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Abstract

Given unstructured text, Large Language Mod-
els (LLMs) are adept at answering simple
(single-hop) questions. However, as the com-
plexity of the questions increase, the perfor-
mance of LLMs degrade. We believe this is
due to the overhead associated with understand-
ing the complex question followed by filtering
and aggregating unstructured information in
the raw text. Recent methods try to reduce
this burden by integrating structured knowl-
edge triples into the raw text, aiming to pro-
vide a structured overview that simplifies in-
formation processing. However, this simplistic
approach is query-agnostic and the extracted
facts are ambiguous as they lack context. To
address these drawbacks and to enable LLMs
to answer complex (multi-hop) questions with
ease, we propose to use a knowledge graph
(KG) that is context-aware and is distilled to
contain query-relevant information. The use
of our compressed distilled KG as input to the
LLM results in our method utilizing up to 67%
fewer tokens to represent the query relevant
information present in the supporting docu-
ments, compared to the state-of-the-art (SoTA)
method. Our experiments show consistent im-
provements over the SOTA across several met-
rics (EM, F1, BERTScore, and Human Eval)
on two popular benchmark datasets (HotpotQA
and MuSiQue).

1 Introduction

Multi-Hop Question Answering (MHQA) is a field
that presents unique challenges in the realm of nat-
ural language processing. To illustrate the chal-
lenges of MHQA, consider extracting information
from data arising during board meetings. While
current technologies (such as LLMs) are proficient
at addressing simple (single-hop) questions, such
as "How many board meetings were held in the last
twelve months?", they falter when confronted with
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Figure 1: Multi-Dimensional Improvements: Our
method (with GPT-4 as reader LLM) achieves SoTA
results on several datasets and multiple Multi-hop QA
metrics. EM: Exact-Match with the gold answer, Self-
Aware EM: Confidence-aware EM, BertScore (Zhang
et al., 2019): Semantic similarity between predicted and
gold answer; Query Info Efficiency: Efficiency of rep-
resenting query-relevant information in the supporting
documents - inversely proportional to the input token
count for the reader LLM.

complex (multi-hop) questions. An example of a
multi-hop question is "For the board meeting with
the most divided votes in the last twelve months,
what was the agenda, who voted against it, and
by what margin did it pass or fail?". Answering
this question requires a series of interconnected
steps: first, identifying the meeting with the most
divided votes; next, determining the main agenda
of that meeting; then, listing the members who
voted against it; and finally, calculating the mar-
gin by which it was approved or rejected. Each
of these steps, or "hops", demands not only the re-
trieval of additional information but also a nuanced
understanding of the context and the relationships
between various entities. This complexity under-
scores the challenge of MHQA, where the goal is
to navigate through layers of information to arrive
at the answer. Our work is aimed at tackling these
multifaceted questions.

LLMs have emerged as a powerful set of tools
for various NLP tasks (Zhang et al., 2023; Wad-
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Input

Question: Who was the main vocal
of "Set the Fire to the Third Bar"?

Supporting Documents

GPT-4 Predicted Answer: Martha Wainwright } b4
Struct-QA + GPT-4 " R g— ]
Predicted Answer: Martha Wainwright x

Title-1: Set the Fire to the Third Bar

Passage-1: "Set the Fire to the Third Bar" is a song from
Snow Patrol's fourth album, "Eyes Open", featuring Martha
Wainwright on vocals.

Title-2: Snow Patrol
Passage-2: Snow Patrol are a Northern Irish-Scottish rock
band formed in 1993, consisting of Gary Lightbody (vocals,

Struct-QA’s CoT-Based Output

To determine the main vocal of " Set the Fire to the Third Bar ", let's go through the docs step-by-step:
1. The document on “Set the Fire to the Third Bar” confirms Martha Wainwright as the featured

2. Cross-referencing details on “Set the Fire to the Third Bar” the “Snow Patrol” document lacks
information on the main vocal. "Laura Jean" mentions Laura Jean covering Martha Wainwright’s part
during tours ...

3. The main vocal for “Set the Fire to the Third Bar” is Martha Wainwright, featured in the original
song along with Gary Lightbody.

guitar), Nathan Connolly (guitar, backing vocals), ...

Title-3: Rita Redshoes

Passage-3: ... his second solo album. In 2008 she released
her debut solo album "Golden Era". In 2010 the band Snow
Patrol invited her to perform single "Set the fire to the third
bar" in Rock in Rio Lisbon.

Title-4: Laura Jean

Passage-4: ... support from community and alternative radio
stations such as Triple J. She received high exposure when
Snow Patrol, fans of her, asked her to sing Martha

HOLMES + GPT-4
(Our Method)

Predicted Answer: Gary Lightbody } v

The question asks for the main vocal of
the song “Set the Fire to the Third Bar”

From the facts provided, “Set the Fire to

the Third Bar” by Snow Patrol features

Gary Lightbody as the lead singer.

However,
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Wainwright's part in the song Set the Fire to the Third Bar
during their two Australian tours in 2007. ...

the lead singer's role, Gary Lightbody is
the main vocal.
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Figure 2: Multi-Hop QA Case Study: This figure illustrates a bridge-type multi-hop question from HotpotQA
dataset for comparing our method with the baselines. It highlights our method’s accurate identification of ‘Snow
Patrol’ as the crucial bridge entity and subsequently finding the lead vocalist, a feat not achieved by baselines.

hwa et al., 2023; Robinson et al., 2022; Xu et al.,
2023). However, despite their prowess, LLMs of-
tentimes are found lacking, when confronted with
complex, multi-hop questions (see Figure 1 for an
example). We hypothesize that the degradation in
performance is due to the complexity involved in
filtering and contextual aggregation of information
present in the unstructured text.

To address this challenge with unstructured text, re-
cent methods, such as StructQA (Li and Du, 2023),
extract structured knowledge in the form of KG
triples from raw text and couple it with Chain-of-
Thought (CoT) reasoning (Wei et al., 2022). How-
ever, the extracted KG triples are not dependent
on the query and lack the context under which
these facts are valid. To understand the ambiguity
due to the lack of context, consider this KG triple:
{subject: "Apple", relation: "prices rose", object:
"10%"}. Without additional context, it is difficult
to determine whether the entity "Apple" refers to
the fruit or the company. Moreover, StructQA pro-
vides both the extracted KG triples and the raw text
as input to the LLM, leading to significantly longer
prompts (see Table 3) and information redundancy.
Our method, HOLMES! , addresses these chal-
lenges by creating a query-focused context-aware
KG and using it as the sole input for the LLM, i.e.,
without inputting the raw text. Specifically, we

"Named after Sherlock Holmes for its ability to deduce
query relevant information from unstructured text

(i) synthesize a hyper-relational KG from unstruc-
tured text that captures both facts, and the context
under which these facts are valid, and (ii) prune
the hyper-relational KG using a knowledge schema
that encodes the type of information necessary to
answer the query. These steps collectively furnish
the LLM with a curated set of relevant facts. As an
example, we provide a case study on the HotpotQA
dataset in Figure 2.

To rigorously evaluate our approach, we use two
challenging multi-hop QA datasets, HotpotQA
(Yang et al., 2018) and MuSiQue (Trivedi et al.,
2022b), and experiment with three SoTA reader
LLMs for QA: GPT-3.5, GPT-4, and Gemini-
Pro. We compare with the baselines across 6
metrics: EM, F1, Precision, Recall, Human-Eval,
BERTScore, and achieve significant gains.

Our contributions are as follows:

* A new multi-hop QA approach that transforms
unstructured text into a hyper-relational KG
using a query-derived schema, serving as an
input to the LLM.

* A significant improvement over the SoTA
multi-hop QA method (Li and Du, 2023):
18.7% and 20% in EM scores on the Hotpot
dataset, and 26% and 14.3% on the MuSiQue
dataset for GPT-3.5 and GPT-4, respectively
(see Table 1).

» Using our query-focused hyper-relational KG
we use up to 67% fewer tokens to represent
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query relevant information than the current
SoTA method, and up to 60% fewer tokens
w.r.t. original supporting documents (see Ta-
ble 3).

2 Related Work

Multi-hop Question Answering (MHQA) Re-
cent achievements in addressing straightforward
questions (Lan et al., 2019) coupled with availabil-
ity of high-quality MHQA datasets (Yang et al.,
2018; Trivedi et al., 2022b) have prompted a shift
towards tackling multi-hop questions.

Existing works in MHQA have adopted various
approaches, including: (i) Construction of dynamic
graphs (Qiu et al., 2019), hierarchical (Fang et al.,
2020) and Abstract meaning representation (AMR)
based graphs (Deng et al., 2022) as well as lever-
aging KGs (Li and Du, 2023) (ii) Employing end-
to-end differentiable learning methods, utilizing
Multi-task Transformers for retrieval, reranking
and predicting in an iterative manner (Qi et al.,
2021) or using Recurrent Neural Networks (RNN)
to sequentially retrieve documents from a graph of
entities (Asai et al., 2020) and (iii) dynamically con-
verting multi-hop questions into single-hop ques-
tions by generating subsequent questions based on
the answers to previous ones (Perez et al., 2020),
or by updating single-hop questions in the embed-
ding space (Sun et al., 2021). In contrast to these
methodologies, our work introduces a novel ap-
proach by constructing a hyper-relational KG from
the documents, which is then utilized exclusively
to answer questions.

Relational Graphs for MHQA While retrieving
and relying on purely unstructured text is a go to ap-
proach for single-hop question answering (Watan-
abe et al., 2017). It may not be ideal for MHQA, as
it is designed to make multi-step, comprehensive
reasoning difficult. This issue is often addressed
by constructing structured sources of information
from raw text and in most of the cases using KGs
(Li and Du, 2023). By using KGs, the relational
information among question concepts and answers
can be easily captured (Dong et al., 2023). How-
ever, one of the main drawback of KGs is the lack
of context i.e., they focus only on triples, overlook-
ing qualifiers important for inference. To avoid
overlooking qualifiers, our method involves build-
ing hyper-relational KGs to serve as an input to
LLMs for MHQA, as explained in detail in Sect
4.2.1. To the best of our knowledge, our work is
the first to use hyper-relational KGs for MHQA.

Training Free MHQA Previously, KGs have been
applied to MHQA in two ways: training-based
(Sun et al., 2018, 2019; Yavuz et al., 2022; Ramesh
et al., 2023) and training-free (Li and Du, 2023),
also known as prompting. In these methods, KGs
used were either human-curated (Speer et al., 2017;
Bollacker et al., 2008) or training-based (Izacard
and Grave, 2021; Bosselut et al., 2019). In some
cases, LLMs were employed for triple extraction
from documents to form graphs (Li and Du, 2023;
Carta et al., 2023). However, no prior works auto-
matically create a schema for the graph and use the
graph for MHQA, a unique approach used by us.

3 Preliminaries

Hyper-Relational Knowledge Graph - A hyper-
relational KG H is an enriched form of a traditional
KG. It allows for the representation of multiple
relationships between entities.

Let A denote a collection of attribute sets whose
elements represent different types of attribute sets.
For example, A;s € A is a set of timestamps, while
Ag € Ais a set of document titles, that serve as
additional attributes. We then define our hyper re-
lational KG H as: H = {(es, 7, €0,a) | €5, €
E,r € R,a € Ay}, where E is the set of named
entities, R is the set of relations and A is the set
of document titles that are additional attributes.This
structure not only links entities e, and e, via rela-
tion 7 but also integrates the corresponding docu-
ment title attributes Ay, offering a more nuanced
description. We refer (eg, r, €5, a) as a hyper triple.
Graph Schema - A graph schema Gg, defined as
Gs = {(és,7,65) | €s,€, € Ep,7 € R}, outlines
the structure of a KG through entity types Er and
relations R. Each triple in the schema specifies
the permissible entity types €; (subject) and €,
(object) for each relation r, serving as a blueprint
for organizing knowledge.

Named Entity and Relation Extraction - Named
entity extraction identifies textual spans referring
to specific entities, while relation extraction classi-
fies semantic relationships between entities in text,
enabling structured representation of unstructured
data. In this work, we harness LLMs’ capabilities
for these tasks. Pre-trained on extensive text, these
models accurately classify named entities and ex-
tract relations with minimal examples (Li and Du,
2023; Wang et al., 2023; Wadhwa et al., 2023),
showcasing their proficiency in contextual under-
standing. See Appendices A.4.1, A.4.2 for detailed
prompts and few-shot examples used in our method
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Figure 3: Method Overview: Our method has three key steps - (i) Query-Dependent Structured Knowledge
Discovery (Section 4.2.1), (ii) Knowledge Schema Construction for Information Refinement (Section 4.2.2), and
(iii) Reader LLM Prompt Construction (Section 4.2.3). Step (i) involves creation of an entity document graph (@

in the Figure), and performing a level-order traversal on it to get a Hyper-relational KG (
step (ii), we create a query-aligned knowledge schema from the question and an auxiliary graph schema (
in the Figure) - which forms the input for the LLM.

Figure), and use it to prune the Hyper-Relational KG (

for named entity and relation extraction.
4 Methodology

The key idea of our method is to identify the subset
of documents that contain the answer to the multi-
hop query, and subsequently extract context-aware
structured information from them (where context
comes from the documents). We further perform
a refinement step to retain query-relevant informa-
tion. Below, we begin with a brief description of
the problem statement in Section 4.1, followed by
an explanation of our method in Section 4.2. The
overview of our approach can be seen in Figure 3.

4.1 Problem Statement

In this work, we address the challenge of MHQA
in a zero-shot setting. This implies that we assume
no prior domain-specific labeled data, rendering
the problem both challenging and practically use-
ful (Davison, 2020). Moreover, we operate in a
training-free setting, leveraging the reasoning ca-
pabilities of LL.Ms for this task.

Formally, the task is to extract the answer a, from a
given natural language question ¢ and a collection
of supporting documents S,. The set of supporting
documents is defined as S; = {D1 D2 D,

where each document D) = (t), pé) consists of
a title ¢} and the associated passage pj. Given

in the Figure). Next, in
in the

that ¢ is a multi-hop question, deducing its answer
requires the aggregation of information from at
least two documents Dy, D} € S, (where i # j).

4.2 Proposed Method (HOLMES)

We begin by traversing the supporting documents
to identify the subset of documents relevant to the
query, and extract structured, context-aware infor-
mation (Section 4.2.1). This information is then re-
fined using a query-based knowledge schema (Sec-
tion 4.2.2). Next, we format the distilled graph
for the reader LLM prompt, including a comple-
mentary fact retrieval step within the prompt to
ensure higher coverage of query-relevant informa-
tion. (Section 4.2.3).

4.2.1 Query-Dependent Structured

Knowledge Discovery

Unstructured text, contains a complex web of facts
and relationships forming a latent semantic graph.
This graph represents interconnected factual infor-
mation not explicitly structured but implied by re-
lationships and named entities in the text. Our
approach navigates this structure using the entity-
document graph—a bipartite graph linking docu-
ments and named entities. It helps uncover parts of
the latent graph relevant to the given query.

Entity-Document Graph Construction
The entity-document graph has two node
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types—documents and entities—with a single
edge connecting them. We begin by extracting
named entities from supporting documents. Then,
we establish edges between document and entity
nodes, forming a bipartite graph that captures the
connections between entities and the documents
they appear in (See Figure 3 - @ for an example).

Level Order Traversal and Structured Informa-
tion Extraction We begin by extracting named
entities from the query and use them for a level-
order/breadth-first traversal of the entity-document
graph. Similar to Li and Du (2023); Wadhwa et al.
(2023), we use LLMs to extract KG triples from
document nodes, framing the task as a sequence-to-
sequence problem. By providing the LLM with a
detailed prompt (a clear description of the task and
output format) and few-shot examples, we guide
the model to generate triples directly from raw text
(see Appendix A.4.4 for prompts).

After extracting triples, we enhance them into
hyper-relational KG quadruples (or hyper triples)
by appending the title of the source document to
each triple. This title serves as an additional at-
tribute, offering the LLM context to understand
when the triple is valid. During the traversal, we
filter hyper triples with the current entity node as
either the subject or object, adding the counterpart
entity to the traversal queue. This iterative process
continues for a predefined number of hops &k, where
the value of k£ defines the query complexity, i.e.,
the number of facts required to answer the question.
Example of a hyper-relational KG in Figure 3—@.
When we perform the above specified k-hop traver-
sal starting from the named entities in the query, we
are effectively probing the latent semantic graph in
the raw text by incrementally selecting subsets of
documents related to the query.

4.2.2 Knowledge Schema Construction for
Information Refinement

The hyper-relational graph construction is rooted in
the inference query. However, it contains some hy-
per triples which although are related to the named
entities in the query, capture relationships that are
not useful for answering it. For instance, a query
might focus on a person’s occupation, but the graph
also captures their hobbies. To eliminate such ex-
traneous information, we construct a query-aligned
knowledge schema (Figure 3 - @ shows an exam-
ple) and then carry out a refinement step (refined
output example in Figure 3 - @).

Query-Aligned Graph Schema Creation The

graph schema acts as a structural template, guiding
the organization of information crucial for answer-
ing the given question. It is essential for capturing
the types of entities and relations likely to form the
backbone of the answer. For example, in response
to the question "Who is the 2nd daughter of the Ist
president of X?" the schema should capture rela-
tions such as {<Person>, daughter of, <Person>}
and {<Person>, president of, <Country>}, repre-
senting the direct information sought by question.

Our graph schema is populated using two sources:

(i) We first derive schema elements from the in-
ference query by identifying relations in it, and
then using LLMs to estimate the subject and ob-
ject entity types for each of these relations (prompt
in Appendix A.4.3). This forms a schema with a
direct alignment with the question’s intent.

(i1) We enrich the schema with additional domain-
specific relations to aid multi-hop reasoning, us-
ing an auxiliary graph schema derived from in-
domain questions (Appendix A.5). This includes a
wider array of entity-relation pairs, such as {<Per-
son>, child of, <Person>} and {<Person>, head
of, <Country>}, to account for potential inferential
steps when direct query matches are absent in sup-
porting documents. We select schema triples with
relations similar to the question’s (based on cosine
similarity) to retrieve a relevant subset. While con-
structing this auxiliary schema incurs a one-time
compute cost, its amortized cost is minimal over
multiple queries, especially given it helps to reduce
the input token length for the reader LLM by upto
60% w.r.t. original source documents.

In cases where the inference query diverges from
the auxiliary graph schema, we rely on the schema
derived from the query. This ensures system flex-
ibility, adapting to specific query requirements,
while still benefiting from the broader knowledge
in the auxiliary schema when applicable.

Pruning Hyper-relational Knowledge Graph
The final step in our methodology involves refining
the constructed hyper-relational KG ‘H’ by prun-
ing it using the query-aligned graph schema Gg.
This pruning process is essential to distill the graph
to its most relevant components, thereby enhancing
the efficiency and effectiveness of the reader LLM
in generating answers.

The pruning process begins by computing embed-
dings for the relations in both the hyper-relational
KG and the graph schema. Let v, denote the em-
bedding of a relation 7 in the hyper-relational KG,
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and let u,» denote the embedding of a relation ' in
the graph schema. We compute cosine similarity
between each pair of relation embeddings:

. Vi - Uyps
sim(vp,uy) = ————-—— (1)
) = e
where - denotes the dot product and || - || denotes

the Euclidean norm. For each relation r, in a hyper
triple (es, 71, €0, a) € H, we compute its highest
similarity score w.r.t. any relation 7 in the schema:
score(ry) = max sim(v,,, u,, ). (2)
rs€Gs
We compute the scores for all those relations whose
entity types in the hyper triple match with that in
the schema. We then select p hyper triples with
the highest scores. This gives us the pruned graph
H' = sortsore(H, p), Where sortseore denotes the
sorting operation based on the computed similarity
scores, and p - no. of hyper triples to retain.

4.2.3 Reader LLM Prompt Construction

Next, we create the prompt for the reader LLM.
Each hyper triple in the pruned hyper-relational
KG, H’, is verbalized into an English sentence
as the LLMs are adept at understanding the same
(Jiang et al., 2023). The verbalization process trans-
forms the structured triple into a natural language
text. To be specific, we concatenate each item in the
hyper triple into a long sentence marked by specific
separation and boundary symbols. The resulting
sentences are then arranged in the descending order
of their similarity scores w.r.t. the schema to form
the input prompt. We arrange the facts based on
the relevance to the query (measured via similar-
ity scores) as the information retrieval by LLMs
(w.r.t. their input prompt) is done best when the
gold information is placed closest to query (Cu-
conasu et al., 2024).

As structured information extraction is an unsolved
problem, some pertinent details may be missed in
the input graph. To mitigate this, we include a
verification step in the prompt, described below.

Complementary Fact Retrieval If the LLM iden-
tifies that facts about a particular set of named
entities is missing from the input graph, then we
instruct it to list those named entities. We then
fetch the corresponding documents from the entity-
document graph and integrate them with the initial
set of relevant facts. This process not only enriches
the input for the LLM but also ensures that any
missing query-relevant information is retrieved, en-
hancing the accuracy of the system’s responses. We

assume that a single-step verification is sufficient.
Refer Appendix A.4.5 for the reader LLM prompt.

S Experimental Setup

5.1 Evaluation Details

Datasets: We use two benchmark multi-hop
question-answering datasets, namely HotpotQA
(Yang et al., 2018) and MuSiQue (Trivedi et al.,
2022b) for evaluating our method. Table 9 displays
the total number of samples for both datasets in the
training and development sets.

For our evaluation process, we utilize questions,
context, and gold answers from the development
sets of both HotpotQA and MuSiQue. To tune hy-
perparameters, we randomly select 50 questions
from the development set and use them (following
(Trivedi et al., 2022a; Li and Du, 2023)). We create
our test set by randomly sampling an additional
1000 questions from the development set of Hot-
potQA and 1200 questions from development set
of MuSiQue. Its worth noting that our test set size
is twice as big as StructQA (Li and Du, 2023). In
both HotpotQA and MuSiQue datasets, for each
question there are ten and twenty supporting doc-
uments available, respectively. Each document in
both datasets contains a title and a passage of text.

Baselines: We operate in a training-free setting,
utilizing LLMs as the reader model (takes the ques-
tion and corresponding supporting documents as in-
put and gives an answer). We experiment with two
popular LLMs - GPT-3.5, GPT-4 (Achiam et al.,
2023) in the main paper, and report results with
Gemini (Lee et al., 2023) in Appendix A.1. We
compare our method against three baselines

(1) StructQA (Li and Du, 2023): CoT (Wei et al.,
2022) based SoTA method for MHQA with LLM:s.
We use the same prompts and methodology as out-
lined in their study.

(i1) Base (with supp docs): To test the base multi-
hop reasoning of the reader LLM, in this baseline,
we feed the reader LLM with the question and sup-
porting documents directly.

(iii) Base (w/o supp docs): To test the parametric
knowledge of the reader LLM, in this baseline, we
feed it with just the question and elicit a response.
All prompts used in our experiments are docu-
mented in the Appendix A.4 for reproducibility.

Evaluation Metrics: We use Exact-Match (EM),
Precision, Recall, and F1-Score as automatic met-
rics (Li and Du, 2023; Mavi et al., 2022) to measure
correctness of the predicted answers.
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Datasets HotpotQA MuSiQue

Methods EM@®  F1(M P® R (™ EM(®)  F1M P R
Reader: gpt-4-1106-preview

Base (w/o supp docs) 0.26 0.45 0.45 0.50 0.09 0.21 0.22 0.21

Base (with supp docs) 0.54 0.74 0.75 0.77 0.39 0.55 0.55 0.56

StructQA (Li and Du, 2023) 0.55 0.77 0.75 0.80 0.42 0.56 0.57 0.56

Our Method 0.66 0.78 0.80 0.79 0.48 0.58 0.59 0.59
Reader: gpt-3.5-turbo-1106

Base (w/o supp docs) 0.23 0.37 0.38 0.40 0.06 0.15 0.17 0.15

Base (with supp docs) 0.47 0.65 0.66 0.68 0.24 0.36 0.36 0.37

StructQA (Li and Du, 2023) 0.48 0.64 0.62 0.67 0.23 0.37 0.37 0.37

Our Method 0.57 0.69 0.69 0.70 0.29 0.38 0.39 0.37

Table 1: Multi-hop Reasoning Evaluation (Automatic Metrics): We report the Exact-Match (EM), F1, Precision (P) and
Recall (R) scores of all methods in comparison on two MHQA datasets. We experiment with two SoTA reader LLMs for the QA
task - GPT-4 and GPT-3.5. We report results on Gemini-pro in the Appendix A.1. The results indicate consistent and significant
improvements across datasets, metrics and LLMs. Base: Only reader LLM; supp docs: supporting documents w.r.t. query

For semantic evaluation of the predicted answers,
we also compute Human Evaluation Score (H-Eval)
and BERTScore (Zhang et al., 2019) on a random
sample of 100 questions from the development set
of the HotpotQA dataset. The Human Evaluation
Scores are obtained by averaging scores from three
annotators. We use a smaller subset of question for
this analysis due to the resource-intensive nature of
human evaluation.

5.2 Implementation Details

Problem Setting We focus on the distractor set-
ting (Yang et al., 2018; Trivedi et al., 2022b) for
question answering. In this setting, the support-
ing documents for each question consist of a set
of distractor documents, i.e., documents not use-
ful for predicting the answer. This setting poses a
challenge, demanding robustness to noise in input.

Knowledge Triple Extraction Both StructQA and
our method use LLMs for knowledge triple extrac-
tion. Thus, for a fair comparison, we always use
the same triple extractor LLM for both. Results in
Table 1, use gpt-3.5-turbo-instruct for triple
extraction. We further study the impact of different
triple extractor LLM in Table 6.

HOLMES hyperparameters: We use OpenAl
embedding model (text-embedding-ada-002) to
compute text embeddings. We set the value of k&
(number of levels in the level order traversal) to
4 across both the datasets in Table 1,6. Beyond 4
levels of traversal, performance remains the same
as the complexity of the dataset vary from 2-4 hop
(See Table 10). Similarly, we set the value of p
(number of hyper triples to be retained after prun-
ing) to 50 across all result tables (sensitivity anal-
ysis in the Appendix A.1). Both of these values

were chosen by experimenting on 50 samples from
the development sets of the respective datasets.
Auxiliary Graph Schema Creation: We randomly
sample 10,000 questions (without answers and
supporting documents) from the training data of
HotpotQA and MuSiQue, for creating the graph
schema. We provide further details about the auxil-
iary schema creation in the Appendix A.S5.

6 Results and Analysis

Here, we study the performance of our method by
investigating several key dimensions of multi-hop
question answering (especially in the era of LLMs):
(1) Multi-hop reasoning capability
(a) w.r.t automatic metrics
(b) w.r.t human & semantic metrics
(i) Performance w.r.t. different question types
(a) Reasoning type-wise performance
(b) Hop-wise performance
(iii) Query Information efficiency (input token
count for reader LLM)
(iv) Measure of confident predictions
We also study the impact of the LLM used for
knowledge triple extraction, and conduct further
studies in the App A.1 and a case study in App A.6.

Multi-hop Reasoning: (a) Evaluation using Au-
tomatic Metrics - In Table 1 we report the perfor-
mance of our method w.r.t. Exact Match (EM) and
F1 scores for both datasets. We find that, across
reader LLMs, our method consistently outperforms
all baseline methods. This underscores the impor-
tance of our data organization and pruning process,
retaining only the relevant information in input
prompts for the reader LLMs. Notably, our method
even outperforms the SOTA StructQA, which em-
ploys the CoT mechanism (Wei et al., 2022).
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Dataset HotpotQA
Methods H-Eval (1) B-Score (1)
Base 86.5 87.00
StructQA 87.5 85.20
Our Method 89.0 89.05

Table 2: Multi-hop Reasoning Evaluation (Semantic
Metrics): Human evaluation (H-Eval) on 100 samples &
BERTScore (B-Score) for 1000 samples from HotpotQA.

(a) Human and Semantic Evaluation As gener-
ative models can generate long worded answers,
its important to semantically evaluate the predicted
answers. Thus, we use BertScore and human eval-
uators to judge the correctness of the predicted
answers. We use GPT-4 reader based responses for
this study and report the results in Table 2.

We observe that our method achieves a 1-2 point
improvement on both the metrics w.r.t. the base-
lines, confirming the efficacy of our method.

Query Information Efficiency In multi-hop ques-
tion answering, where reader LLMs like GPT-4
are employed, the presence of irrelevant informa-
tion poses a significant challenge because (i) it in-
creases the computational load (and thus the cost)
(i1) and complicates the LLM’s task of connecting
disparate pieces of information across documents.
Thus, efficiently managing input data by filtering
out unnecessary content becomes crucial to both
performance and cost-effectiveness. To quantify
this factor, we measure the reader input token count
and use an efficiency metric for input tokens. The
query information effiency (or reader input token
efficiency) metric is a normalized score between
zero and one, computed through min-max normal-
ization of input token count (min & max are based
on input token counts of all methods in compari-
son). Our results, in Figure 1 and Table 3, show a
significant reduction in average input token count
across both datasets compared to baselines.

Datasets HotpotQA MuSiQue
Methods Token Count(]) Token Count(.)
StructQA 3078.85 5908.87
Our Method 1230.90 1398.15

Table 3: Reader Input Token Count: Comparing the average
input token size across datasets to measure the efficiency of
representing query relevant information.

Performance w.r.t. different question types

To analyze HOLMES’s performance across ques-
tion types and complexities, we perform an analysis
based on reasoning types (with HotpotQA dataset)
and hops (with MuSiQue dataset). We choose re-

spective datasets for each analysis based on the
query type information available in the datasets.
(a) Reasoning type-wise performance

For any multi-hop question, the data generating
process dictates the type of reasoning required to
answer the question. HotpotQA dataset contains
questions which fall in two categories w.r.t. reason-
ing - (i) bridge question (ii) comparison questions.
We advise the reader to refer to the dataset paper
(Yang et al., 2018) for more details. We report
results across question categories in Table 4.

Type # Samples Base StructQA HOLMES
Bridge 787 0.55 0.56 0.64
Comparison 213 0.55 0.51 0.71

Table 4: Performance Across Reasoning Types: Evaluation
of different methods. Base - Reader LLM with supp docs.

(b) Hop-wise Performance Comparison

Hop-wise Comparison

1.0

-4+ Our Method
4 StructQA

_0s -§- Base - GPT-4

S

IS

S o6

-

[}

]

x

u

=

L

Bhbp 4hbp

Question Complexity

Figure 4: Hop-wise Performance: Comparison on MuSiQue
dataset with varying question complexity. Bars denote stan-

em(l—em)
dard error - {/ =————.

We evaluated the hop-wise performance of our
method on MuSiQue dataset (Figure 4). This eval-
uation aimed to determine if our performance im-
provements (in Table 1) were primarily attributed
to the system’s ability to answer 2-hop questions,
which are less complex than 3 and 4-hop questions.
We find that our method maintains its performance
across an increasing number of hops and outper-
forms the baselines too.

Measure of Confident Predictions LLMs demon-
strate reasoning capabilities but often struggle to
recognize their limitations in understanding queries
or retrieving correct answers. We found that struc-
tured inputs and task-dependent reasoning steps,
including the option for models to indicate un-
certainty, alleviates this issue. Inspired by this,
we introduce the Self-Aware Exact Match (Self-
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Aware EM) score to assess LLMs on complex QA
tasks. This metric evaluates the accuracy and con-
fidence of model responses, focusing on instances
where the model provides answers with high con-
fidence (or self-awareness). It aims to highlight
the model’s precision and reliability, offering a nu-
anced view of its performance. It is defined as:

Self Aware EM = W where () 4 is the
set of questions the system answers. We report the
Self-Aware EM scores in Figure 1.

In our evaluation using the HotpotQA and
MuSiQue datasets, HOLMES opted for "None"
or "No answer" in 3% and 10% of the samples, re-
spectively (with GPT-4 as reader LLM). In contrast,
StructQA always provided an answer, often inac-
curately (see Table 1). Upon reviewing instances
where HOLMES did not provide an answer, we
found it was due to incomplete information in the
input graph or a misunderstanding of the question.
This self-awareness—recognizing when it cannot
reliably answer—is a key feature of dependable
systems. Our findings, detailed in Figure 1, show
that HOLMES achieves significantly higher self-
aware EM scores compared to other baselines.

7 Sensitivity & Ablation Analysis

Configuration Performance
Hyper Aux. Comp. Fact Reader Inp
KG Prune Schema Retrieval EM F1 Tokens
X - - - 0.56 0.69 1867
X X - - 0.56 0.70 1227
X X X - 0.58 0.72 1220
X X X X 0.61 0.77 1230

Table 5: Impact of different components: Performance met-
rics (EM, F1) and Reader Input Token Count for different
configurations of HOLMES. X refers to "included", and -
refers to "excluded" in the table. For example, in the first
row, only Hyper-Relational KG is included in the HOLMES
algorithm, every other component is removed. These results
are reported on a set of 100 samples from HotpotQA dev set.

Ablation Studies In Table 5 we share the results
of our ablation study that systematically evalu-
ates the contribution of each component within
the HOLMES framework.

Sensitivity Analysis We evaluated the effect of
using a different LLM (gpt-4-1106-preview) for
triple extraction, comparing our performance with
StructQA in Table 6 (reader: GPT-4). Our approach
consistently outperforms StructQA, although im-
proved triple extraction models benefit both.

Datasets HotpotQA (100 samples)

Methods EM®) FI (D P (1) R
Triple Extractor: gpt-4-1106-preview
StructQA 0.56 0.76 0.79 0.77
Our Method 0.68 0.79 0.82 0.80
Triple Extractor: gpt-3.5-turbo-1106
StructQA 0.47 0.71 0.72 0.76
Our Method 0.61 0.77 0.78 0.78

Table 6: Impact of Triple Extractor on MHQA performance

8 Conclusion

We introduce HOLMES, an approach leveraging
a hyper-relational KG to enhance multi-hop ques-
tion answering by minimizing noise and refining
relevant facts. Constructing an entity-doc graph
from the question’s supporting documents, we em-
ploy a level-order traversal, prune with an auxiliary
graph schema, and utilize distilled graph as input
for LLM-based answering. Our method achieves
SoTA performance with a 20% improvement on
HotpotQA and 26% on MuSiQue dataset w.r.t EM
while using upto 67% fewer tokens to represent
query relevant information w.r.t. SOTA methods.
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Limitations

The following details outline areas for future im-
provements:

Possible Incompleteness in Constructed Graphs
Extracting entities and triples to construct graphs
via LLMs demonstrates high accuracy, yet the task
of capturing all relevant triples faces inherent chal-
lenges. Structured information extraction remains
an unsolved problem across the field, leading oc-
casionally to incomplete graphs in our method as
well

Increased Computational Effort: Our method’s
use of LLMs to generate an auxiliary schema in-
troduces additional computational steps. While
this increases the computational effort compared
to prior methods, it’s offset by our efficiency w.r.t
fewer input tokens during inference.
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While acknowledging the limitations of our ap-
proach, we remain optimistic, recognizing our
work as a step forward in enhancing the capabilities
of LL.Ms for multi-hop question answering.

Ethical Concerns

There are no ethical concerns associated with this
work.
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A Appendix

In this section, we provide additional results and
details that we could not include in the main pa-
per due to space constraints. In particular, this
appendix contains the following:

* Additional Results and Analysis

* Dataset Statistics

* Guidelines for Human Annotators

* Prompts used in HOLMES

* Auxilliary schema construction

e Case Study of HOLMES on HotpotQA

dataset

A.1 Additional Results and Analysis

Extending our analysis in Section 6, here we re-
port the following - (i) MHQA performance with
Gemini-Pro reader LLM (ii) Sensitivity Analysis
w.r.t. pruning process (iii) Sensitivity Analysis w.r.t.
the number of depth of traversal while creating the
Hyper-Relational KG.

Gemini-Pro MHQA Results

Datasets HotpotQA
Methods EM (1) F1 (1) SA-EM (1)
Reader: Gemini-Pro
Base (w/ supp docs) 0.48 0.66 0.48
StructQA 0.49 0.66 0.52
Our Method 0.58 0.67 0.66

Table 7: Multi-Hop QA performance SA-EM: Self-
Aware EM; Base: Only reader LLM; supp docs: sup-
porting documents w.r.t. query

Similar to results with GPT-3.5 and GPT-4 reader
LLMs (in Table 1), we observe consistent improve-
ments across metrics. Thus demonstrating the effi-
cacy of our method, across LLMs.

Impact of Pruning
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Figure 5: Impact of pruning on MHQA performance
in HotpotQA dataset

In Tables 1 and 6, we conducted our experiments by
retaining 50 hyper triples after the pruning stage.
Here we vary the number of hyper triples being
retained after pruning and study the impact on the
MHQA performance (EM and F1 scores).

Figure 5 shows that after 50 triples, the MHQA
performance does not change indicating that the
first 50 triples captures all the query relevant infor-
mation. This number is dependent on the dataset,
so we suggest conducting experiments to deduce
this threshold.

Impact of Depth in the Level Order Traversal

Impact of Depth

0.60 i

Performance
&
&

o
o
S

—— EM Score
F1 Score

o
S
]

o
=
S

3 4 6
Depth of Traversal

Figure 6: Impact of Depth on MHQA performance in
HotpotQA dataset

In the Tables 1 and 6, we conducted our exper-
iments by traversing the entity document graph
upto a depth of four levels. As stated in Section
4.2.1, the depth of traversal depends on the maxi-
mum complexity of query we expect to see during
inference. To verify this, we perform a sensitivity
analysis on this variable. We experiment on 100
randomly sampled datapoints from HotpotQA de-
velopment set(question complexity varies between
2-3 hops).

Figure 6 reflects that as the max query complex-
ity of the dataset is three, beyond three levels of
traversal the performance does not improve. Thus,
verifying our claim. We choose a depth of four
in the main paper as we wanted to cater to all the
datasets.

Total Input and Output Token Lengths & Costs

Method Inp Token Out Token Total Cost EM

Length () Length () in$() (D)
StructQA 9012 3590 0.99 0.48
HOLMES 9388 2524 0.85 0.57

Table 8: Performance and Cost Comparison: Comparison
of total input and output token lengths (across all LLM calls),
total cost, and EM scores for different methods.

In table 8 we report the average total input and
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output token lengths on HotpotQA dataset (w.r.t.
100 random samples from dev set). We also share
the cost estimate w.r.t. the latest GPT-3.5 LLM
(both as reader and triple extractor model)

The average input and output token lengths when
simply using the reader LLM are 1334 and 10, re-
spectively. Its worth noting that for performance
improvements beyond LLMs on complex NLP
datasets such as HotpotQA and MuSiQue, struc-
tured information extraction is immensely useful,
as can be seen from the improvements across met-
rics in Table 1 of the paper.

A.2 Dataset Statistics

Dataset Train Dev
HotpotQA 90,447 7,405
MuSiQue 19,938 2,417

Table 9: Train and Dev Statistics - number of samples

Dataset number of instances
MuSiQue 2-hop 667
MuSiQue 3-hop 366
MuSiQue 4-hop 200

Table 10: Hop-wise distribution of questions used for
evaluation in Section 6 for MuSiQue

Table 9 provides details on the total number
of training and development set samples in each
dataset. From these, we have randomly sampled
10, 000 questions (unlabelled or unannotated) from
the training set to create our auxiliary schema.
For each dataset, we randomly sampled 1000 data
points from the development set for evaluation pur-
poses (as illustrated in section 5.1). Table 10 details
the hop-wise question statistics of the MuSiQue
dataset (HotpotQA dataset (Yang et al., 2018) does
not provide hop-wise distribution of their dataset).

A.3 Guidelines for Human Annotators

In the evaluation phase of HOLMES (Table 2),
human annotators played a crucial role in assessing
the accuracy of the predicted answers. The process
was structured as follows:

* Annotators were presented with a set of inputs
for each question, which included:
— The question
— The gold answer

— The predicted answer generated by one
of the MHQA methods

* The primary task for the annotators was to
determine the correctness of the predicted an-
swer in comparison to the gold answer. This
evaluation was binary, with annotators assign-
ing:

— A score of 0 if the predicted answer was
deemed incorrect
— A score of 1 if it was considered correct

* The evaluation process encompassed all meth-
ods: Base with supporting documents, Struc-
tQA, and HOLMES, each evaluated with a
total of 100 questions. Therefore:

— Each annotator was responsible for evalu-
ating a comprehensive total of 300 ques-
tions, covering all possible combinations
of questions and methods.

The numbers in Table 2 represent the average
scores from three human annotators.

A4 Prompts used in HOLMES

In this section we detail the prompts used for solv-
ing different subtasks using LLMs.

A.4.1 Entity Extraction from supporting
documents

For extracting named entities from the supporting
documents, we use the following prompt. Few-shot
examples used to improve the performance of the
LLM is also included in the prompt.

Task: Extract ALL the named entities
from the given sentence (extract
all time intervals, names, dates,
organizations and locations).
Examples: Use the following
examples to understand the task
better. Sentence: William Rast is

an American clothing line founded by

Justin Timberlake and Trace Ayala.
Entities: William Rast, American,

Justin Timberlake, Trace Ayala

Sentence: The Glennwanis Hotel
is a historic hotel in Glennville,
Georgia, Tattnall County, Georgia,
built on the site of the Hughes
Hotel.
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Entities: Glennwanis Hotel,
Glennville, Georgia, Tattnall
County, Georgia, Hughes Hotel

A.4.2 Entity and Relation Extraction from the
Question

Instead of separately extracting the entity and the

relations from the inference query, we use a single

LLM call. Below we detail the prompt along with

Task: Generate the subject and
object entity type for the following
relation, w.r.t. the provided
context information.

relation: input

Context: context ; DO NOT extract
partial info.

Output format: [<subject entity
type>, <object entity type>]

the few-shot examples used.

A.4.4 Triples Extraction from supporting

Task: extract all named entities

from the above question. Then
extract all the important
information (each information

documents

Here we report the prompt along with the few-shot
examples we used for knowledge triple extraction
from raw text.

should be 2-3 words) needed to
answer the question. Output format

- “entities: [ent1l, ent2, ...]
important relations: [infol, info2,
...1". Please note, do not give

named entities in the ‘important
relations’

Use the following examples to
understand the task:

Question: Who is the author of
the book that inspired the movie
starring Tom Hanks as a symbologist?
Entities: [Tom Hanks]

Important Relations: [author of,
inspired the movie, stars,as a
symbologist]

Question: Did the company that Elon
Musk co-founded in 2002 eventually
merge with a firm that had been
contracted by NASA to resupply the
International Space Station?

Entities: [‘Elon Musk’, ‘2002’,
‘NASA’ | ‘International Space
Station’] Important Relations:
[“co-founded’, ‘merge with’,

‘contracted by’, ‘resupply’]

A.4.3 Subject and Object Entity type
Estimation

As discussed in Section 4.2.2 and shown in Figure
3, to create the knowledge schema from the query,
we need to estimate the subject and object entity
types corresponding to a given relation. We use an
LLM for the same and report the prompt below.

Task: Comprehensively extract ALL
the triples (subject, relation,
object) from below given paragraph.
Ensure that the subject and objects
in the triples are named entities

(name of person, organization,
dates etc) and not multiple 1in
number. You will be HEAVILY

PENALIZED if you violate this
constraint.

Examples: Use the following
examples to understand the task
better. Paragraph: William Rast is
an American clothing line founded by
Justin Timberlake and Trace Ayala.
It is most known for their premium
jeans. On October 17, 2006, Justin
Timberlake and Trace Ayala put on
their first fashion show to launch
their new William Rast clothing
line. The label also produces other
clothing items such as jackets and
tops. The company started first as
a denim line, later evolving into a
men’s and women’s clothing line.

Triples:

i. subject: William Rast,
relation: clothing line,
object: American

ii. subject: William Rast,

relation: founded by, object:
Justin Timberlake

iii. subject: William Rast,
relation: founded by, object:
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Trace Ayala
iv. subject: William Rast,
relation: known for, object:
premium jeans
V. subject: William Rast,
relation: launched on , object:
October 17, 2006
vi. subject: Justin Timberlake,
relation: first fashion show,
object: October 17, 2006
vii. subject: Trace Ayala, relation:
first fashion show, object:
October 17, 2006

viii. subject: William Rast,
relation: produces, object:
jackets

ix. subject: William Rast,
relation: produces, object:
tops

X. subject: William Rast,

relation: started as, object:
denim line

Xxi. subject: William Rast,
relation: evolved into, object:
men’s and women’s clothing line

Paragraph: The Glennwanis Hotel
is a historic hotel in Glennville,
Georgia, Tattnall County, Georgia,
built on the site of the Hughes
Hotel. The hotel is located at
209-215 East Barnard Street. The
old Hughes Hotel was built out
of Georgia pine circa 1905 and
burned in 1920. The Glennwanis
was built in brick in 1926. The
local Kiwanis club led the effort
to get the replacement hotel built,
and organized a Glennville Hotel
Company with directors being local
business leaders. The wife of a
local doctor won a naming contest
with the name “Glennwanis Hotel”,
a suggestion combining “Glennville”
and "Kiwanis

Triples:

i. subject: Glennwanis Hotel,
relation: is located in, object:
209-215 East Barnard Street,
Glennville, Tattnall County,
Georgia

ii. subject: Glennwanis Hotel,
relation: was built on the site
of, object: Hughes Hotel

iii. subject: Hughes Hotel,
relation: was built out
of, object: Georgia pine

iv. subject: Hughes Hotel,
relation: was built circa,
object: 1905

v. subject: Hughes Hotel,
relation: burned in, object:
1920

vi. subject: Glennwanis Hotel,
relation: was re-built in,
object: 1926

vii. subject: Glennwanis Hotel,

relation: was re-built using,
object: brick

viii. subject: Kiwanis club,
relation: led the effort
to re-build, object: Glennwanis
Hotel

ix. subject: Kiwanis club,
relation: organized, object:
Glennville Hotel Company

X. subject: Glennville Hotel

Company, relation: directors,
object: local business leaders
xi. subject: Glennwanis Hotel,
relation: combines, object:
“Glennville” and “Kiwanis"

A.4.5 LLM Reader

Below we report the reader LLM prompt. Please
note that we instruct the LLM to reason in three
steps - (i) relevant fact extraction (ii) reasoning
based on the relevant facts (iii) final response (with
an option to request details about named entities)

Question:{question}

Read the above question carefully,
understand the answer category. Now,
given you understand the question,
use the following facts to answer
the question. Please note that
the meaning of facts is HEAVILY
dependent on the context or the
document from which it was extracted.
prunned_and_verbalized_hyperkg
(Note: the above set of facts
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Figure 7: Auxilliary Graph Schema Construction Overview

can be noisy, so if ambiguous
information is present then focus
on the question and keywords in the
question - relations_in_question)
First, fetch the relevant set of
facts from the above taking into
consideration the context of the
fact (DO NOT generate your facts),
then by combining them answer the
question - question.

Instruction: Give the answer in the
following format -

Relevant facts: <facts (and context
of those facts) relevant to the

question>

Reasoning: <Here, give your
thought process of how you
use the named entities -

named_entities_in_question,
relations - relations_in_question
of the question and accordingly
traverse the facts given above to
arrive at your answer>

Final Response: <If all the
necessary facts are available to
answer the question, express it in
3-4 words - Else, say None>
Further query: <if ‘Final Response’
is None, then think step-by-step
using the ‘Reasoning’ and other
facts and state which named entity’s
direct information is missing>

A.5 Auxilliary Schema Construction

As stated in Section 4.2.2, we use a collection of in-
domain questions to construct a graph schema (See
definition in Section 3), that captures the global
level blueprint of information required to answer
questions in the target domain. In this section, we
detail the procedure used to create the same. We

employ a four-step process, starting from the un-
annotated in-domain multi-hop questions.

A.5.1 Question Decomposition

Given the complexity of multi-hop questions and
the challenges in processing their embeddings, we
first decompose these into simpler, single-hop ques-
tions. This decomposition is facilitated by the
11ama-13b LLM, which effectively breaks down
complex questions into their constituent single-hop
components. Decomposing 10, 000 questions us-
ing SoTA LLMs is very expensive, thus we opted
for a smaller, open-weight LLM. We use few-shot
prompting to ensure the model understands the task
well. We use the following prompt for the same:

Task: Decompose a multi-hop
question into a series of single-hop
guestions to assist in finding the
answer in a step-by-step manner.
Instruction:

i. Proceed with the decomposition
according to the outlined chain
of thought.

ii. Only return the sub-questions,

nothing else.

Focus on the entities in the

question

iv. If decomposition is not clear,
do not guess.

iii.

Question: Lily’s Driftwood
Bay premiered on what British
television channel that is operated
by a joint venture between Viacom
International Media Networks Europe
and Sky plc?

Chain of Thought Instructions:

the
question:

1. Identify
of the

ultimate goal
Find the
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television channel on which
Lily’s Driftwood Bay premiered.
2. Recognize that there are two
pieces of information needed:
a) Determine the British
television channel operated by
the specific joint venture. b)
Find out if Lily’s Driftwood
Bay premiered on this channel.
3. Create single-hop sub-questions
that will answer these pieces of
information separately.

Output:

1. Which British television
channel is operated by a
joint venture between Viacom
International Media Networks
Europe and Sky plc?

2. Did Lily’s  Driftwood Bay

premiere on this specific
British television channel?

A.5.2 Cluster Question Embeddings

We then apply K-Means clustering to the embed-
dings of the decomposed single-hop questions to
group similar questions. We use OpenAl embed-
ding model (text-embedding-ada-002) to com-
pute text embeddings. The optimal number of clus-
ters (k) is determined by evaluating the clustering
quality through a combined clustering evaluation
score (CCES) which is a weighted sum of three
normalized scores (normalized to lie between O
and 1): silhouette score (Sporm), inverted Davies-
Bouldin score (D Byom), and Calinski-Harabasz
score (C'Hporm), With equal weightage assigned to
each. These scores collectively assess the cohesion,
separation, compactness, distinctness, and disper-
sion of the clusters. We use the elbow method for
determining the optimal number of clusters. We
report the elbow plot below.

Below, we report a couple of cluster centroids with
a few data points (questions) around the centroid.

Cluster 1

» Which football team did Kevin John Ufuoma
Akpoguma play for?

* Who is the former Houston Texans head
coach?

» Which NFL team currently employs him?

Cluster 2

Elbow Method For Optimal k
1

0.465

0.460

0.455

0.450

0.445

0.440

Combined Clustering Evaluation Score (CCES)

I
2.5 5.0 75 100 125 150 175 200
Number of clusters (k)

Figure 8: Elbow Plot for Kmeans clustering on 10000
questions from HotpotQA dataset.

» What is the name of the actress?

* Who are Rohan Bopanna and Cara Black?

» What is the name of the protagonist in the
show "Pretty Little Liars"?

As can be seen from the above clusters, they cap-
ture latent topics in the dataset such as sports (clus-
ter 1) and movies (cluster 2).

A.5.3 Latent Question Category Modelling

The next step involves latent topic modeling to
identify question categories within the single-hop
question clusters. By extracting the cluster centroid
question and the five questions closest to each cen-
troid, we prompt an LLM (gpt-4-1106-preview
in this case) to discern latent topics, focusing on en-
tity types and relations rather than specific entities.
The prompt we use deducing the latent question
category is as follows:

Task: Extract latent topics with
focus on entity types (not the
entities themselves) and relations
in below given questions. These

topics should be the underlying
question categories for these
questions.

Instructions:

i. Keep in mind that I will later
use these 1latent topics to
create a KG schema such that the
KG can answer questions such as
the ones listed below.

ii. Answer in 1 sentence using
detailed and informative words
only.
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iii. Consider cross-question
information too for determining
the latent topics.

iv. Directly give the latent topics
without preamble text like “the
latent topic is ...", and use

bullets to separate topics.

A.5.4 Schema Induction

Finally, we prompt the LLM to generate a graph
schema based on the broad question categories
identified in the previous step. This schema is ex-
plicitly designed as an information organization
blueprint relevant to the identified question cate-
gories, thereby facilitating a structured approach
to answering questions within the domain. We use
the following prompt for the same -

Task: Create a graph schema for
my KG using the broad question
categories that I want to be
answered by the KG.

The broad question categories are:
{question categories?}

Instructions:

i. Create a set of relations for
a knowledge graph that clearly
and unambiguously express the
relationships between entities
ensuring they are reusable,
standardized, and semantically
meaningful.

ii. Generate a 1list of distinct,
relevant, and comprehensive
entities for a knowledge graph
about wikipedia text, ensuring
they are specific, meaningful,
and cover all aspects of the

domain.

iii. After extracting the entities
and relation types, for
the graph schema of the

knowledge graph return the all
the triplets “entity type -
Relation Type - Entity Type"” in
the output as a list

iv. Important: ensure that the
triplets generated forms a
connected graph

v. Important: - nothing else other
than the 1list of triplets
should be returned. Format
for the list: [(“Entity type”,
“relation”, “Entity  type"),
(“Entity  type”, “relation”,
“Entity type"),...]

A.6 Case Study of HOLMES on HotpotQA
dataset

In this section, we showcase our constructed hyper-
relational KG extracted from the supporting docu-
ments. We illustrate the corresponding reasoning
process, highlighting relevant facts, and ultimately
derive the answer for the question.

Now, consider the following example question
from the HotpotQA dataset.

Question: ‘What major truck road is located in
Backford Cross?’

Based on the question, our method discovers re-
lated supporting documents and then fetches struc-
tured information from them (Section 4.2.1). Be-
low we list those discovered supporting documents.

Supporting Document: 1

Title: Backford Cross

Passage: Backford Cross is a village on the Wirral
Peninsula, Cheshire, England. It is a suburb of the
town of Ellesmere Port and part of Cheshire West
and Chester. Backford Cross is located around
the A41/A5117 junction, south of Great Sutton and
about 1.5 mi north of the village of Backford, near
Chester. Backford Cross is largely made up of
residential homes built from 1990 onwards and
serves as a commuter village to Ellesmere Port and
Chester, although inhabitants show no allegiance
to either locality. The area is split between post-
code districts, with parts of the village in Great
Sutton, Ellesmere Port CH66 and other areas in
Backford, Chester CHI.

Supporting Document: 2

Title: A5117 road

Passage: The A5117 is a road in Cheshire, Eng-
land. It runs between Shotwick ( ) and Helsby ()
and connects the A550 at Woodbank to the M56.
As such it forms a northerly bypass to Chester and
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a shorter route between the North West and North
Wales than the A55. The road is dualled west of
the M56. There is roundabout with the A540 and at
Dunkirk at the western terminus of the M56. East
of the junction the road is single carriageway and
crosses the A41 by way of a roundabout at Backford
Cross. The A5117 intersects the M53 at Junction
10. This junction is just east of Cheshire Oaks
Designer Outlet. The road then continues almost
parallel to the M56, which it intersects at Junction
14, at which there is a Motorway service area. The
road then continues south east to terminate where
it joins the A56 at Helsby.

Supporting Document: 3

Title: Strawberry Park, Cheshire

Passage: Strawberry Park and Strawberry Fields
are suburbs in the town of Ellesmere Port, Cheshire
West and Chester. They are located to the south of
Hope Farm and to the west of Backford Cross.

Supporting Document: 4

Title: A41 road

Passage: The A41 is a major trunk road in Eng-
land that links London and Birkenhead, although it
has now in parts been superseded by motorways. It
passes through or near various towns and cities in-
cluding Watford, Kings Langley, Hemel Hempstead,
Aylesbury, Solihull, Birmingham, West Bromwich,
Wolverhampton, Newport, Whitchurch, Chester and
Ellesmere Port.

From these supporting documents, we create the
Hyper-relational KG and further refine this graph
to retain query relevant facts (Section 4.2.2). Below
we report the same (blue colored text refers to the
additional attributes of the hyper triple, red colored
text refers to the subject entity, colored text
refers to the relation, and purple colored text refers
to the object entity).

Distilled Hyper-Relational KG:

e context: ‘Strawberry Park, Cheshire’
subject: ‘Strawberry Park’
relation: ‘is a suburb in’
object: ‘Ellesmere Port, Cheshire West’

* context: ‘Strawberry Park, Cheshire’
subject: ‘Strawberry Fields’
relation: ‘is a suburb in’
object: ‘Ellesmere Port, Cheshire West’

* context: ‘Strawberry Park, Cheshire’
subject: ‘Ellesmere Port’
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relation: ‘located in’
object: ‘Cheshire West and Chester’

context: ‘Strawberry Park, Cheshire’
subject: ‘Strawberry Park’

relation: ‘located to the south of’
object: ‘Hope Farm’

context: ‘Backford Cross’

subject: ‘Backford Cross’

relation: ‘is located in’

object: ‘Wirral Peninsula, Cheshire, England’

context: ‘A5117 road’

subject: ‘A5117’

relation: ‘connects’

object: ‘A550 at Woodbank to M56°

context: ‘A5117 road’
subject: ‘A5117’

relation: ‘forms a bypass to’
object: ‘Chester’

context: ‘A5117 road’

subject: ‘A5117’

relation: ‘forms a shorter route between’
object: ‘North West and North Wales’

context: ‘A5117 road’
subject: ‘A5117’

relation: ‘is dualled west of’
object: ‘M56’

context: ‘A5117 road’

subject: ‘A5117’

relation: ‘has a roundabout with’
object: ‘A540°

context: ‘A5117 road’

subject: ‘A5117’

relation: ‘has a roundabout at’
object: ‘Dunkirk’

context: ‘A5117 road’
subject: ‘A5117’

relation: ‘intersects’

object: ‘M53 at Junction 10’

context: ‘A5117 road’

subject: ‘M53’

relation: ‘is intersected by’
object: ‘A5117 at Junction 10’

context: ‘A4l road’

subject: ‘A41’

relation: ‘is a major trunk road in’
object: ‘England’



context: ‘A4l road’
subject: ‘A41’
relation: ‘links’

object: ‘London and Birkenhead’

context: ‘A4l road’
subject: ‘A41’

relation: ‘superseded by’
object: ‘motorways’

context: ‘A4l road’
subject: ‘A41’

relation: ‘passes through’
object: ‘Watford’

context: ‘A4l road’
subject: ‘A41’
relation: ‘passes near’
object: ‘Kings Langley’

context: ‘A4l road’
subject: ‘A41’

relation: ‘passes near’
object: ‘Hemel Hempstead’

context: ‘A4l road’
subject: ‘A41’
relation: ‘passes near’
object: ‘Aylesbury’

context: ‘A4l road’
subject: ‘A41’
relation: ‘passes near’
object: ‘Solihull’

context: ‘A4l road’
subject: ‘A41’

relation: ‘passes through’
object: ‘Birmingham’

context: ‘A4l road’
subject: ‘A41’

relation: ‘passes near’
object: ‘West Bromwich’

context: ‘A4l road’
subject: ‘A41’

relation: ‘passes near’
object: ‘Wolverhampton’

context: ‘A4l road’
subject: ‘A41’

relation: ‘passes through’
object: ‘Newport’

This distilled graph (after verbalization and proper
formatting (Section 4.2.3)) is provided as input,
along with the question, to the reader LLM. For this
example, we use the SOoTA, gpt-4-1106-preview
as the reader LLM. Below, we describe the LLMs
response which comprises of three things:

* Relevant facts set of hyper triples which the
LLM thought were important for the answer-
ing the question. These are verbalized hyper
triples as the input to the LLM was also ver-
balized hyper triples.

* Reasoning: LLMs thought process of going
from the distilled hyper-relational KG to the
final answer

* Final answer: answer predicted by the LLM.

Our Method’s Response

Relevant facts:

- Backford Cross is located around A41/A5117
junction (This fact was extracted from document
named "Backford Cross ")

- A4l is a major trunk road in England (This fact
was extracted from document named "A41 road ")

- A5117 is a road in Cheshire, England (This
fact was extracted from document named "A5117
road ")

Reasoning:

The question asks for a major truck road located
in Backford Cross. The fact that Backford Cross is
located around the A41/A5117 junction indicates
that these are the major roads in that area. The
A41 is specifically described as a major trunk road,
which fits the description of a “major truck road."
The A5117 is also mentioned as a road in Cheshire,
but it is not specified as a major trunk road. There-
fore, based on the information provided, the A41 is
the major truck road located in Backford Cross.

Final Answer:
A4l
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