole 67.00 60.40 41.16 43.01
∆ -3.40 -3.70 -2.00 -2.00

w/o path filter 68.40 62.80 42.70 43.78
∆ -2.00 -1.30 -0.46 -1.23

RPM Part
w/o whole 63.00 56.20 38.40 39.17

∆ -7.40 -7.90 -4.76 -5.84
w/o path attention 67.60 60.80 41.94 43.16

∆ -2.80 -3.30 -1.22 -1.85
w/o in-atom att. 70.00 62.80 42.09 44.85

∆ -0.40 -1.30 -1.07 -0.16
w/o cross-atom att. 67.80 62.40 43.63 42.70

∆ -2.60 -1.70 +0.47 -2.31
w/o diffusion 69.00 61.80 42.70 43.63

∆ -1.40 -2.30 -0.46 -1.38

Table 3: Ablation studies on ReClor and LogiQA.

the whole part of EPE and only utilize the origin
samples for training. The performance witnesses
obvious drops of 3.70% and 2.00% on the two
datasets respectively. For w/o path filter, we keep
all the new paths to generate samples without filter-
ing. The results prove the effectiveness of it with
1.30% and 1.23% gains on the test respectively. For
w/o whole of RPM, we ablate the whole RPM and
simply leverage the input sequence to predict the
answer through a text encoder and a classifier. In
this case, the model degenerates to RoBERTa-large
baseline with more samples from EPE part. The
results prove that the modeling of path significantly
enhances the reasoning process.

To deeply verify modules in RPM, we carry out
the following ablation studies. For w/o path atten-
tion, we remove the path attention module. The
performance gains prove that it is key to RPM part.
For in-atom att. and cross-atom att., we respec-
tively ablate the attention modeling within atoms
and across atoms. The former benefits the ReClor
dataset a lot, while the latter is more helpful to
the LogiQA dataset. It illustrates that in-atom and
cross-atom attention are complementary to each
other. For w/o diffusion, we remove the high-order
diffusion strategy. Experiments show that the diffu-
sion strategy is also vital to RPM part.

5.4 In-depth Analysis

We first analyze the model performances with dif-
ferent lengths of atoms in Fig. 3a. The bars rep-
resent the number of samples with different atom
numbers, while the lines denote the performances
with different atom numbers. For both ReClor and
LogiQA datasets, PathReasoner maintains a high
performance with moderate scale of atoms, which
accounts for most samples in both datasets. Con-
fronted with larger sample sizes, the performances
decline. We argue that the gaps have been greatly
narrowed with the proposed diffusion strategies,
compared with previous models.

Secondly, we provide an analysis of the impact
of the number of new samples. By controlling the
maximum scale of new atom combinations, we can
generate different numbers of samples. Fig. 3b
shows the model performances under various cases,
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(a) Performances with different numbers of atoms.

(b) Performances with different numbers of new samples.
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(c) Training Efficiency Analysis.

Figure 3: In-depth analysis of the model.

where the horizontal axis denotes the number of
new samples (with & w/o path filter) and the verti-
cal axis is the model performance on the test. On
the two datasets, the path filter plays a positive role
in reducing redundancy and noise. Additionally,
the optimal results are obtained at a moderate scale
of new samples, and larger amounts of samples do
not always bring gains in performance.

Thirdly, we discuss the model training efficiency
in Fig. 3c. We make the comparison with the
previous SOTA Logiformer on ReClor (left) and
LogiQA (right). To make a clear illustration, we
report the loss curve with steps (truncated at 0.1).
From the results, PathReasoner shows faster conver-
gence speed on both ReClor and LogiQA datasets.
Detailedly, PathReasoner achieves 1.66x conver-
gence speed than Logiformer on the ReClor dataset,
and it has 1.34x speed on the LogiQA dataset. We
provide more in-depth experiments in Appendix F.

5.5 Model Generalization

PathReasoner is also evaluated on other reasoning
tasks to verify the generalization capability in Ta-
ble 4. The experiments are conducted on Dream
(Sun et al., 2019) and MuTual (Cui et al., 2020),
which are multi-turn dialogue datasets requiring
complex reasoning. We utilize RoBERTa-Large

Model Dream MuTual MuTual+
Valid Test R@1 R@1

RoBERTa-L 83.18 84.74 87.46 80.47
Logiformer 84.47 83.76 88.04 79.68
PathReasoner 85.05 86.84 88.93 81.49

Table 4: Experiments on model generalization.

Figure 4: Two case studies on LogiQA dataset.

model and the previous SOTA model Logiformer as
baselines. Among all comparison metrics, PathRea-
soner achieves consistent superiority over them.
Compared with Logiformer, PathReasoner outper-
forms it with 3.08% in the test split of Dream,
0.89% of the R@1 metric of MuTual and 1.81%
of the R@1 metric of MuTual+. It demonstrates
that PathReasoner can well generalize to different
reasoning tasks. Also, other generalization exper-
iments on EPE module and zero-shot settings are
included in Appendix G,H.

5.6 Case Study

We provide the analysis for the interpretability of
PathReasoner in Figure 4. In the successful case,
PathReasoner correctly extracts the variables from
the text and forms the reasoning path. In particular,
We present the path attention map from RPM part
to check the logical perception capability. Firstly,
PathReasoner focuses more on the function sym-
bols (e.g., If and Fact) and question sentences
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(i.e., variable F ), with higher attention scores in
the map. It verifies that PathReasoner is equipped
with the perception of logic and question types.
Secondly, the question is to match the logical struc-
ture between context and option. The correspond-
ing atoms (e.g., If(D,E) and If(J,K)) are con-
sidered together in the module. It illustrates that
PathReasoner is good at understanding the question
and reasoning over paths.

In the failure case, PathReasoner wrongly catego-
rizes the variable with different semantics together
to A which leads to the mistake. It demonstrates
that the variable extraction in PathReasoner is not
good at distinguishing the minor difference, which
has space for improvement.

6 Conclusion

To tackle the logical data scarcity and weak model
perception of logical structures, we propose a new
paradigm to model the logical reasoning task by
representing each natural sentence as atom form
and transforming logical samples into reasoning
paths. Based on such unique modeling, an archi-
tecture PathReasoner is proposed to address the
challenges. It achieves SOTA performances on
two logical reasoning datasets. Also, extensive
experiments demonstrate the effectiveness of each
module and great generalization capability on other
complex reasoning scenarios. In the future, we will
propose a unified architecture based on PathRea-
soner to tackle the logical reasoning tasks over
different modalities (e.g., images, text, graphs).
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Limitations

This paper proposes a novel direction for address-
ing logical reasoning tasks, which differs from the
sequence-based methods and graph-based methods.

The core of the proposed model is to transform
the input text into the form of logical rules with
the conjunction of atoms and realize the equivalent
extension and path reasoning over it. However, the
extraction process of atoms is still very challenging.
Although the current algorithm predefines some ba-
sic logical relations in advance and achieves great
progress, it also requires the help of more com-
prehensive external logic bases in the future to im-
prove the accuracy of atom extraction. In addition,
the logical text in reality often contains noise (e.g.,
wrong logic). Although this paper has conducted
extensive experiments on other reasoning datasets
and complex settings to verify the generalization
capability, there still remain unsolved on how to
promote the models to more complex settings, like
multi-modality scenarios.
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A Pilot Experiments

In this section, we provide the detailed pilot experi-
ments mentioned in Fig. 1 of the main paper. For
the model prediction consistency test, we equally
replace the explicit logical connectives in a part of
the samples on ReClor. The differences in perfor-
mances are presented in Table 5.

Table 5: Pilot experiments on prediction consistency.

Model Origin Replace ∆
BERT-L 38.50 30.00 -8.50
RoBERTa-L 55.00 48.50 -6.50
PathReasoner 62.50 61.00 -1.50

It can be seen that current PLMs fail to maintain
equal predictions on samples with the same logical
semantics. It proves the motivation of the proposed
method. Also, we provide the performances of
PathReasoner in the same setting as the pilot exper-
iments. Our model largely improves the prediction
consistency, and only fails in 1.50% of the cases. It
illustrates the robustness of PathReasoner in logic.

In addition, we conducted experiments on the
model perception of logical connectives. By
adding, deleting, or modifying the explicit logical
connectives on some samples, we randomly break
the original semantics of the context. We report
the ratio of samples that fail to follow the logical
changes. It tests the sensitivity of the model for
capturing the logical relations. Results are shown
in Table 6.

Table 6: Pilot experiments on model perception of ex-
plicit logical connectives.

Model Ratio
BERT-L 29.30%
RoBERTa-L 21.63%
PathReasoner 71.95%

From the results, current PLMs are not al-
ways sensitive to the changes of logical connec-
tives. BERT and RoBERTa can merely distinguish
29.30% and 21.63% of changes respectively. There-
fore, it is worth considering enhancing the logic
modeling for the language models, which supports
our motivations. Also, we report the performance
of PathReasoner on the last row of the table. Our
model shows great superiority on enhancing the
model perception of explicit logical connectives,
being sensitive to 71.95% of the cases. It well
verifies and supports our motivations.

B Key Questions for Extraction Process

The whole extraction process leads to several key
questions:

(1) Scenario coverage. Our predefined rules are
relatively complete, and have covered extensive
cases in syntax (guided by experts). We include
over 100 instantiated function symbols (curated
from NLTK) and it can cover most logical scenarios
(details in Appendix D). Therefore, it can ensure
the wide coverage of logical scenarios. Beyond
that, we also include the Fact category of function
symbols. It can be adapted to facts that do not have
obvious logic. To sum up, our heuristic rules can
extend to any kind of text in theory.

For an example out of the logical domain, the
input is factual paragraph X, which consists of sen-
tences A, B, C, and D. Our method adapts to such a
scenario, and it can output Fact(A) ∧ Fact(B) ∧
Fact(C) ∧ Fact(D).

(2) Extraction accuracy. Based on the above de-
scriptions, our method can cover any kind of text
in theory. We randomly select 30 paragraphs, re-
sulting in 148 pieces of sentences. We manually
label the extraction accuracy of each sentence. To
make a comparison, we also prompt GPT-4 (instruc-
tion+predefined function symbols + atom form+4-
shot examples) to finish this process. The results
are listed in Table 7.

Table 7: Experiments on the extraction accuracy.

Ours GPT-4 LLaMA-2-Chat
Atom Acc 95.27 91.22 8.11

C Distinction of Our Logical Forms

As some examples presented, our predefined log-
ical forms are similar to first-order logic (FOL)
and propositional logic. But our forms are more
suitable for the scenarios in the following aspects.

(1) Customized function symbols. We define
four types of function symbols and they are ef-
fective in equivalent transformation. The general
FOL and propositional logic can not satisfy our
customized requirements.

(2) Perception of sentence-level logic. In logical
reasoning scenarios, rich logic exists more at the
sentence level, thus we transform each sentence
into an atom. However, FOL and propositional
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logic are conditioned at the entity level or span
level, which is more fine-grained. They are not
necessarily effective in capturing logic.

D Statistics of Function Symbols

In this section, we present the statistics of the log-
ical connectives in two logical reasoning datasets
ReClor and LogiQA. It will provide intuitive proof
of the necessity and rationality of the function sym-
bol categories.

Figure 5a presents the statistics of function sym-
bols (i.e., Cause, SA, NA, Fact) in the context of
two benchmarks. The outer cycle represents the
train split, the middle one is the validation split and
the inner one is the test split. In the ReClor dataset,
nearly 40% of atoms are non-fact, which contain
explicit logical connectives (i.e., Cause, SA, NA).
Among them, Cause relations are the majority. In
the LogiQA dataset, the ratio of the logical func-
tion symbols drops a lot, but it still accounts for
about 20%.

Figure 5b shows the statistics of logical samples.
We categorize the samples with any one of the three
logical function symbols into has logic. Similar,
we include samples with Cause, SA and NA to has
Cause, has SA and has NA respectively. In ReClor,
nearly 70% of the samples have explicit logical
connectives. Also, over 60% of samples contain
Cause atoms. In LogiQA, samples with logical
connectives account for 50%. The ratio of samples
containing Cause atoms drops to about 35% while
the ratio of samples with NA atoms increases.

The above analysis illustrates that the two bench-
mark datasets are abundant in logical connectives.
Thus, the modeling of logical atoms is of great
necessity.

E Experimental Settings

E.1 Benchmarks and other Datasets
ReClor and LogiQA are two representative datasets
for the logical reasoning task. The details are pre-
sented as follows.
ReClor (Yu et al., 2019) includes 6,138 samples
total with 4,638 training samples, 500 validation
samples, and 1,000 samples for test. All of them are
collected from some standardized graduate admis-
sion examinations. To discriminate the difficulty
of the questions, the test split is divided into Test-E
and Test-H, where the former represents the easy
version of the test samples and the latter denotes
the harder parts.

(a) Statistics of function symbols in train (outer cycle), valida-
tion (middle cycle) and test (inner cycle) splits.

(b) Statistics of logical samples.

Figure 5: Statistics of logical reasoning benchmarks.

LogiQA (Liu et al., 2021a) includes 8,678 samples
sourced from National Civil Servants Examinations
of China. It is further split into the training set,
development set, and test set, with 7,376, 651, and
651 samples respectively.

Also, to verify the model generalization capa-
bility, we employ two dialogue datasets involving
complex reasoning, which are Dream and MuTual.
Also, we exploit the zero-shot logical reasoning
capability of the proposed model on the recently
proposed ZsLR benchmark. The details are pre-
sented below.
Dream (Sun et al., 2019) contains 6,444 multi-
ple choice questions, sourced from English-as-a-
foreign-language examinations. The samples are
split into train, development and test sets with
3,869, 1,288 and 1,287 samples respectively. We
report the exact match metric on both validation
and test splits.
MuTual (Cui et al., 2020) consists of 8,860 ques-
tions, divided into 7,088 training samples, 886 val-
idation samples, 886 test samples. It is modified
from Chinese high school English listening com-
prehension test data. Also, MuTualplus dataset is
proposed to test whether the model is capable of
selecting a safe response when necessary. Since
the test split of MuTual is not made public, we only
report the R@1 metric (recall at position one) on
the validation set.
ZsLR (Xu et al., 2023b) includes 6 zero-shot splits
modified from ReClor dataset. Since the dataset
contains 17 reasoning types in total, some types of
samples are classified as seen types during training.
For the test, it defines two metrics, one is Test-All
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which tests on all the types of samples, and another
is Test-Unseen which only tests on the unseen parts
of types.

Table 8: Categorization of recent works on logical rea-
soning task. ‘DA’ denotes the data augmentation strat-
egy. ‘†’ denotes the utilization of extra data.

Model Sequence Graph Path/Rule DA
ReClor ✓
DAGN ✓
FocalReasoner ✓
LReasoner ✓ ✓
AdaLoGN ✓
MERIt † ✓ ✓
Logiformer ✓
PathReasoner ✓ ✓

E.2 Baselines

In this paper, we compare PathReasoner with all the
previous methods of the logical reasoning task, in-
cluding the SOTA model Logiformer. There meth-
ods can be categorized into sequence-based and
graph-based, shown in Table 8.
(1) Random. The results are obtained from the
random predictions.
(2) RoBERTa-Large (Liu et al., 2019). The trained
language model RoBERTa is employed as the text
encoder to obtain the predictions. It is also the same
with the baselines of BERT-Large (Kenton and
Toutanova, 2019) and XLNet-Large (Yang et al.,
2019).
(3) Human Performance (Yu et al., 2019; Liu
et al., 2021a). The performances are averaged from
the scores of some graduate students on the test
split.
(4) DAGN (Huang et al., 2021). It is the first
graph-based work to tackle the logical reasoning
task. It splits the text into nodes and leverages the
graph neural networks to reason over the chain-type
graph.
(5) FocalReasoner (Ouyang et al., 2021). It fo-
cuses on the facts within the context and it extracts
all the fact units to form a supergraph for reasoning.
(6) LReasoner (Wang et al., 2022). It proposes to
leverage the defined rules (e.g., De Morgan’s Laws)
to extend the context. In addition, it employs data
augmentation strategies (e.g., contrastive learning)
to improve the diversity of the samples.
(7) MERIt (Jiao et al., 2022). It proposes a meta-
path guided strategy to conduct the pretraining on
the external corpus. The pre-trained module is fur-
ther verified based on some off-the-shelf SOTA

methods. For a fair comparison, we directly de-
rive the results of MERIt with the RoBERa-Large
backbones from the original paper.
(8) AdaLoGN (Li et al., 2022). It first builds a
text graph based on the off-the-shelf method and
models it in an adaptive neuro-symbolic system.
(9) Logiformer (Xu et al., 2022). It models the con-
text from the perspective of both logic and syntax,
building a causal graph and a co-occurrence graph.
Specifically, it reasons on the graph transformer
networks with biased attention.

Additionally, we include the following represen-
tative large language models to make the compar-
isons.
(10) text-davinci-003. It was created by OpenAI,
of which the training data was collected up to Sep.
2021. The size of text-davinci-003 is 175B.
(11) GPT-3.5-turbo. It is also from OpenAI and
the training corpus is collected up to June. 2021.
GPT-3.5-turbo is of the same size as text-davinci-
003.
(12) PaLM 2. It was created by Google. It has
a larger size than the above two LLMs, which is
540B.

The results of the three LLMs on the logical
reasoning benchmarks are collected from (Xu et al.,
2023a).

E.3 Implementation Details

In the implementation, to make a fair comparison,
we employ the RoBERTa-large (Liu et al., 2019)
model with the hidden size of 1024 as the encoder
of text. We utilize the Adam (Kingma and Ba,
2014) for the optimization. Also, we set differ-
ent hyper-parameters for the two logical reasoning
datasets respectively. We tune some of the hyper-
parameters for the optimal within a scope. Table 9
presents the detailed information.

The listed hyper-parameters belong to three
parts: general settings, equivalent path extension
module, and reasoning path modeling module.
Considering the calculation cost, we do not utilize
the grid search strategy, instead, we sequentially
search the hyper-parameters for the optimal. For
the reasoning path modeling module, we select the
maximum diffusion order N to be 2. Therefore,
there only exist four diffusion trade-off co-efficient
α1, α2, β1, β2, which satisfy α1 + α2 = 1 and
β1 + β2 = 1. So we only list the tuning details
of in-atom diffusion trade-off α1 and cross-atom
diffusion trade-off β1.
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Table 9: The details of tuned hyper-parameters on the two logical reasoning benchmarks.

Name of Parameter ReClor LogiQA
Search Scope Best Search Scope Best

General Settings
number of epoch {10,12,15,20} 20 {10,12,15,20} 20
max sequence length {384,512} 384 {384,512} 512
learning rate {4e-6, 5e-6, 6e-6} 5e-6 {4e-6, 5e-6, 6e-6} 5e-6

Equivalent Path Extension
path filter threshold ε∗ {0.5,0.8,0.9} 0.9 {0.5,0.8,0.9} 0.9

Reasoning Path Modeling
number of layer {3,4,5,6} 3 {3,4,5,6} 3
number of head {4,8} 4 {4,8} 4
max diffusion order N {1,2,3} 2 {1,2,3} 2
in-atom diffusion α1 {0,0.1,0.2,0.3,0.4} 0.2 {0,0.1,0.2,0.3,0.4} 0.1
cross-atom diffusion β1 {0,0.1,0.2,0.3,0.4} 0 {0,0.1,0.2,0.3,0.4} 0.1
leaky rate {0.01,0,02,0.03,0.04} 0.02 {0.01,0,02,0.03,0.04} 0.02

F In depth Analysis

In this section, we provide more experiments to
analyze the model performances.

F.1 Model Performance on Multiple Logics
In the category of function symbols, we take Cause,
SA, NA and Fact into consideration. Among them,
the first three represent the logical relations (non-
fact) while the last one represents the factual ex-
pression. Therefore, we give an analysis of how
our model performs on these factual or logical sam-
ples. We test the model performance on three types
of samples: (1) Fact, where all atoms are factual;
(2) Simple Logic, where there only exists one cat-
egory of logical function symbols in each sample;
(3) Complex Logic, where multiple categories of
logical function symbols are included in one sam-
ple. Table 10 presents the results of PathReasoner
on the above settings, compared with RoBERTa-
Large model and Logiformer. Since ReClor does
not make the test split public, we only report the
results on the validation split.

Table 10: Experiments on multiple logics on ReClor.

Model Factual Simple Complex
RoBERTa-L 67.65 65.56 56.79
Logiformer 67.65 71.48 63.58
PathReasoner 72.06 73.33 64.81

For factual types of samples, PathReasoner
achieves 4.41% gains over the baselines. We argue
that previous method like Logiformer focuses too
much on the capture of logical relations but fails to
better generalize to the fact-only samples. PathRea-
soner leverages the atom form to represent both the
logical content and the factual content, thus it can
also improve the performances on factual samples.

For simple logic samples and complex logic sam-
ples, PathReasoner also shows the superiority of
1.85% and 1.23% over Logiformer respectively. It
demonstrates the competitiveness of PathReasoner
in logical perception and reasoning. Meanwhile,
we witness that PathReasoner does excellent in
capturing simple logic and maintaining factual rea-
soning, but there still exists space for improvement
on the complex logic.
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(b) Test split.

Figure 6: Analysis of high-order diffusion strategy.

F.2 Model Performance on Different
Reasoning Types

In the ReClor dataset, the samples are divided into
17 reasoning types. Table 11 gives in-depth model
performances on different reasoning types. Lim-
ited by space, we only present 11 types in the table.
From the results, PathReasoner performs better in
most cases. Specially, for IF, MF and MS, PathRea-
soner achieves obvious superiority. Considering
that these reasoning types require the perception of
logical structures, the gains in performance prove
the effectiveness of PathReasoner.
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Table 11: The details of ReClor Test Split on different reasoning types. NA: Necessary Assumption, S:Strengthen,
W:Weaken, E:Evaluation, I:Implication, ER:Explain or Resolve, T:Technique, IF:Identify a Flaw, MF:Match
Flaws, MS:Match the Structure, O:Others.

Model NA S W E I ER T IF MF MS O
PathReasoner 74.56 62.77 59.29 76.92 52.17 67.86 83.33 67.52 58.06 83.33 67.12
Logiformer 74.56 64.89 55.75 76.92 45.65 61.90 66.67 58.12 45.16 66.67 60.27

∆ - -2.12 +3.54 - +6.52 +5.96 +6.66 +9.40 +12.90 +6.66 +6.85
RoBERTa-L 71.05 61.70 47.79 69.23 39.13 58.33 52.78 61.54 45.16 56.67 52.05

∆ +3.51 +1.07 +11.50 +7.69 +13.04 +9.53 +30.55 +5.98 +12.90 +16.66 +15.07

Table 12: Experimental results on 6 zero-shot logical reasoning splits. T-A and T-U denote the abbreviations of the
metrics Test-All and Test-Unseen respectively.

Model v1 v2 v3 v4 v5 v6
T-A T-U T-A T-U T-A T-U T-A T-U T-A T-U T-A T-U

BERT-Large 38.00 34.36 42.00 33.39 37.50 31.61 38.00 33.26 29.60 28.02 28.80 32.24
RoBERTa-Large 47.70 39.47 50.60 39.90 46.10 40.58 50.40 42.45 53.00 43.66 49.90 50.92
DAGN 49.20 41.37 52.70 43.56 49.60 39.73 52.50 44.51 52.40 42.63 48.50 49.15
LReasoner 46.90 40.60 50.20 43.49 48.40 42.76 49.20 44.12 51.90 42.02 46.30 44.93
Logiformer 43.50 39.31 54.80 46.30 48.80 42.24 52.10 44.85 52.10 40.88 51.50 51.44
TaCo 52.20 47.51 55.80 48.79 52.20 44.26 54.70 49.89 56.00 46.67 54.70 55.17
PathReasoner 52.70 45.87 55.10 44.01 52.20 45.43 56.60 49.20 57.20 47.43 54.90 54.28

F.3 High-order Diffusion Strategy Analysis

In the implementation, we set the maximum order
of diffusion to 2, that is N = 2. Therefore, we
employ two trade-off coefficients αi and βi to con-
trol the diffusion procedure. We search αi and βi
from the set of {0, 0.1, 0.2, 0.3, 0.4} and report
the results on the test split of ReClor in Figure 6.
From the results, PathReasoner achieves the opti-
mal simultaneously on both the validation and test
splits.

G Generalization of Equivalent Path
Extension Module

Beyond the main experiments on logical reason-
ing benchmarks, generalization experiments (Ta-
ble 4) and zero-shot settings (Table 6), we add a
simple experiment with our proposed equivalent
path extension (EPE). The aim is to achieve a plug-
in-and-play function to augment the training of
LLMs. In detail, we randomly sample from the
Flan collection (Wei et al.), leading to 80K orig-
inal instruction-following samples. Then, we ap-
ply EPE to generate equivalent instruction sam-
ples. These augmented samples are leveraged to
tune LLaMA-2-Chat (7B). The test experiments on
MMLU (57 tasks) and BigBenchHard (21 tasks)
are presented in Table 13.

With the EPE augmentation process, the tuned
LLaMA-2-Chat can witness significant perfor-
mance improvements, compared with two base-

Table 13: Experiments on the generalization capability
of equivalent path extension module.

Model MMLU BBH
LLaMA-2-Chat 45.78 35.01
LLaMA-2-Chat + Flan 46.94 36.99
LLaMA-2-Chat + EPE + Flan 48.75 38.96

lines: one is LLaMA-2-Chat, and another is
LLaMA-2-Chat tuned on sampled Flan collection.
Such findings largely expand the application scope
of PathReasoner, especially in empowering the
training of off-the-shelf LLMs.

H Model Generalization on Zero-shot
Logical Reasoning Settings

Previous work (Xu et al., 2023b) argued that the
ideal full-data setting is not sufficient to test the
logical reasoning performances and has proposed a
new benchmark for generalized zero-shot logical
reasoning (named ZsLR). To verify the model gen-
eralization on the zero-shot settings, we conduct
experiments on ZsLR and compare with several
SOTA baselines. The results are shown in Table
12.

From the results of 6 splits, PathReasoner is com-
petitive on the majority of the cases compared with
TaCo and Logiformer. For split v1, v3, v4, v5 and
v6, PathReasoner outperforms all the strong base-
lines on the metric of Test-All, which verifies the
great generalization ability on both seen and unseen
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types of samples. Compared with the full-data set-
ting SOTA model Logiformer, PathReasoner shows
obvious superiority on all the splits and all the test
metrics. The great advantages uncover the huge po-
tential of modeling reasoning paths for the logical
text, which improves the extensibility and gener-
alization of the model. Also, it is worth noticing
that there still exists space for improvement on the
unseen types of samples, especially on the split of
v2, v4, and v6.

I Restatement of Our Key Novelty

We will clarify the obvious differences of our
method compared with previous works (especially,
the graph-based method). It can be divided into
three points.

Extraction strategy. Transforming the natural
language into units is a common method in the
reasoning field. However, we largely differ in the
definition of relationships. Previous works only
limit to a subset of relation words. For example,
Logiformer only attends to causal relations as the
connectives. It is sufficient for evaluations (see
Appendix D), which overfit the logical reasoning
benchmarks. However, our definition of function
symbols is different from previous works, and our
coverage is broad enough (over 100 relation words).
Therefore, our method can be extended to other
scenarios, which have been verified with general-
ization experiments and zero-shot settings.

Flexible extension strategy. Benefiting from the
distinctive definition of function symbols, we can
formulate the context into the conjunction of atoms
(i.e., reasoning paths). Therefore, we can easily
conduct the equivalent path extension to derive
new combinations of atoms. This advantage is
distinctive from other works. It is also one of our
main contributions.

In some graph-based methods, the text graph is
updated to capture new relations along with the
message-passing process. The whole process is ex-
tremely time-consuming, which is the main short-
coming. Our method actually decouples the dy-
namic extension process with the formulation of
atoms and paths. It augments data diversity and
improves training efficiency.

Incoporated advantages in the path attention
module. In fact, the path attention module com-
bines the advantages of sequence-based and graph-
based methods. Previous sequence-based meth-

ods ignore logical structures but can handle long-
distance dependency with Transformer structure.
Graph-based methods usually rely on GNN-style
modules to update the features, but lack the exten-
sibility to larger context and fine-grained modeling
within each unit (Logiformer attempts to solve it
through attention bias, but still limits to a coarse
level). In our path attention module, the advan-
tages of sequence- and graph-based methods are
inherited. It further achieves differentiable and in-
terpretable reasoning (see Case Study).

To sum up, the distinctions between PathRea-
soner and other methods are significant. Also,
we would like to emphasize that the distinction
of PathReasoner does not only benefit the logical
reasoning benchmarks, which previous works are
limited to. PathReasoner indeed shows strong gen-
eralization capability and plug-in-and-play prop-
erty (see Appendix G for details).
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