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Abstract

Metaphor detection aims to identify whether
a linguistic expression in text is metaphorical
or literal. Most existing research tackles this
problem either using word-pair or token-level
information as input, and thus treats word-pair
and token-level metaphor detection as distinct
subtasks. Benefited from the simplified struc-
ture of word pairs, recent methods for word-
pair metaphor detection can provide intermedi-
ate explainable clues for the detection results,
which remains a challenging issue for token-
level metaphor detection. To mitigate this issue
in token-level metaphor detection and take ad-
vantage of word pairs, in this paper, we make
the first attempt to bridge word-pair and token-
level metaphor detection via modeling word
pairs within a sentence as explainable interme-
diate information. As the central role of verb in
metaphorical expressions, we focus on token-
level verb metaphor detection and propose a
novel explainable Word Pair based Domain
Mining (WPDM) method. Our work is in-
spired by conceptual metaphor theory (CMT).
We first devise an approach for conceptual do-
main mining utilizing semantic role mapping
and resources at cognitive, commonsense and
lexical levels. We then leverage the inconsis-
tency between source and target domains for
core word pair modeling to facilitate the ex-
plainability. Experiments on four datasets ver-
ify the effectiveness of our method and demon-
strate its capability to provide the core word
pair and corresponding conceptual domains as
explainable clues for metaphor detection.

1 Introduction

Metaphor is not just a figurative expression but a
pervasive phenomenon in human thought, percep-
tion, and reasoning (Lakoff and Johnson, 1980). As
defined in Merriam-Webster Dictionary, metaphor
is “a figure of speech in which a word/phrase liter-
ally denoting one kind of object or idea is used in
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The public              digests social media news with diverse views.

Focus word

Target domain: 
INFORMATION

Source domain: 
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Figure 1: Illustration of token-level metaphor under-
standing with the core word pair and corresponding
source and target domains. The focus word digests in
the sentence is a token-level metaphor. In this sentence,
there are several candidate context words that can form
word pairs with the focus word. The core word pair
digest news and its implicit source and target domains
can help metaphor detection and explanation.

place of another to suggest a likeness or analogy
between them”. Metaphor detection, as a funda-
mental research task in natural language processing
(NLP), focuses on distinguishing metaphorical ex-
pressions from literal expressions in text. It can
benefit a variety of other NLP tasks, which require
the understanding of implicit semantics, such as
machine translation (Mao et al., 2018), sentiment
analysis (Mao and Li, 2021), and conversational
dialogue (Sun et al., 2023).

Previous studies on metaphor detection mainly
focus on two distinct subtasks, word-pair metaphor
detection (Ge et al., 2022; Tian et al., 2023) and
token-level metaphor detection (Choi et al., 2021;
Li et al., 2023). The former considers word pair
as the fundamental unit conveying metaphorical
meaning and classifies word pairs into metaphori-
cal or literal categories, while the latter identifies
words within sentences that imply metaphorical
meaning. For example, in Figure 1, digests news
can be classified as a metaphorical word pair and
the word digests within the sentence is a token-level
metaphor conveying metaphorical meaning.

Early research on word-pair metaphor detection
employs machine learning or deep learning meth-
ods based on linguistic features related to metaphor
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(Tsvetkov et al., 2014; Shutova et al., 2016; Rei
et al., 2017). Recent research is inspired by con-
ceptual metaphor theory (CMT) (Lakoff and John-
son, 1980), which reveals the underlying process
of metaphor understanding in human cognition and
argues that a metaphor implies the inconsistency
between source and target domains. These works
(Ge et al., 2022; Tian et al., 2023) propose methods
to model the intermediate explainable domain in-
formation for better word-pair metaphor detection.

To detect token-level metaphors, early studies
employ statistical or RNN-based methods (Li et al.,
2013; Wu et al., 2018; Mao et al., 2019). Most
recent studies (Choi et al., 2021; Zhang and Liu,
2022; Li et al., 2023) have developed methods
based on the elements and relations described
in metaphor identification theories, including se-
lection preference violation (SPV) (Wilks, 1975,
1978) and metaphor identification procedure (MIP)
(Pragglejaz Group, 2007).

Benefited from the simplified structure of word
pairs, Ge et al. (2022) can capture intermediate
explainable clues including source and target do-
mains to enhance word-pair metaphor detection.
However, modeling such explainable information
for better detection remains a challenging issue
for token-level metaphor detection. As token-
level metaphor detection involves complex seman-
tic structure and sentence-level context, it brings
greater research challenges for both detection and
explanation compared to word-pair metaphor de-
tection. Moreover, token-level and word-pair
metaphor detection are treated as distinct subtasks
in existing research. The intermediate informa-
tion and explainable clues that can be derived from
word pairs have never been explored in previous
token-level research, nor are they properly utilized
in the token-level detection and explanation pro-
cesses. For example, Figure 1 illustrates a token-
level metaphor, indicating that the core word pair
and corresponding source and target domains can
serve as valuable clues for understanding and de-
tecting token-level metaphors.

In this paper, we take the first step to bridge
word-pair and token-level metaphor detection
and propose an explainable Word Pair based
Domain Mining (WPDM) method for token-level
verb metaphor detection. Since in a token-level
metaphorical sentence, there are several candidate
context words that can form word pairs with the fo-
cus word, it is non-trivial to identify the core word
pair that conveys the primary metaphorical mean-

ing. Thus, inspired by CMT, we mine the domain
concepts associated with each word pair utilizing
semantic role correspondence and domain granular-
ity assessment for core word pair selection. Specif-
ically, we first devise an approach to mine source
and target domain information via mapping seman-
tic roles based on VerbNet (Schuler, 2005) and
leveraging domain concepts from cognitive, com-
monsense and lexical knowledge resources. We
then exploit the inconsistency between conceptual
source and target domains to determine core word
pair attentions for facilitating explainable metaphor
detection. The main contributions of our work are
as follows:

• We make the first attempt to connect word-pair
and token-level metaphor detection for more
fine-grained identification and understanding
of metaphors at the sentence level.

• To facilitate explainable token-level metaphor
detection, we propose a novel word pair based
domain mining method inspired by CMT,
which consists of semantic role mapping and
conceptual domain mining for core word pair
modeling based on cognitive, commonsense
and lexical resources.

• Extensive experiments on four datasets ver-
ify the effectiveness of our method and also
demonstrate its capability to identify the core
word pair and corresponding conceptual do-
mains as explainable results for token-level
metaphor detection.

2 Related Work

Metaphor detection aims to distinguish metaphori-
cal and literal expressions in text. Existing studies
focus on two subtasks: word-pair metaphor de-
tection and token-level metaphor detection. The
former determines whether a word pair is metaphor-
ical or literal, and the latter concentrates on identi-
fying metaphorical words within sentences.

Word-Pair Metaphor Detection Traditional re-
search on word-pair metaphor detection utilizes
machine learning techniques based on linguistic
or external knowledge related to metaphor, such
as abstractness (Turney et al., 2011), imageability
(Tsvetkov et al., 2014), visibility (Shutova et al.,
2016) or property norm (Bulat et al., 2017). After
that, some studies exploit neural networks model-
ing the similarity between words in a word pair (Rei
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et al., 2017) or the concreteness constructed from
images (Su et al., 2020a) to detect metaphors. In ad-
dition, Shutova et al. (2017) perform distributional
clustering methods to identify metaphors. Recently,
some researchers have utilized well-founded cog-
nitive theory, conceptual metaphor theory (CMT)
(Lakoff and Johnson, 1980), to benefit this task.
Ge et al. (2022) design a method to generate ex-
plainable source and target domains to help iden-
tification of metaphors. Tian et al. (2023) further
propose an attribute Siamese network to capture
similar attributes between source and target con-
cepts for metaphor detection.

Token-Level Metaphor Detection Inspired by
a theory, selectional preference violation (SPV)
(Wilks, 1975, 1978), which indicates that a
metaphor contains violations between its context
and its frequent usage of contexts, early work
(Shutova et al., 2010; Li et al., 2013; Mao et al.,
2018) develops statistical methods to capture co-
occurrence information between words and their
contexts based on various corpora and knowledge
bases for token-level metaphor detection.

After that, some studies employ RNN-based
models to extract contextual representations to de-
tect token-level metaphors (Gao et al., 2018; Mao
et al., 2019; Le et al., 2020). As these methods
primarily rely on static word embeddings, they
struggle to capture the intricate contextual mean-
ing implied by metaphors. In contrast, pre-trained
models (Devlin et al., 2019; Liu et al., 2019) can
provide dynamic contextualized word embeddings
and become popular backbones (Su et al., 2020b;
Li et al., 2020) for current studies in metaphor de-
tection. Among them, some studies employ the
multitask framework to learn shared embeddings
from other tasks related to metaphor (Mao and Li,
2021; Li et al., 2020; Zhang and Liu, 2023; Ba-
dathala et al., 2023). Other studies utilize external
resources to enhance performance, such as multi-
word expressions (Rohanian et al., 2020) and word
definitions (Su et al., 2021). In addition, some
works employ data augmentation methods to ex-
pand limited metaphor datasets (Lin et al., 2021;
Feng and Ma, 2022).

Recently, some studies (Choi et al., 2021; Zhang
and Liu, 2022; Wang et al., 2023; Li et al., 2023)
have developed methods to model the elements and
their relations in metaphor identification theories,
including SPV and metaphor identification proce-
dure (MIP) (Pragglejaz Group, 2007), achieving

promising results.

Computational Work for Both Metaphor De-
tection and Explanation Metaphor explanation
aims to interpret the implicit meaning conveyed
by metaphorical expressions, using paraphrased
expressions (Shutova, 2010) or conceptual do-
mains (Wachowiak and Gromann, 2023) as ex-
planatory information. Previous works tackling
both metaphor detection and explanation (Li et al.,
2013; Mao et al., 2018) mainly employ sequential
methods to detect metaphors and then explain them
based on contextual frequency clues guided by SPV.
In fact, metaphor detection and explanation are in-
herently associated, and intermediate explainable
information can benefit metaphor detection. To
bridge the gap between metaphor detection and
explanation, Ge et al. (2022) propose a model to
generate source and target domain for better word-
pair metaphor detection guided by a more explain-
able theory CMT. However, their approach takes
word pairs as inputs and relies on the simplified
word-pair structure for domain mining. In contrast,
token-level metaphor detection is a more general
but challenging task involving complex sentence
context. To mitigate this gap, we aim to advance
token-level metaphor research by upgrading word-
pair metaphor detection with explainable sentence-
level conceptual domain modeling based on CMT.

3 Problem Definition

Formally, Dtr = {(sk, wk
v , b

k)}Ntr
k=1 is the train-

ing dataset with Ntr instances, where s is a sen-
tence, wv is a focus verb within s, and b is the
label (metaphorical or literal) for wv. Dte =
{(sk, wk

v , b
k)}Nte

k=1 is the test dataset with Nte in-
stances. The goal of token-level verb metaphor
detection is to predict the label of the focus verb
wv in Dte by training a model with Dtr.

4 Method

We propose an explainable Word Pair based
Domain Mining (WPDM) method for token-level
verb metaphor detection. Figure 2 illustrates the
overview of our method, which contains four com-
ponents: (1) Literal Example Sentences Construc-
tion, which collects example sentences for the lit-
eral meaning of the focus verb; (2) Semantic Role
Mapping, which organizes words labeled with the
same semantic role into a semantic group in the
input sentence and literal example sentences, re-
spectively; (3) Conceptual Domain Mining, which
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• Dogs are able to digest meat.
• Most babies can digest food easily.
• The patient is able to digest milk.
• Your body needs time to digest the meal.
• Herbivores can digest plants.
• …
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Figure 2: Overview of our method for token-level metaphor detection. (Here hypernym is abbreviated as hyp.)

employs a domain mining algorithm on words
in each semantic group to mine the conceptual
source and target domains based on cognitive, com-
monsense, and lexical resources; and (4) Token-
Level Metaphor Detection with Word Pair Model-
ing, which evaluates the importance of word pairs
in the sentence based on the inconsistency between
conceptual source and target domains, and then
gives more attention to the important core word
pair during metaphor detection training.

4.1 Literal Example Sentences Construction
To obtain the context for the focus verb wv using
its literal meaning and establish a solid foundation
for the following domain mining, we construct a lit-
eral example sentence set Se = {ske}|Se|

k=1 with |Se|
sentences by gathering all the example sentences
associated with the first sense of the focus verb wv

in dictionaries.1

4.2 Semantic Role Mapping
The semantic role of a verb, such as “agent” and
“theme”, describes the underlying relation between
an argument (a phrase/word) and the verb in the
sentence (Schuler, 2005). The argument labeled

1We use the first sense of a word in a dictionary to
capture its literal usage, for the reason that dictionaries
typically list word senses chronologically by starting
with the original meaning (see https://www.merriam-
webster.com/help/explanatory-notes/dict-definitions and
https://www.oxfordlearnersdictionaries.com/faq).

…
…

meat milk

beverage

food

organism

plant

Root Node

living
thing

entity

physical
entity

meal

nutriment

Hyper.

Hypo.

WordNet 
Synsets

Hyper.

Hypo.Hypo.

Hypo.

Hyper.

Hypo.
Hypo.

Figure 3: Illustration of the hierarchical structure of
synsets in WordNet. A hypernym of a synset represents
a broader or more general semantic field than the synset
itself, while a hyponym of a synset conveys a more
specific meaning. For example, “entity” is a hypernym
of “physical entity” and “organism” is a hyponym of
“living thing”. Hyper. denotes hypernym and hypo.
denotes hyponym.

with a semantic role, which is closely related to the
focus verb in semantics, can form a word pair with
the focus verb to convey the implicit metaphorical
meaning. To find these word pairs, we utilize Verb-
Net Parser to annotate the arguments (e.g. “public”
in Figure 2) and their semantic roles associated
with the focus verb wv in both the input sentence
sin and the literal example sentences Se. We then
select the overlapping roles in sin and Se to con-
struct the semantic role set R = {rk}|R|

k=1. Argu-
ments labeled with the same semantic role in sin
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construct a semantic group. We can get a collection
of semantic groups Ain = {Ai

in}
|R|
i=1 for sin, where

the set of the arguments labeled with the semantic

role ri is denoted as Ai
in = {(aiin)k}

|Ai
in|

k=1 . Simi-
larly, we can obtain a collection of semantic groups
Ae = {Ai

e}|R|
i=1 for Se, where the semantic group

containing arguments labeled with ri is denoted
as Ai

e = {(aie)k}|A
i
e|

k=1. The semantic groups Ai
in

and Ai
e are mapped using semantic role ri for the

subsequent target and source domain mining.

4.3 Conceptual Domain Mining

Humans can formulate the taxonomy of domains
from various perspectives, such as cognitive pro-
cesses that provide the underlying framework for
how humans think and categorize (Lakoff and John-
son, 1980), commonsense knowledge that offers
categories of general facts and relationships (Speer
et al., 2017), and lexical resources that reflect the
linguistic aspect of concept organization (Gelman
et al., 1989). To mine the conceptual target and
source domains for the aforementioned mapped se-
mantic groups, we develop a conceptual domain
mining approach based on knowledge at cognitive,
commonsense and lexical levels.

Domain Concept List We first construct a do-
main concept list that represents the taxonomy
of domains established on human cognitive pro-
cesses and commonsense knowledge, using two
resources: Master Metaphor List (MML) (Lakoff
et al., 1991), constructed by cognitive linguists,
containing paired conceptual source and target do-
mains of metaphorical understanding in cognitive
processes, and OpenCyc (Lenat et al., 1985), a
knowledge base consisting of large-scale common-
sense concepts and relations. The combination of
domain concepts from these resources constitutes
the domain concept list, which is shown in Ap-
pendix A.

Domain Mining Algorithm A large lexical se-
mantic database WordNet (Miller, 1995) organizes
words into hierarchical structures through synsets
and conceptual relations (hypernym and hyponym).
Figure 3 shows the hierarchical structure of synsets
in WordNet. Given the richness and transitivity
of hypernym relations, WordNet is a valuable re-
source to identify candidate conceptual domains.

For a semantic group A = {ai}|A|
i=1, we regard

the hypernyms along the hypernym path from ai
to the root node in WordNet as the candidate con-

Algorithm 1 Conceptual Domain Mining

Input: A = {ai}|A|
i=1: a semantic group with |A| arguments.

Require: (1) Ld: the domain concept list; (2) Comb(A, k):
a function to generate the combinations of k non-
overlapping groups from the elements in the set A; (3)
WordNet.

Output: D = {dj}|D|
j=1: the conceptual domain set.

1: for all i← 1 to |A| do
2: for all Â = [Â1, . . . , Âi] ∈ Comb(A, i) do
3: for all Âj ∈ Â do
4: if Âj contains only one argument â then
5: Traverse h in hypernym path P of â
6: if ∃ (h ∈ P and h ∈ Ld) then
7: Obtain h as the domain for Âj

8: else
9: Obtain P [0] as the domain for Âj

10: else
11: Obtain the least common ancestor hyper-

nym of all arguments in Âj as the domain for Âj

12: Compute (θabs)j ▷ Eq. (1)
13: Compute θdg ▷ Eq. (2)
14: Obtain the domain set with the maximum θdg as D

ceptual domains of ai. Our goal is to construct a
domain set D = {dj}|D|

j=1 and divide A into |D|
subsets Â = {Âj}|D|

j=1, where every argument in
the j-th subset Âj belongs to the j-th domain dj .
To assess how abstract a domain (hypernym) is rel-
ative to an argument, we introduce the abstraction
level l, calculated by the relative distance between
them in the hypernym path (e.g. the abstraction
level of domain food relative to the argument meal
is 2 in Figure 3). (θabs)j represents the average ab-
straction level of dj for the arguments in Âj , which
is calculated by

(θabs)j =
1

|Âj |

|Âj |∑

i=1

lij , (1)

where lij is the abstraction level of dj relative to
the i-th argument in Aj . The domains in D should
strike a balance by capturing the broad meanings
shared among the arguments in A without being
overly abstract. For example, in Figure 3, food and
living thing are more appropriate domains for the
arguments (i.e. plan, meal, meat, and milk) than
the excessively abstract domain physical entity. To
evaluate how well D maintains this balance, we
design the domain granularity metric θdg, which is
calculated by

θdg =
1

|D|

|D|∑

k=1

|Âk|
(θabs)k

. (2)
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We develop a conceptual domain mining algorithm
to find all possible collections of subsets Â for ar-
guments in A and their related conceptual domains
D based on the domain concept list and WordNet.
We obtain the ones with the highest domain granu-
larity metric θdg as our final results. Algorithm 1
shows the pseudocode of this algorithm.

We apply Algorithm 1 on every Ai
in ∈ Ain and

Ai
e ∈ Ae to obtain the conceptual target domain

set Di
in for Ai

in and the conceptual source domain
set Di

e for Ai
e, respectively, where i ∈ [1, |R|] is

the index of semantic role.

4.4 Token-Level Metaphor Detection with
Word Pair Modeling

According to conceptual metaphor theory (Lakoff
and Johnson, 1980), metaphor implies the incon-
sistency between source and target domains. In-
spired by this, we utilize the inconsistency scores
between above conceptual source and target do-
mains to mine core word pairs that convey primary
metaphorical meaning within the input sentence,
and give more attention to core word pairs during
the training process for explainable metaphor de-
tection.

Candidate Word Pair Weighing In the input
sentence, each word labeled with a semantic role
and the focus verb can constitute a candidate word
pair. For the k-th such word wk

p labeled with the se-
mantic role rk, we have mined its conceptual target
domain dkt and its set of conceptual source domain
Dk

s derived from the words labeled with the same
semantic role rk in literal example sentences, using
our domain mining algorithm. According to CMT
(Lakoff and Johnson, 1980), a metaphor implies the
inconsistency between source and target domains.
Thus, the candidate word pair showing high incon-
sistency between its target domain and all its source
domains is likely to be the core word pair convey-
ing primary metaphorical meaning. We assign an
attention to each candidate word pair based on the
minimum inconsistency score between its target
domain and all source domains. Specifically, the
inconsistency scores βk between the target domain
and all source domains for k-the candidate word
pair and the attentions α for all the candidate word
pairs are calculated by

βk = (Sim(dkt , D
k
s ))

−1 ∈ R|Dk
s |, (3)

β̂k = Min(βk), (4)

α = Softmax([β̂1, . . . , β̂np ]) ∈ Rnp , (5)

where Sim(·) calculates the path distance similar-
ity in WordNet between dkt and every domain in
Dk

s , (·)−1 denotes the operation of element-wise
inverse, Min(·) obtains the minimum score in a
vector, Softmax(·) is the softmax function, and np

is the number of candidate word pairs.

Encoding To train our model from a good start
of text embedding, we use the pre-trained model
RoBERTa (Liu et al., 2019), as the text encoder.
Given the input sentence sin and candidate word
pairs P = {pk}np

k=1, the input T is constructed by

T = <s> sin </s> p1 </s> p2 . . .</s> pnp , (6)

where <s> and </s> are the global and separation
tokens, respectively. We divide T into tokens and
feed them into RoBERTa to obtain contextual em-
beddings H ∈ RN×d and the contextual embed-
ding of global token h<s>:

H = RoBERTa(T ) = [h1, . . . ,hN ]⊤, (7)

h<s> = h1 ∈ Rd, (8)

where d is the dimension of embedding, N is the
number of tokens in T and hi is the embedding for
the i-th token in T . We also obtain the embedding
of the focus verb hv in the input sentence, and the
embeddings of the focus verb hk

v as well as the
other target word hk

w in the k-th candidate word
pair. If a word is cut into tokens, its embedding is
calculated by averaging its token embeddings.

Word Pair Layer The embedding for the k-th
candidate word pair is computed as

ĥ
k
wp = CrossAtt(hk

v ,h
k
w) ∈ Rd, (9)

where CrossAtt(·) denotes lt Transformer blocks
(Vaswani et al., 2017). In this module, hk

v serves
as the query vector and hk

w serves as both key and
value vectors. The aggregated word pair embed-
ding hwp ∈ Rd is computed by

hwp =

np∑

k=1

ĥ
k
wpαk, (10)

where αk is the k-th element in α.

Classification Finally, we feed the global em-
bedding h<s>, verb embedding hv and word pair
embedding hwp into a classifier, and adopt a cross-
entropy loss function to compute the loss Lclass:

l̂ = Softmax(MLP(h<s>⊕hv⊕hwp)), (11)

Lclass = −(l)⊤ log l̂, (12)
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Dataset #Sent. #Verb %Met. Avg. Len
MOH-X 647 647 48.69 8.0

LCC-Verb 2009 2009 42.61 29.1
TroFi 3,737 3,737 43.54 28.3

VUA-Verbtrain 7,479 15,516 27.90 20.2
VUA-Verbvalidation 1,541 1,724 26.91 25.0

VUA-Verbtest 2,694 5,873 29.98 18.6

Table 1: Statistics of datasets. #Sent. denotes the num-
ber of sentences. #Verb denotes the number of verbs
that need to be detected. %Met. denotes the percentage
of metaphor samples. Avg. Len denotes the average
sentence length.

where ⊕ is the concatenation operation, MLP(·)
is a multilayer perceptron with hidden dimension
d′, l̂ ∈ R2 is the predicted probability for all the
labels, and l ∈ R2 is the ground truth.

5 Experiments

5.1 Datasets
We constructed a new verb metaphor detection
dataset LCC-Verb based on LCC (Mohler et al.,
2016), which is one of the representative bench-
mark datasets for metaphor detection. The LCC-
Verb construction process is shown in Appendix B.
We also conducted experiments on three publicly
available verb metaphor detection datasets, which
are as follows: (1) MOH-X (Mohammad et al.,
2016), containing 647 sentences where only a verb
labeled as metaphorical or literal in each sentence;
(2) TroFi (Birke and Sarkar, 2006), another verb
metaphor detection dataset collected from Wall
Street Journal Corpus; and (3) VUA-Verb (Leong
et al., 2020), the largest publicly available dataset
for verb metaphor detection drawn from VU Am-
sterdam Metaphor Corpus (VUA) (Steen et al.,
2010). Table 1 shows the statistics of these datasets.

5.2 Baselines
We compare our method with several representa-
tive methods for token-level metaphor detection,
which are as follows: (1) RNN_ELMo (Gao et al.,
2018) is a BiLSTM-based method using ELMo
embeddings to model metaphorical words in con-
text; (2) RNN_HG and RNN_MHCA (Mao et al.,
2019) make the first attempt to apply linguistic
theories (MIP & SPV) on BiLSTM-based network
design for metaphor detection; (3) MUL_GCN (Le
et al., 2020) exploits a multi-task learning frame-
work to transfer knowledge from word sense dis-
ambiguation to metaphor detection; (4) MrBERT

(Song et al., 2021) regards metaphor detection as
a relation classification task via extracting depen-
dency relations and utilizing them for metaphor
detection; (5) MisNet (Zhang and Liu, 2022) pro-
poses a linguistics enhanced network inspired by
MIP and SPV for metaphor detection; (6) AdMul
(Zhang and Liu, 2023) proposes a multi-task learn-
ing framework to transfer knowledge from basic
sense discrimination to metaphor detection via ad-
versarial training; (7) BasicBERT (Li et al., 2023)
proposes a method to mine the concise basic mean-
ing of the word based on literal annotation from
training set inspired by MIP.

5.3 Implementation Details

We use three English dictionaries to extract literal
example sentences in our methods, including Long-
man Dictionary of Contemporary English1, Oxford
Advanced Learner’s Dictionary2, and Collins En-
glish Dictionary3. We use F1 score and accuracy
for evaluation. Following the convention of pre-
vious studies (Zhang and Liu, 2022, 2023), we
take the model that achieves the best F1 score
on the validation set to test on VUA-Verb testing
dataset, and we calculate the average over the best
F1 scores and corresponding accuracy scores in
total 10 folds for MOH-X, TroFi and LCC-Verb
datasets. We use RoBERTabase (Liu et al., 2019) as
the encoder. Given MUL_GCN (Le et al., 2020)
did not release their code, we reproduced their
method according to their paper and tested it on our
four datasets. For a fair comparison, we replaced
ELMo in MUL_GCN, BERTbase in MrBERT and
DeBERTabase in AdMul with RoBERTabase in our
experiments. All experiments are done on NVIDIA
RTX 3090 GPUs. Other details are illustrated in
Appendix C.4

5.4 Main Results

From the experimental results shown in Table 2,
we can see that our proposed method outperforms
previous state-of-the-art performances across most
datasets, which verifies the effectiveness of our
core word pair modeling based on conceptual do-
main mining for token-level metaphor detection.
Methods utilizing pre-trained models, which incor-
porate extensive world knowledge through unsu-

1https://www.ldoceonline.com/
2https://www.oxfordlearnersdictionaries.com/
3https://www.collinsdictionary.com/dictionary/english
4Our code is available at https://github.com/

TIAN-viola/WPDM.
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Method
MOH-X LCC-Verb TroFi VUA-Verb Average

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc
RNN_ELMo (Gao et al., 2018) 75.6 77.2 73.9 79.3 71.1 74.6 69.7 81.4 72.6 78.1
RNN_HG (Mao et al., 2019) 79.7 79.7 71.7 79.3 72.2 74.9 70.8 82.1 73.6 79.0
RNN_MHCA (Mao et al., 2019) 80.0 79.8 76.7 80.9 72.4 75.2 70.5 81.8 74.9 79.4
MUL_GCN† (Le et al., 2020) 78.7 78.0 77.3 79.2 71.6 74.7 69.6 81.8 74.3 78.4
MrBERT† (Song et al., 2021) 82.9 83.5 81.5 85.6 72.9 76.0 74.4 84.9 77.9 82.5
MisNet† (Zhang and Liu, 2022) 83.4 83.6 80.6 82.3 71.9 73.6 75.9 86.0 78.0 81.4
AdMul† (Zhang and Liu, 2023) 81.2 81.3 82.8 85.0 72.5 74.2 74.6 85.2 77.8 81.4
BasicBERT† (Li et al., 2023) 79.9 79.2 76.5 79.6 69.4 69.5 72.8 83.0 74.7 77.8
Our WPDM† 83.8∗ 84.2∗ 84.9∗∗ 87.0∗∗ 73.4∗ 76.3 74.1 84.4 79.0∗ 83.0∗

Table 2: Comparison between our method and baselines. The best results are in bold font and the second-best results
are underlined. † indicates that these methods use the same RoBERTabase as the encoder. Average denotes the
average results on four datasets. The symbols ∗ and ∗∗ indicate that our method’s results are statistically significantly
different from those of the second-best methods, with p ≤ 0.05 and p ≤ 0.01, respectively.

Method
MOH-X LCC-Verb TroFi VUA-Verb

F1 Acc F1 Acc F1 Acc F1 Acc
Our WPDM 83.8 84.2 84.9 87.0 73.4 76.3 74.1 84.4
w/o Candidate word pair weighing 83.2 83.5 84.6 86.4 72.8 75.3 73.1 83.7
w/o Word-pair embedding (hwp) 83.0 83.1 84.0 86.3 72.5 75.1 72.3 83.6
w/o Global embedding (h<s>) 82.0 82.1 84.2 86.4 73.3 75.4 73.0 83.7
w/o Verb embedding (hv) 80.8 81.8 80.9 83.6 67.8 71.7 65.6 80.8

Table 3: Results of ablation study. The best results are in bold font.
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Figure 4: Evaluation results for core word pair selection.

pervised learning, perform better than earlier RNN-
based models. Our proposed method achieves per-
formance gains across most datasets compared to
previous methods inspired by SPV and MIP, show-
ing the superior advantage of the theory CMT uti-
lized in our method over SPV and MIP.

5.5 Ablation Study

We conduct ablation study to evaluate the impact
of components in our method. Table 3 shows the
experimental results of the ablation study. Using
average attentions to replace word pair attentions
in candidate word pair weighing reduces the perfor-

Dataset Target Domain Source Domain
MOH-X 90.0 80.5

LCC-Verb 89.0 76.0
TroFi 82.5 82.0

VUA-Verb 83.5 82.5

Table 4: Results of human evaluation on domain mining.

mance, verifying that candidate word pair weigh-
ing based on the inconsistency between source and
target domains can help our model focus on the
core word pair and benefit the explainable detec-
tion of metaphors. We further directly remove the
word pair embedding from our method, resulting
in greater performance drops across all datasets
compared to only removing candidate word pair
weighing, which verifies the effectiveness of word
pair information in our method. When the global
embedding is aborted, the performance decreases,
thus demonstrating the importance of global con-
text information for metaphor detection. In addi-
tion, as verb contains the central information for
verb metaphor detection, the removal of verb em-
bedding leads to the most significant performance
declines across all the datasets.
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Input Sentence (focus verb) Core Word Pair Source Domain Target Domain

I salute your courage! salute courage GENERAL_OFFICER SPIRIT
He always wears a smile. wears smile CHROMATIC_COLOR COMMUNICATION
She drowned her trouble in alcohol. drowned trouble PERSON DIFFICULTY
The rules relaxed after the new director arrived. rule relaxed PERSON IDEA
The government bowed to the military pressure. bowed pressure SOVEREIGN PHYSICAL_PHENOMENON

Table 5: Case study for explainable results obtained by our method on MOH-X dataset. The paired source and target
domains presented in this table are the paired domains that can calculate the highest inconsistency score among all
the candidate source and target domain pairs in conceptual domain mining. The target word in the core word pair
and its corresponding target domain are in bold font.

5.6 Human Evaluation on Explainable Results

Our method can not only identify metaphorical
verbs but also provide the core word pair along
with conceptual source and target domains as ex-
plainable results. To evaluate these explainable
results, we randomly sampled 100 metaphorical in-
stances from MOH-X, LCC-Verb, TroFi and VUA-
Verb’s test dataset, respectively. We then invited
two annotators to evaluate the core word pair as
well as its source and target domains identified by
our method using accuracy. The core word pair for
each focus verb is the candidate word pair in the
sentence with the highest word pair attention, and
the corresponding paired domains used for the cal-
culation of this attention are considered the source
and target domains.

Core Word Pair Selection For the evaluation of
core word pair selection, we compare our method
with two baselines. The baseline Random Words
randomly selects a word in each sentence to form
a core word pair with focus verb. The other base-
line Random Words w/ Semantic Roles randomly
selects a word from the words labeled with seman-
tic roles, which are related to the focus verb in
the sentence, to form a core word pair with the fo-
cus verb. From the experimental results shown in
Figure 4, we can see that our method outperforms
baselines across all the datasets, verifying that our
method can provide explainable intermediate clues
in the form of the core word pair during metaphor
detection, which is a capability lacking in previous
methods.

Conceptual Domain Mining From the human
evaluation results in Table 4, we can see that our
method performs well on both target and source
domain mining, with most metrics exceeding 80%,
verifying the effectiveness of our conceptual do-
main mining algorithm. When comparing between

the target and source domain mining, our method
achieves better performance on mining target do-
mains than source domains. This is because infor-
mation related to source domains is often absent in
the context of the focus verb, making it more chal-
lenging to identify source domains. In contrast, the
information related to target domains is typically
explicitly present in the context of the focus verb.
Despite the difficulty in mining source domains,
our method still achieves good performance across
most datasets.

5.7 Case Study

Table 5 shows several cases for explainable results
mined by our method on MOH-X dataset. For ex-
ample, the word drown typically has a semantic
relation of theme with nouns in the domain PER-
SON. However, in the third sentence of Table 5, its
theme is trouble, which belongs to the target do-
main DIFFICULTY. The core word pair drowned
trouble and the inconsistency between the source
and target domains indicate a metaphorical use of
the verb drown in this sentence. These cases further
show the effectiveness of our method for explain-
able metaphor detection.

6 Conclusion

In this paper, we propose an explainable word
pair based domain mining method for token-
level metaphor detection. Inspired by conceptual
metaphor theory, our method leverages semantic
role mapping and conceptual source and target do-
main mining for core word pair modeling to facil-
itate explainable metaphor detection. Experimen-
tal results not only verify the effectiveness of our
method for metaphor detection but also demon-
strate its capability to determine the core word pair
and conceptual domain information as explainable
clues for the prediction of metaphors.
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Limitations

Our work has some limitations. Currently, our
method only focuses on detecting verb metaphors
and providing explainable core word pair with cor-
responding source and target domains. Our fu-
ture work needs to further explore other types of
metaphors, such as noun metaphors and adjective
metaphors. In addition, since our method utilizes
external resources, our method may perform less ef-
fectively if verbs or context words cannot be found
in these resources. Also, our method might exhibit
performance decrease due to the fact that the ex-
ternal resources may be of lower quality in other
languages.

Ethics Statement

As shown in previous studies (Navigli et al., 2023;
Bartl et al., 2020), pre-trained language models
exhibit biases in several respects, such as gender,
ethnicity and race. Our method is fine-tuned on the
pre-trained language model RoBERTabase and thus
may inherit these biases.

Acknowledgments

This work is supported in part by the National Nat-
ural Science Foundation of China under Grants
#72293575 and #62206287. We thank the anony-
mous reviewers for the valuable comments.

References
Naveen Badathala, Abisek Rajakumar Kalarani, Tejpals-

ingh Siledar, and Pushpak Bhattacharyya. 2023. A
match made in heaven: A multi-task framework for
hyperbole and metaphor detection. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 388–401.

Marion Bartl, Malvina Nissim, and Albert Gatt. 2020.
Unmasking contextual stereotypes: Measuring and
mitigating BERT’s gender bias. In Proceedings of
the Workshop on Gender Bias in Natural Language
Processing, pages 1–16.

Julia Birke and Anoop Sarkar. 2006. A clustering ap-
proach for nearly unsupervised recognition of nonlit-
eral language. In Proceedings of the Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 329–336.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proceedings of the Annual Conference

on Neural Information Processing Systems, pages
1877–1901.

Luana Bulat, Stephen Clark, and Ekaterina Shutova.
2017. Modelling metaphor with attribute-based se-
mantics. In Proceedings of the Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 523–528.

Minjin Choi, Sunkyung Lee, Eunseong Choi, Heesoo
Park, Junhyuk Lee, Dongwon Lee, and Jongwuk Lee.
2021. MelBERT: Metaphor detection via contextual-
ized late interaction using metaphorical identification
theories. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 1763–1773.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 4171–4186.

Huawen Feng and Qianli Ma. 2022. It’s better to
teach fishing than giving a fish: An auto-augmented
structure-aware generative model for metaphor de-
tection. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 656–667.

Ge Gao, Eunsol Choi, Yejin Choi, and Luke Zettlemoyer.
2018. Neural metaphor detection in context. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 607–613.

Mengshi Ge, Rui Mao, and Erik Cambria. 2022. Ex-
plainable metaphor identification inspired by concep-
tual metaphor theory. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 10681–
10689.

Susan A. Gelman, Sharon A. Wilcox, and Eve V. Clark.
1989. Conceptual and lexical hierarchies in young
children. Cognitive Development, 4(4):309–326.

George Lakoff, Jane Espenson, and Alan Schwartz.
1991. The master metaphor list. Technical report,
University of California at Berkeley.

George Lakoff and Mark Johnson. 1980. Metaphors we
live by. University of Chicago Press.

Duong Le, My Thai, and Thien Nguyen. 2020. Multi-
task learning for metaphor detection with graph con-
volutional neural networks and word sense disam-
biguation. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 8139–8146.

Doug Lenat, Mayank Prakash, and Mary Shepherd.
1985. CYC: Using common sense knowledge to
overcome brittleness and knowledge acquisition bot-
tlenecks. AI magazine, 6(4):65–85.

13320

https://aclanthology.org/2023.findings-acl.26
https://aclanthology.org/2023.findings-acl.26
https://aclanthology.org/2023.findings-acl.26
https://aclanthology.org/2020.gebnlp-1.1
https://aclanthology.org/2020.gebnlp-1.1
https://aclanthology.org/E06-1042
https://aclanthology.org/E06-1042
https://aclanthology.org/E06-1042
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://aclanthology.org/E17-2084
https://aclanthology.org/E17-2084
https://aclanthology.org/2021.naacl-main.141
https://aclanthology.org/2021.naacl-main.141
https://aclanthology.org/2021.naacl-main.141
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.findings-emnlp.46
https://aclanthology.org/2022.findings-emnlp.46
https://aclanthology.org/2022.findings-emnlp.46
https://aclanthology.org/2022.findings-emnlp.46
https://doi.org/10.18653/v1/D18-1060
https://ojs.aaai.org/index.php/AAAI/article/view/21313
https://ojs.aaai.org/index.php/AAAI/article/view/21313
https://ojs.aaai.org/index.php/AAAI/article/view/21313
https://ojs.aaai.org/index.php/AAAI/article/view/6326
https://ojs.aaai.org/index.php/AAAI/article/view/6326
https://ojs.aaai.org/index.php/AAAI/article/view/6326
https://ojs.aaai.org/index.php/AAAI/article/view/6326


Chee Wee Leong, Beata Beigman Klebanov, Chris
Hamill, Egon Stemle, Rutuja Ubale, and Xianyang
Chen. 2020. A report on the 2020 VUA and TOEFL
metaphor detection shared task. In Proceedings of
the Workshop on Figurative Language Processing,
pages 18–29.

Hongsong Li, Kenny Q Zhu, and Haixun Wang. 2013.
Data-driven metaphor recognition and explanation.
Transactions of the Association for Computational
Linguistics, 1:379–390.

Shuqun Li, Jingjie Zeng, Jinhui Zhang, Tao Peng, Liang
Yang, and Hongfei Lin. 2020. ALBERT-BiLSTM
for sequential metaphor detection. In Proceedings
of the Workshop on Figurative Language Processing,
pages 110–115.

Yucheng Li, Shun Wang, Chenghua Lin, and Frank
Guerin. 2023. Metaphor detection via explicit basic
meanings modelling. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 91–100.

Zhenxi Lin, Qianli Ma, Jiangyue Yan, and Jieyu Chen.
2021. CATE: A contrastive pre-trained model for
metaphor detection with semi-supervised learning. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 3888–3898.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A robustly optimized bert pre-
training approach. Computing Research Repository,
arXiv:1907.11692.

Rui Mao and Xiao Li. 2021. Bridging towers of multi-
task learning with a gating mechanism for aspect-
based sentiment analysis and sequential metaphor
identification. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 13534–13542.

Rui Mao, Chenghua Lin, and Frank Guerin. 2018. Word
embedding and WordNet based metaphor identifica-
tion and interpretation. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 1222–1231.

Rui Mao, Chenghua Lin, and Frank Guerin. 2019. End-
to-end sequential metaphor identification inspired by
linguistic theories. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 3888–3898.

George A. Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Saif Mohammad, Ekaterina Shutova, and Peter Turney.
2016. Metaphor as a medium for emotion: An empir-
ical study. In Proceedings of the Joint Conference on
Lexical and Computational Semantics, pages 23–33.

Michael Mohler, Mary Brunson, Bryan Rink, and Marc
Tomlinson. 2016. Introducing the LCC metaphor

datasets. In Proceedings of the International Confer-
ence on Language Resources and Evaluation, pages
4221–4227.

Roberto Navigli, Simone Conia, and Björn Ross. 2023.
Biases in large language models: Origins, inventory,
and discussion. Journal of Data and Information
Quality, 15(2):1–21.

Pragglejaz Group. 2007. MIP: A method for identifying
metaphorically used words in discourse. Metaphor
and symbol, 22(1):1–39.

Marek Rei, Luana Bulat, Douwe Kiela, and Ekaterina
Shutova. 2017. Grasping the finer point: A super-
vised similarity network for metaphor detection. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1537–1546.

Omid Rohanian, Marek Rei, Shiva Taslimipoor, and
Le An Ha. 2020. Verbal multiword expressions for
identification of metaphor. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics, pages 2890–2895.

Karin Kipper Schuler. 2005. VerbNet: A broad-
coverage, comprehensive verb lexicon. University of
Pennsylvania.

Ekaterina Shutova. 2010. Automatic metaphor interpre-
tation as a paraphrasing task. In Proceedings of the
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
1029–1037.

Ekaterina Shutova, Douwe Kiela, and Jean Maillard.
2016. Black holes and white rabbits: Metaphor iden-
tification with visual features. In Proceedings of
the Conference of the North American Chapter of
the Association for Computational Linguistics, pages
160–170.

Ekaterina Shutova, Lin Sun, Elkin Darío Gutiérrez, Pa-
tricia Lichtenstein, and Srini Narayanan. 2017. Mul-
tilingual metaphor processing: Experiments with
semi-supervised and unsupervised learning. Com-
putational Linguistics, 43(1):71–123.

Ekaterina Shutova, Lin Sun, and Anna Korhonen. 2010.
Metaphor identification using verb and noun cluster-
ing. In Proceedings of the International Conference
on Computational Linguistics, pages 1002–1010.

Wei Song, Shuhui Zhou, Ruiji Fu, Ting Liu, and Lizhen
Liu. 2021. Verb metaphor detection via contextual
relation learning. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics,
pages 4240–4251.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, page 4444–4451.

13321

https://doi.org/10.18653/v1/2020.figlang-1.3
https://doi.org/10.18653/v1/2020.figlang-1.3
https://doi.org/10.18653/v1/2020.figlang-1.17
https://doi.org/10.18653/v1/2020.figlang-1.17
https://aclanthology.org/2023.acl-short.9
https://aclanthology.org/2023.acl-short.9
https://aclanthology.org/2021.emnlp-main.316
https://aclanthology.org/2021.emnlp-main.316
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://ojs.aaai.org/index.php/AAAI/article/view/17596
https://ojs.aaai.org/index.php/AAAI/article/view/17596
https://ojs.aaai.org/index.php/AAAI/article/view/17596
https://ojs.aaai.org/index.php/AAAI/article/view/17596
https://doi.org/10.18653/v1/P18-1113
https://doi.org/10.18653/v1/P18-1113
https://doi.org/10.18653/v1/P18-1113
https://doi.org/10.18653/v1/P19-1378
https://doi.org/10.18653/v1/P19-1378
https://doi.org/10.18653/v1/P19-1378
https://doi.org/10.18653/v1/S16-2003
https://doi.org/10.18653/v1/S16-2003
https://aclanthology.org/L16-1668
https://aclanthology.org/L16-1668
https://doi.org/10.1145/3597307
https://doi.org/10.1145/3597307
https://www.lancaster.ac.uk/staff/eiaes/Pragglejaz_Group_2007.pdf
https://www.lancaster.ac.uk/staff/eiaes/Pragglejaz_Group_2007.pdf
https://doi.org/10.18653/v1/D17-1162
https://doi.org/10.18653/v1/D17-1162
https://doi.org/10.18653/v1/2020.acl-main.259
https://doi.org/10.18653/v1/2020.acl-main.259
https://aclanthology.org/N10-1147
https://aclanthology.org/N10-1147
https://aclanthology.org/N16-1020.pdf
https://aclanthology.org/N16-1020.pdf
https://doi.org/10.1162/COLI_a_00275
https://doi.org/10.1162/COLI_a_00275
https://doi.org/10.1162/COLI_a_00275
https://aclanthology.org/C10-1113
https://aclanthology.org/C10-1113
https://doi.org/10.18653/v1/2021.acl-long.327
https://doi.org/10.18653/v1/2021.acl-long.327
https://dl.acm.org/doi/10.5555/3298023.3298212
https://dl.acm.org/doi/10.5555/3298023.3298212


Gerard J. Steen, Aletta G. Dorst, John B. Herrmann,
Anna A. Kaal, Tina Krennmayr, and Trijntje Pasma.
2010. A method for linguistic metaphor identifica-
tion: From MIP to MIPVU. John Benjamins, Ams-
terdam.

Chang Su, Weijie Chen, Ze Fu, and Yijiang Chen. 2020a.
Multimodal metaphor detection based on distinguish-
ing concreteness. Neurocomputing, 429:166–173.

Chang Su, Kechun Wu, and Yijiang Chen. 2021. En-
hanced metaphor detection via incorporation of exter-
nal knowledge based on linguistic theories. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics, pages 1280–1287.

Chuandong Su, Fumiyo Fukumoto, Xiaoxi Huang, Jiyi
Li, Rongbo Wang, and Zhiqun Chen. 2020b. Deep-
Met: A reading comprehension paradigm for token-
level metaphor detection. In Proceedings of the Sec-
ond Workshop on Figurative Language Processing,
pages 30–39.

Weiwei Sun, Shuyu Guo, Shuo Zhang, Pengjie Ren,
Zhumin Chen, Maarten de Rijke, and Zhaochun Ren.
2023. Metaphorical user simulators for evaluating
task-oriented dialogue systems. ACM Transactions
on Information Systems, 42(1):1–29.

Yuan Tian, Nan Xu, Wenji Mao, and Daniel Zeng. 2023.
Modeling conceptual attribute likeness and domain
inconsistency for metaphor detection. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 7736–7752.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor detec-
tion with cross-lingual model transfer. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics, pages 248–258.

Peter Turney, Yair Neuman, Dan Assaf, and Yohai Co-
hen. 2011. Literal and metaphorical sense identifica-
tion through concrete and abstract context. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 680–690.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the Conference on Neu-
ral Information Processing Systems, pages 1–11.

Lennart Wachowiak and Dagmar Gromann. 2023. Does
GPT-3 grasp metaphors? identifying metaphor map-
pings with generative language models. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics, pages 1018–1032.

Shun Wang, Yucheng Li, Chenghua Lin, Loic Barrault,
and Frank Guerin. 2023. Metaphor detection with ef-
fective context denoising. In Proceedings of the Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 1404–1409.

Semantic Role List
Asset Instrument Time Agent

Medium Location Destination Causer
Extent Theme Patient State

Utterance Stimulus Recipient Material
Attribute Goal Location Source

Path Pivot Experiencer Trajectory
Value Manner Circumstance Product

Beneficiary Topic Result

Table 6: Semantic roles parsed by VerbNet Semantic
Parser.

Yorick Wilks. 1975. A preferential, pattern-seeking,
semantics for natural language inference. Artificial
Intelligence, 6(1):53–74.

Yorick Wilks. 1978. Making preferences more active.
Artificial Intelligence, 11(3):197–223.

Chuhan Wu, Fangzhao Wu, Yubo Chen, Sixing Wu,
Zhigang Yuan, and Yongfeng Huang. 2018. Neural
metaphor detecting with CNN-LSTM model. In Pro-
ceedings of the Workshop on Figurative Language
Processing, pages 110–114.

Shenglong Zhang and Ying Liu. 2022. Metaphor de-
tection via linguistics enhanced Siamese network.
In Proceedings of the International Conference on
Computational Linguistics, pages 4149–4159.

Shenglong Zhang and Ying Liu. 2023. Adversarial
multi-task learning for end-to-end metaphor detec-
tion. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 1483–1497.

A More Details on Method

A.1 Semantic Role Mapping
We use a publicly available tool1 as the VerbNet
Parser in our method. The list of semantic roles
that we use is shown in Table 6. We split arguments
containing conjunctions like "or" or "and" into sep-
arate arguments using these conjunctions and then
perform lemmatization on them.

If the VerbNet Semantic Parser fails to la-
bel the semantic roles, we use Stanford de-
pendency parser2 as a substitute. Specifically,
we use dependency relations, including nsubj,
nmod:agent, obl:agent, nmod:agent and agent, to
label the semantic role Agent, and dependency re-
lations, including obj, dobj, nsubjpass, nsubj:xsubj,
nsubj:pass and nsubj:passdir, to label the semantic
role Theme.

1https://github.com/jgung/verbnet-parser
2https://stanfordnlp.github.io/CoreNLP/
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Domain Concepts in Master Metaphor List (Lakoff et al., 1991) (Cognitive Level)
BODY IDEA INJURY CLOTH ARGUMENT CONTAINER
LOVE HOPE SOCIETY BATTERY LIGHT ANGER

ABILITY PROBLEM DEATH EMOTION FIRE WATER
HARM RESOURCE COMMODITY WAR FIGHT CHILD

CAREER BURDEN RACE WORD INFORMATION MONEY
JOURNEY SCALE FLUID FAILURE THEORY CHANGE

OBLIGATION PEOPLE COMPETITION LIQUID OBJECT RESPONSIBILITY
IMPORTANCE FOOD PRECEDENCE MACHINE MOTION TIME

LIFE BELIEF PATH WEAPON

Domain Concepts in OpenCyc (Lenat et al., 1985) (Commonsense Level)
GOAL STATE MOVEMENT VEHICLE HUMAN ACTIVITY SOLAR SYSTEM
LOGIC ARTIFACT SHOPPING COMMUNICATION MATERIAL HUMAN BEING

SOCIAL ACTIVITY HUMAN MATH DEVICE SPACE POLITICS
PHYSIOLOGY COMMERCE TRANSPORTATION FORM SOFTWARE ENTERTAINMENT
INDIVIDUAL AGENT PROFESSION ACTION CULTURE EARTH

LIVING THING ECOLOGY BUILDING SPORT ANIMAL LOGISTICS
PRODUCT WEATHER CHEMISTRY BEHAVIOR BUSINESS OCCUPATION

LITERATURE ORGANIZATION PLAN SOCIAL TRAVEL LANGUAGE
ASTRONOMY WORK RELATION PLANT LIFE BELIEF

PATH WEAPON TIME

Table 7: Domain concept list constructed from domains in Master Metaphor List and OpenCyc.

Notation
Value Description

MOH LCC-Verb TroFi VUA-Verb
N 160 200 200 200 maximum length of text tokens
lrexc. encoder 3e−3 3e−4 3e−4 3e−4 learning rate of components except the text encoder
lrencoder 3e−5 3e−5 3e−5 3e−5 learning rate of the text encoder
bs 32 32 32 512 batch size
lmlp 2 3 3 3 the number of layers in MLP(·)

Table 8: Hyper-parameter values in our proposed method.

A.2 Conceptual Domain Mining

The domain concept list is shown in Table 7. When
constructing the domain concept list, we filter out
overly abstract domains (e.g., THING). We also
exclude overly abstract hypernyms in WordNet,
including physical_entity, abstraction, and entity.
When determining the hypernym path of a word
w in our conceptual domain mining algorithm, if
the word w can be annotated with a name entity
label (i.e. person, location, organization, money,
number, ordinal, percent, date, time, duration), we
obtain the connection of this label and its hyper-
nym path in WordNet as the hypernym path for w;
Otherwise, we directly obtain the hypernym path
of w in WordNet.

In our method, we use the function
path_similarity(·) in NLTK python pack-
ages1 as the function Sim(·) in Eq. (3) to calculate
the path similarity of two words in WordNet.

1https://www.nltk.org/howto/wordnet.html

path_similarity(·) returns a score denoting the
similarity between two word senses, based on the
shortest path that connects the senses in WordNet.
The score is in the range of 0 to 1.

B Dataset Construction

LCC-Verb LCC (Mohler et al., 2016) is a
metaphor detection dataset with metaphoricity rat-
ings of 0 to 3. We extracted verb instances to create
LCC-Verb, classifying those labeled 0 as literal and
those labeled 2 or 3 as metaphorical. We discarded
instances labeled 1, which are possible metaphors.

C Implementation Details

We rerun the released code of baselines on our
newly constructed LCC-Verb dataset. As Ba-
sicBERT has never been tested on the datasets that
we use, we rerun their code2 on four datasets in our

2https://github.com/liyucheng09/BasicBERT/tree/master
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Method Template prompt

Standard zero-shot Decide whether the word "[verb]" in the sentence "[sentence]" is used metaphorically. Give me an
answer selected from "yes" or "no".

Few-shot

Q: Decide whether the word "[verb_example]" in the sentence "[sentence_example]" is used metaphor-
ically.
A: [answer_example]

Q: Decide whether the word "[verb]" in the sentence "[sentence]" is used metaphorically.

Table 9: Prompt design for zero-shot and few-shot prompting strategies in ChatGPT experimentation. [sentence]
represents the input slot for the sentence in an instance from the test dataset, and [verb] represents the input slot
for the focus verb within this sentence. Similarly, [sentence_example] denotes the input slot for the sentence in
an instance from the training dataset, while [verb_example] represents the input slot for the focus verb within this
sentence. [answer_example] serves as the input slot for the answer with "yes" indicating a metaphorical instance
and "no" indicating a literal instance.

Model Prompting Strategy
MOH-X LCC-Verb TroFi VUA-Verb

F1 Acc F1 Acc F1 Acc F1 Acc

GPT-3.5
Standard Zero-Shot 64.4 67.3 42.6 50.4 50.1 56.0 50.5 69.3
5-Shot 70.1 72.5 48.0 52.8 57.6 60.0 53.6 69.8

GPT-4
Standard Zero-Shot 72.6 77.0 66.4 66.0 67.3 67.5 66.9 75.5
5-Shot 75.3 79.0 69.7 68.0 68.2 68.3 67.6 75.8

Our WPDM - 83.8 84.2 84.9 87.0 73.4 76.3 74.1 84.4

Table 10: Comparison between our method and GhatGPT. The best results are in bold font.

experiments. We also rerun the code of MisNet1

and AdMul2 on LCC-Verb in our experiments. We
use AdamW3 as our optimizer with a weight decay
of 0.01. The dropout rate is 0.5. The dimension of
the text embedding d is 768. The hidden dimension
of MLP is 2304. The layer of Transformer blocks
is 2. We train our method for 15 epochs. Table 8
shows other hyper-parameter values. We utilize
Stanford CoreNLP4 for named entity tagging in
our method.

The average Cohen’s kappa coefficients κ (Co-
hen, 1960) of the inter-rater agreement in hu-
man evaluations of explainable results on MOH-
X, LCC-Verb, TroFi, and VUA-Verb datasets are
0.75, 0.75, 0.70, and 0.73, respectively (note that
0.6 ≤ κ ≤ 0.8 means substantial agreement).

D Experiments on ChatGPT

Implementation Details We also compare our
method with ChatGPT. We use GPT-3.5 (gpt-3.5-
turbo-0613)5 and GPT-4 (gpt-4-0125-preview)6 as

1https://github.com/SilasTHU/MisNet
2https://github.com/SilasTHU/AdMul
3https://pytorch.org/docs/stable/generated/torch.optim.

AdamW.html
4https://stanfordnlp.github.io/CoreNLP/ner.html
5https://platform.openai.com/docs/models/gpt-3-5
6https://platform.openai.com/docs/models/gpt-4-and-gpt-

4-turbo

baseline models. We explore two prompting strate-
gies, including the standard zero-shot prompting
and the standard few-shot prompting (Brown et al.,
2020). Table 9 summarizes prompts used for the
experiments on ChatGPT. We randomly sampled
200, 250, 400, and 600 instances from MOH-X,
LCC-Verb, TroFi and test set of VUA-Verb, re-
spectively, as the testing datasets for ChatGPT, and
then we randomly sampled 5 instances from the re-
maining data as the few-shot instances. To cleanse
the answer, we select the initial string of either
"yes" or "no" in the response provided by ChatGPT,
following the process of converting all uppercase
characters to lowercase in the answer string.

Experimental Results From the experimental
results in Table 10, we can see that GPT-4 per-
forms better than GPT-3.5 for metaphor detection.
Although the 5-shot prompting strategy leads to
performance improvements for both GPT-3.5 and
GPT-4 compared to the standard zero-shot prompt-
ing strategy, our method outperforms all ChatGPT
baselines, which verifies the effectiveness of our
method and indicates the difficulty and challenge
inherent in the task of metaphor detection.
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Scientific Artifact License
MOH-X https://saifmohammad.com/WebPages/SentimentEmotionLabeledData.html

TroFi https://www.cs.sfu.ca/~anoop/students/jbirke/LICENSE.html

Stanford CoreNLP GNU General Public License (v2 or later)
WordNet WordNet 3.0 license
VUA-Verb CC BY-SA 3.0
ConceptNet CC BY-SA 4.0
roberta-base MIT license
ChatGPT API license
LCC Unspecified
OpenCyc Apache-2.0
NLTK Apache-2.0
VerbNet Parser Apache-2.0

Table 11: Licenses of the scientific artifacts.

E Licenses of Scientific Artifacts

Table 11 shows the licenses of the scientific arti-
facts used in this paper.
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