
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12974–12990
August 11-16, 2024 ©2024 Association for Computational Linguistics

Learning to Decode Collaboratively with Multiple Language Models

Shannon Zejiang Shen Hunter Lang Bailin Wang Yoon Kim David Sontag
Massachusetts Institute of Technology

{zjshen, hjl, bailinw, yoonkim, dsontag}@mit.edu

Abstract

We propose a method to teach multiple large
language models (LLM) to collaborate by inter-
leaving their generations at the token level. We
model the decision of which LLM generates
the next token as a latent variable. By opti-
mizing the marginal likelihood of a training set
under our latent variable model, the base LLM
automatically learns when to generate itself and
when to call on one of the “assistant” language
models to generate, all without direct supervi-
sion. Token-level collaboration during decod-
ing allows for a fusion of each model’s exper-
tise in a manner tailored to the specific task at
hand. Our collaborative decoding is especially
useful in cross-domain settings where a gen-
eralist base LLM learns to invoke domain ex-
pert models. On instruction-following, domain-
specific QA, and reasoning tasks, we show that
the performance of the joint system exceeds
that of the individual models. Through qualita-
tive analysis of the learned latent decisions, we
show models trained with our method exhibit
several interesting collaboration patterns, e.g.,
template-filling.1

1 Introduction

Techniques that combine the generations of multi-
ple large language models (LLMs) at decoding time
have benefits ranging from faster decoding speed
(Leviathan et al., 2023), to more controllable gener-
ations (Liu et al., 2021; Yang and Klein, 2021), to
more coherent, less repetitive text (Li et al., 2023a),
and even enabling a large model to be “tuned” by
combining its generations with those of a smaller
model from the same family (Liu et al., 2024). A
parallel thread of work has aimed to equip language
models with the ability to infuse external tools into
their generations, with the goal of incorporating
outside knowledge and capabilities (Mialon et al.,
2023). Language models are able to produce more

1Code: https://github.com/clinicalml/co-llm

Figure 1: Example generations of our method, Co-LLM.
Top: the base model generates the answer template and
uses a larger LLAMA model to fill in factual knowledge;
Bottom: the base model uses a math-specialized model
as an “API” for computation. The assistant model gen-
erated the highlighted tokens because the base model
learned to defer generation at those locations.

faithful and accurate generations when equipped
with external APIs (Schick et al., 2023; Qin et al.,
2023; i.a.), search engines or retrievers (Izacard
et al., 2022; Asai et al., 2023; Nakano et al., 2021;
i.a.), or code executors (Gao et al., 2023; i.a.).

While powerful, these methods all require a
prescription on how to combine the models and
when to use the tools, either via specific formu-
las for combining the logits of multiple models,
or through (weak) supervision on where to insert
tool/API calls in the training data. In this work,
we explore a different type of model combination

12974

mailto:zjshen@mit.edu
https://github.com/clinicalml/co-llm

Figure 2: Illustration of the decoding procedure in Co-LLM, where a base (LLAMA-7B) and assistant model
(MEDITRON-70B) collaborate to generate a correct response for a medical question. For each token, the deferral
control predicts the probability of switching to the assistant model to decode the next token given the context: it
defers when the probability is above some threshold η (indicated by A), and uses the decoded token as the context
(highlighted with orange border). When using the base model alone, it may make factual mistakes (indicated by B);
Co-LLM learns to use the assistant model at these positions to produce correct generations.

where the models learn to interleave their genera-
tions token-by-token. Each token is generated by
one model, so the models collaborate to generate a
token sequence together. We represent the decision
of which LLM generates the next token as a latent
variable, assuming no direct supervision on the de-
cision of which model to use at each decoding step.
This enables an effective collaboration pattern for
a given task to be learned organically from data.

Figure 1 shows example generations from our
method, Co-LLM. In the top example, LLAMA-
7B collaborates with LLAMA-70B on instruction-
following by generating a list template for the an-
swer and then calling on LLAMA-70B to fill in each
element of the list. Using the larger model as an as-
sistant allows the smaller model to make effective
use of a larger knowledge base and focus its efforts
on learning the correct “scaffolding” for instruction
responses. In the bottom example, LLAMA-7B col-
laborates with LLEMMA-34B (a domain-specific
math model, Azerbayev et al., 2023) by treating
the latter as an API call to fill in parts of a LaTeX
formula. In both cases, the model predicts when to
call the assistant by itself, behavior it learns from
training without direct supervision on which con-
texts suit the assistant model well. This enables the
emergence of qualitatively different collaboration
methods (e.g., learning to scaffold, calling the large
model as an API) based on what the task demands.

Section 2 describes our latent-variable model for
collaboration during decoding, and Section 3 de-
scribes the training and decoding procedures for
Co-LLM in this model. In, Section 4, we evaluate
Co-LLM on instruction-following, mathematical
reasoning, and domain-specific question-answering
tasks. Our results indicate that teaching models
to collaborate improves performance across all of
these tasks compared to using the individual mod-

els alone, and can sometimes match or exceed the
performance of fine-tuning the large model. By us-
ing chain-of-thought reasoning (Wei et al., 2022),
Co-LLM can also be applied to classification tasks,
where our experiments show that it boosts perfor-
mance by enabling improved reasoning capabil-
ity. Our results show that Co-LLM is especially
useful in cross-domain settings where a generalist
base LLM learns to invoke domain expert models
and that Co-LLM can be effectively combined with
other ensemble models, such as Mixture of Experts
models (Shazeer et al., 2017).

2 Latent-Variable Framework for
Collaborative Generation

Given a set of LMs with different expertise or sizes,
we propose a latent-variable framework that en-
ables their collaboration in a cost-efficient way.
The framework centers around a finetunable base
model, which itself is a relatively small LM. It
decides which other assistant models (which are
typically larger and/or more specialized models)
to use per token. When the base model calls on
an assistant to generate the next token, we say it
defers generation for that token.

To generate a sequence of tokens (X1, . . . , XT),
we represent the choice of which model gener-
ates token Xt as a discrete latent variable Zt ∈
{0, 1, . . . ,M}, where i = 0 denotes the base
model, and i ∈ {1, . . . ,M} refers to the i-th of M
assistant models. We assume access to the condi-
tional distributions Pi(Xt|X<t), i ∈ {1, . . . ,M},
of the assistant models,2 and full access to the base
model. Using these distributions, we represent the

2Conditionals can be obtained via either locally deployed
models or remote API calls. At training time, we only require
access to the assistant model’s probability for the ground-truth
tokens, not the full conditional distribution.

12975

joint sequence-level likelihood as:

P (X,Z) =

T∏

t=1

(
Pθ(Zt|X<t)PZt

(Xt|X<t)
)

(1)

The (learned) categorical distribution Pθ models
the token-level discrete decision Zt. For efficiency,
each Zt is conditionally independent of Z<t given
X<t in our design. The latent variable Zt is de-
signed in the same spirit as the defer variable in
Mozannar and Sontag (2020) and classical Mixture-
of-Experts models (Jordan and Jacobs, 1994) or
ensemble models (Saunders et al., 2019).

Unsupervised Learning. In practice, the token
level decisions Zt are unknown, and collecting hu-
man annotation is not scalable. Our latent-variable
framework offers a natural way of handling the is-
sue with unsupervised learning. In particular, we
aim to optimize the following marginal likelihood,

P (X) =

T∏

t=1

(M∑

Zt=0

Pθ(Zt|X<t)PZt
(Xt|X<t)

)
, (2)

which can be computed efficiently during training
due to the conditional independence structure.

Collaborative Decoding. During inference time,
our goal is to find the best sequence X along with
the best decision Z on which assistant LM to use.

X̂, Ẑ = argmax
X,Z

P (X,Z) (3)

The exact argmax in Eq. (3) is intractable, so
we follow the common practice of using the
greedy strategy for decoding both Zt and Xt

in a token-by-token, autoregressive manner (see
Fig. 2 for an example). In greedy decoding,
for each token position, we first choose Ẑt =
argmaxZt

Pθ(Zt|X<t) to determine which model
to decode from, then decode greedily from that
model: X̂t = argmaxXt

P
Ẑt
(Xt|X<t). Com-

pared with standard greedy decoding for a single
LM, decoding in this model is performed in collab-
oration, coordinated by Pθ. An alternative strategy
to argmax decoding is to marginalize out Zt:

X̂t = argmax
Xt

∑

Zt

P
Zt
(Xt|X<t)Pθ(Zt|X<t)

which closely aligns with the marginal likelihood
training objective. However, this requires calling
all M + 1 models every token, slowing down de-
coding. Our empirical results show that greedily
choosing Zt based on Pθ(Zt|X<t) performs well
and enables interpretable collaboration, since each
token is generated by a single model.

Remark. The design of the collaborative decod-
ing is natural from the probabilistic modeling per-
spective, and in this work we mainly focus on im-
portant empirical questions: how should we pa-
rameterize Pθ so that it can be learned in a data-
efficient way; can the base model learn how to
cooperate with (larger or domain-specific) assistant
models with only access to conditional probabili-
ties (no internal hidden states or weights); and what
kind of collaboration pattern can be induced if the
collaboration is learned without supervision? The
latent-variable framework allows us to answer these
questions via the exposed interpretable variable Zt.

3 Co-LLM: Learning to Decode
Collaboratively with LMs

In this work, we focus on the basic case where
we only have one base model and one assistant
model. In this setting, the base model needs to
make a binary decision of whether to generate from
itself or defer to the assistant model, i.e., Zt ∈
{0, 1}. For clarity, we use Pbase and Passt to denote
the base and assistant model, respectively. In the
rest of this section, we explain our design for the
parameterization of the model selector, and the
training and inference procedure of the joint model.

3.1 Modeling Pθ(Zt|X<t)

Since we have full access to the base model, we
build Pθ on top of the base model for parameter ef-
ficiency. Specifically, we represent θ as a linear bi-
nary classification head in the last layer. Formally,
if ht(X<t) ∈ Rd is the base model’s last hidden
state at time step t for inputs X<t, and θ ∈ Rd is
the weight vector, we set:

Pθ(Zt|X<t) = σ(⟨θ, ht(X<t⟩),

where σ(·) is the sigmoid function. This introduces
only d new parameters to the base model, where d
is the base model’s hidden dimension size.

3.2 Training
Our training objective minimizes the negative log-
marginal likelihood −∑T

t=1 logP (Xt|X<t), where

P (Xt|X<t) =Pbase(Xt|X<t)Pθ(Zt = 0|X<t)+

Passt(Xt|X<t)Pθ(Zt = 1|X<t) (4)

is the likelihood of the next token after marginal-
izing out the latent variable Zt. The training pro-
cedure updates both θ and the base model parame-
ters; it requires the forward pass of both the base

12976

and assistant model to obtain next-token probabili-
ties, and the backward pass of the base model for
gradient computation. This implies that any com-
mercial LLMs or locally deployed LMs exposing
next-probability output can be used as the assistant
LMs. The marginal likelihood aligns well with the
typical pretrained objective of maximizing the next-
token probs. Moreover, offloading “difficult tokens”
can potentially alleviate hallucination issues of the
base model, thus leading to better generalization
even without much help from the assistant model,
as we will show in the experiments.

Initialization of θ. In our experiments, we found
that appropriately initializing θ helps encourage the
base LM to quickly switch from generating by itself
to generating collaboratively. Instead of collecting
direct supervision for Zt values to initialize θ, we
use weak supervision to collect initial Zt values,
use these pseudolabels to initialize the parameters
θ, then allow the Zt’s to change during the training
procedure.

Intuitively, the prime location for Zt = 1 is when
the assistant model correctly predicts the target
token Xt but the base model does not. To that end,
we set the pseudolabels for Zt as:

Ẑt := 1[Xt = argmaxv∈V Passt(v|X<t)∧
Xt ̸= argmaxv∈V Pbase(v|X<t)], (5)

and initialize the d parameters θ by maximizing
the likelihood of logPθ(Ẑt|X<t) while holding the
rest of the base model fixed. In our experiments,
we compare to a baseline that combines this initial-
ization with the usual language-model fine-tuning
loss; our results show that the marginal likelihood
objective leads to better performance by enabling
the base model to learn better Zt values from data
(see ablation results in Section 5.2).

3.3 Decoding
In initial experiments, we found that performance
of the joint model is sensitive to the choice of Zt;
due to the exposure of Zt in our latent-variable
framework, we can impose extra priors over Zt

for better performance. Specifically, we follow
the general greedy decoding strategy, and set a
threshold η for decoding Zt:

Ẑt = 1[Pθ(Zt = 1|X<t) > η], (6)

which means that when Pθ(Zt = 1) > η, we exe-
cute the assistant model to predict the next token.

The hyperparameter η is picked via grid search on
a small validation set per dataset. The choice of
threshold for the decoding probability also allows
for inference-time control over the amount of col-
laboration, in contrast with other approaches such
as DExperts (Liu et al., 2021), and our performance
degrades gracefully as the threshold increases.

4 Experimental Setup

In our experiments, we fine-tune models for spe-
cific tasks and we test the models in-domain,
comparing the end-task performance between Co-
LLM and multiple single- or multi-model baselines.
We test on 4 datasets ranging from instruction-
following to solving expert problems, trying to un-
derstand when and how model collaboration can
be beneficial. We investigate the collaboration be-
tween different models (e.g., between Llama mod-
els of multiple scales, and between models fine-
tuned on different domains). Overall, we find that
Co-LLM can learn a successful collaboration be-
tween different base and reference models, leading
to better results than tuning base models alone.

Models Used. Our primary experiments are con-
cerned with whether smaller models can collab-
orate with expert models that have been special-
ized to different domains. In Section 5.1, we ex-
periment with collaboration between the finetuned
LLAMA-7B and the LLEMMA family (Azerbayev
et al., 2023, finetuned for math and reasoning), as
well as the MEDITRON family (Chen et al., 2023,
finetuned for biomedicine). It is also possible to
use differently-sized models from the same family
with Co-LLM: in Section 5.2 we experiment with
the 7B and the 70B model from the same LLAMA-
2 family (Touvron et al., 2023) as the base and
assistant model, respectively.

Datasets. We train on the full Tülu v2 mix
data (Wang et al., 2023) for instruction fol-
lowing, GSM8k (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), each with 7.5k
samples, for reasoning and math problem solving,
and the BioASQ (Tsatsaronis et al., 2015) (4.7k
samples) for medical question answering. We train
and test the model on the corresponding data and
evaluation suites separately.

Evaluation. We only compare greedy decoding
results for all models, as they are commonly used
in real-world applications. We evaluate the instruc-
tion following model using the AlpacaEval (Li

12977

et al., 2023b) benchmark; we use the GPT-4 anno-
tator and compute the win rate of the testing model
as judged by GPT-4-0613 when compared to the
outputs produced by Davinci-003. For GSM8k,
following Wang et al. (2023),we extract the last
numerical answer from the model’s output, and cal-
culate the exact match of the model prediction on
a 200-example subset of the test set. The MATH
dataset provides 5 levels of math problems from 7
categories: similar to Wu et al. (2023), we skip the
geometry category since it largely relies on Asymp-
tote code, and sample 25 questions per level per
category for evaluation, resulting in a 750-example
subset. We adopt the prompting and evaluation
code from Azerbayev et al. (2023) and Lewkowycz
et al. (2022), extracting the last generated math af-
ter “The answer is”. 3 The BioASQ comes with
330 test examples of 4 categories: factoid, list, sum-
mary, and yes/no questions, evaluated using strict
accuracy (SAcc.), F1, accuracy (Acc.), and Rouge-
2 (R2). We test on 310 examples (saving 20 for
validation) and reimplement the evaluation code.4

4.1 Baselines

Single models. The performance of the base and
assistant models can inform whether the learned
collaboration is beneficial. We report 0-shot perfor-
mance of the original untuned models and their fine-
tuned counterparts. The same data and hyperparam-
eters are used for model finetuning; for 70B models,
we fine-tune using QLoRA (Dettmers et al., 2023)
with the hyperparameters in Appendix A.

Other collaborative models. We use two collab-
orative strategies from the literature. Contrastive
Decoding (Li et al., 2022b; O’Brien and Lewis,
2023, CD) combines the output of the untuned “ex-
pert” (e.g., a 70B model) and “amateur” (e.g., a
7B model) models by subtracting their logits and
sampling from the resulting distribution. We follow
the setup in O’Brien and Lewis (2023), setting the
same α = 0.1 and β = 0.5, and use unmodified
LLAMA-70B as the expert model and LLAMA-7B
as the amateur model.5 Proxy Tuning (Liu et al.,
2024, PT) proposes to approximate finetuning a
(large) base model M by composing the outputs

3We use greedy decoding for GSM8k and MATH; some
literature refers to this as “maj@1”.

4See details in Appendix A.
5In their paper, O’Brien and Lewis (2023) use a 1.5B

parameter amateur model; as this model is not released, we
use the 7B model instead. Different from their paper, we use
0- or 1-shot prompting in congruence with our other results.

of smaller expert M+ and anti-expert models M−

with M. We include CD and PT results as ways to
enhance untuned models and to simulate finetun-
ing 70B models, respectively. Both CD/PT require
calling the smaller and larger models at each time
step. In contrast, Co-LLM may generate multiple
tokens from the base model before calling the large
model, which can be seen as a form of speculative
decoding (Leviathan et al., 2023). For example,
for a sequence of length L, Proxy Tuning makes
L calls6 to the large model and 2L calls to the
small model, whereas Co-LLM makes fL calls to
the large (assistant) model and L calls to the small
(base) model, where 0 ≤ f ≤ 1 is the empirical
frequency of deferral, the percent of Zt = 1 tokens.

Ablated Co-LLM. We consider different variants
of Co-LLM to verify the necessity of a learned
model selector Pθ. First, we consider two simple
heuristics as model selectors: Co-LLM-Random
randomly chooses the base or the assistant model to
produce a token with probability p = 0.5; Co-LLM-
Greedy runs both models in parallel for each token
and selects the token with the higher probability
from either model. This is a strong baseline since
it requires observing next-token probabilities from
both models at every decoding step. Similar to
our default setting, the base model is finetuned on
target datasets while the assistant model is frozen.

Weakly-supervised Co-LLM. Finally, we con-
sider a different weakly supervised training pro-
cedure for Co-LLM. This baseline is inspired by
the process used to derive tool-use labels in Tool-
former (Schick et al., 2023): the weak supervision
for when to call the tool is chosen and fixed before
updating the language model parameters. Specifi-
cally, the training procedure is two-stage: first, we
collect pseudo-labels Ẑt using Eq. (5). Second, we
jointly train Pθ(Zt|X<t) and the base model by op-
timizing the weighted sum of logP (Ẑt|X<t) and
the usual language modeling loss. This trains the
base model to defer to the assistant when Ẑt = 1
while also fine-tuning it on the full training set.
In contrast, our marginal likelihood training Sec-
tion 3.2 only uses the Ẑt values to initialize θ and
allows the Zt values to evolve during training.

6Here each “call” corresponds to a token-level decoding
step, which is a sensible unit with which to measure inference
latency as the context encoding portion can be easily paral-
lelized and thus grows slowly with respect to context length
in small batch regimes.

12978

Math and reasoning tasks GSM MATH

LLEMMA-7B 4.0 2.0
LLEMMA-34B 14.5 6.3
Finetuned LLAMA-7B 34.5 7.6
Finetuned LLAMA-70B (QLoRA) 52.5 11.7

PT (LLEMMA-34B + LLAMA-7B) 30.0 20.9
PT (LLEMMA-34B + LLEMMA-7B) 58.5 23.7

Co-LLM-7B + LLEMMA-7B 40.0 17.2
Co-LLM-7B + LLEMMA-34B 43.5 24.5

BioASQ tasks Factoid List Yes/No Summ. Avg.

MEDITRON-7B 0.00 2.7 70.4 18.6 22.9
MEDITRON-70B 17.2 16.1 80.2 21.1 33.7
Finetuned LLAMA-7B 23.7 13.8 76.5 18.1 33.0
Finetuned LLAMA-70B (QLoRA) 24.7 20.7 75.3 21.1 35.5

PT (MEDITRON-70B + LLAMA-7B) 26.9 10.7 80.2 7.3 31.3
PT (MEDITRON-70B + MEDITRON-7B) 26.9 23.5 82.7 11.0 35.6

Co-LLM-7B + MEDITRON-7B 17.2 16.0 72.8 19.8 31.4
Co-LLM-7B + MEDITRON-70B 21.5 18.6 81.5 20.6 35.6

Table 1: Co-LLM enables collaboration between models trained on different domains: using the expert model trained
for the domain (e.g., LLEMMA for math and reasoning, and MEDITRON for biomedical tasks) during decoding
boosts performance compared to the fine-tuned base model, and sometimes performs even better than fine-tuned
LLAMA-70B. Proxy Tuning (Liu et al., 2024, PT) only performs well when all three of its component models
(M,M+, M−) are pretrained on the same domain mix.

5 Results

5.1 Collaboration across domains

Table 1 shows that Co-LLM enables collabora-
tion between LLAMA and domain-specific mod-
els and that this collaboration improves perfor-
mance compared to the individual models them-
selves. For example, being able to utilize LLEMMA

as an assistant leads to improved performances on
math and reasoning tasks. On the MATH dataset,
even invoking a small, 7B-scale LLEMMA assistant
(17.2) outperforms fine-tuned LLAMA-7B (7.6),
fine-tuned LLAMA-70B (11.7), and LLEMMA-34B
(6.3). Similarly, cooperation with MEDITRON mod-
els leads to performance gains on some BioASQ
subtasks (e.g., List, Summary), and outperforms
fine-tuned LLAMA-7B, fine-tuned LLAMA-70B,
and base MEDITRON-70B on average.

In addition, Co-LLM with LLAMA-7B and
LLEMMA-34B can achieve similar performance
as fine-tuned LLEMMA-7B, which scores 43.5 on
GSM8k and 23.5 on MATH. Co-LLM allows the
base 7b model access to collaborate with a domain
expert (LLEMMA-34B), which surprisingly leads to
similar performance as performing a large amount
of domain-specific fine-tuning plus further task-
specific fine-tuning on the base model (finetuned
LLEMMA-7b).

These results suggest that Co-LLM enables a
modular approach to continued pretraining and
task-specific finetuning: one can pretrain a large
model on a domain-specific corpus, then fine-tune
smaller models with Co-LLM to leverage the knowl-
edge from the larger models and attain improved
performance on the downstream tasks.

Comparison against Proxy Tuning. While PT
and our work are differently motivated and con-

structed, they both leverage multiple models during
generation. Table 1 also provides an in-depth com-
parison between the two methods in the context of
combining models from different domains. PT only
performs well when all three models (M,M+,
M−) are pretrained on the same domain mix (com-
pare, e.g. “LLEMMA + LLAMA” to “LLEMMA +
LLEMMA”). This is due to the implicit assumption
that the difference between the base model M and
a hypothetical, tuned version of the base model
is the same as the difference between the smaller
expert M+ and the anti-expert M−. Our results
show that Co-LLM is more effective at enabling
collaboration between models from different do-
mains. PT also requires more calls to the larger
model, thus resulting in slower inference. Co-LLM

makes fewer calls to both large and small models.
In the following section, we show that in addition

to enabling collaboration across domains, Co-LLM

also allows collaboration across model scales.

5.2 Collaboration across scales
Table 2 shows that using Co-LLM leads to a suc-
cessful collaboration between the base and assis-
tant models of different sizes within the LLAMA

family. In particular, compared to using the (fine-
tuned) base model LLAMA-7B alone, Co-LLM-
7B + LLAMA-70B, which occasionally calls the
unmodified assistant model during decoding, con-
sistently achieves significantly better performance
across all tasks and datasets (2.6, 10.5, 7.5, and
3.3 absolute improvements for the 4 datasets, re-
spectively). Co-LLM is sometimes better than the
QLoRA finetuned assistant model (on MATH and
BioASQ), suggesting that our method can effec-
tively combine the best of the models and achieve
better performance than the “sum” of their parts.
Training with Co-LLM does not hurt the perfor-

12979

AlpacaEval GSM MATH BioASQa

(% Win) (Acc.) (EM) Factoid (SAcc.) List (F1) Yes/No (Acc.) Summ. (R2) Avg.

U
nt

un
ed LLAMA-7B - 7.0 0.3 4.3 4.9 71.6 17.2 24.5

LLAMA-70B 11.6 13.5 2.1 11.8 14.9 77.8 18.6 30.8
LLAMA-70B+7B (CD) - 11.5 1.3 11.8 9.0 71.6 17.5 27.5

Fi
ne

tu
ne

d LLAMA-7B (Finetuned) 69.3 34.5 7.6 23.7 13.8 76.5 18.1 33.0
LLAMA-70B (QLoRA) 78.6b 52.5 11.7 24.7 20.7 75.3 21.1 35.5
LLAMA-70B+7B (PT) 72.3 52.5 17.3 29.0 16.8 85.2 21.3 38.1

C
ol

la
bo

ra
tio

n CO-Random 46.3 17.0 6.1 6.5 1.9 30.9 17.5 14.3
CO-Greedy 64.1 38.0 8.1 29.0 16.6 76.5 20.2 35.6
Weak Supervision 56.7 40.0 12.3 22.6 14.6 80.2 17.5 33.7
Co-LLM-7B (Base Only) 70.6 33.0 6.4 20.4 11.2 79.0 18.1 32.2
Co-LLM-7B + LLAMA-70B 71.9 45.0 15.1 24.7 18.0 82.7 20.4 36.5

a For BioASQ, we use 1-shot prompting for LLAMA-7B, -70B, and CD experiments to inform the model of the output format.
b We report the results obtained by Ivison et al. (2023) in Table 5.

Table 2: Results of using Co-LLM for LLAMA models of different sizes. Occasionally7 calling the Llama-70B
model to generate a few tokens, Co-LLM-7B is able to significantly outperform the finetuned Llama-7B model in all
tasks, and sometimes even performs better than the QLoRA-finetuned Llama-70B model.

Math and reasoning tasks GSM MATH

MISTRAL-7B 21.5 7.2
MIXTRAL-8×7B (MoE) 38.5 16.2
Finetuned MISTRAL-7B 51.0 13.9

Co-LLM MISTRAL-7B + MIXTRAL-8×7B 57.0 20.0

Table 3: Co-LLM can be applied among models of differ-
ent architectures like a dense LLM (MISTRAL-7B) and
a sparse Mixture of Experts (MoE) model (MIXTRAL-
8×7B). The learned collaboration leads to strong perfor-
mance improvements on both GSM and MATH tasks.

mance of the base model: when we prohibit using
the assistant model during inference, performance
is comparable to the base model finetuned with the
usual language modeling objective (LLAMA-7B
(Finetuned)): for example, getting 33.0 and 6.4 for
GSM8k and MATH, respectively. Co-LLM thus
degrades gracefully as the amount of deferral is
changed, which we explore further in §5.4.

Comparing with the model collaboration base-
lines, we show that interleaving two model gen-
erations is not a trivial task: randomly switching
between the two models lead to worse than single-
model performances in Co-LLM-Random. Even if
running two models in parallel, Co-LLM-Greedy
does not consistently yield better performance than
using either model alone, and in some cases, they
are worse (e.g., in the case of GSM8k). As dis-
cussed in Section 5.1, Proxy Tuning performs very
well when used with models of different sizes in
the same family, but Co-LLM also performs well
despite using far fewer calls to the language models.

Finally, the Toolformer-style baseline with fixed,
weakly supervised values of Zt leads to overall
worse performance compared to Co-LLM, indicat-
ing the benefits of our latent variable formulation
and marginal likelihood loss, which allow the best
deferral patterns to be learned from data.

5.3 Collaboration across architectures

Since Co-LLM only assumes access to token log-
probs, it can easily be used for collaboration be-
tween models of different architectures. For exam-
ple, Table 3 shows that Co-LLM can be adopted to
collaborate between a dense model (MISTRAL-7B)
and a sparse MoE model (MIXTRAL-8×7B), and
the joint model achieves strong accuracy gains com-
pared to either the finetuned MISTRAL-7B model
or the MIXTRAL-8×7B model. These results indi-
cate that Co-LLM is still useful when used together
with other model combination methods like MoE.

5.4 Qualitative Analysis

The exposure of the interpretable variable Zt in our
latent-variable framework makes it easy to visual-
ize the model composition patterns. As shown in
Figs. 1 and 2, our unsupervised training can induce
an interesting template-filling collaboration strat-
egy: the base model learns to generate a template
with slots that requires deeper knowledge (in ques-
tion answering) or reasoning (in math problems)
for assistant models to fill in. Table 4 further illus-
trates how the collaboration between the assistant

7See Section 5.4 for a detailed analysis of the frequency
of invoking the assistant model and the end performance.

12980

Deferral frequency f = 0 f = 0.3 f = 0.4 f = 0.9 f = 1.0

We have a3 = 53 = 125,
and a2 = 52 = 25, so
a3 ·a2 = 125 . The final
answer is 125.

We have a 3 = 53 =

125, and a2 = 52 =

25, so a 3 ·a2 = 3000 .
The final answer is 3000.

We have a 3 = 53 =

125, and a2 = 52 =

25, so a 3 ·a2 = 3125 .
The final answer is 3125.

We can use the power
rule to simplify this
expression. We have that
a3 · a2 = a3+2 = a5.
Now we can substitute
a = 5 to get 55 = 3125.
Therefore, the final

answer is 3125 . The
final answer is 3125.

1 Given a mathemat-
ics problem, determine
the answer. Simplify your
answer as much as possi-
ble. You can use latex to
format your answer and
you should state your fi-
nal answer as "The fi-
nal answer is $(final - an-
swer)$." Problem:

Table 4: Model answers with different rates of deferral to the question “Evaluate the expression a3 · a2 if a = 5”
(answer: 3125). In this example, we use the finetuned LLAMA-7B as the base model and LLEMMA-34B model as
the assistant. We show the 0-shot model answers at different deferral frequencies f , with yellow background to
indicate the token is produced by the assistant model.

0 20 40 60 80 100

f - Deferral Frequency

0
10

20
30

40
50

A
cc

u
ra

cy

GSM8k (Validation)

Asst. Llama 70B

Asst. Llemma 7B

Asst. Llemma 34B

Figure 3: Performance of Co-LLM at different frequen-
cies of deferral on GSM8k. There exists an optimal f
that the joint model achieves better performance than
using either of them alone. Similar trend is observed in
MATH and BioASQ, shown in Fig. 4 in Appendix.

(LLEMMA-34B) and base (fine-tuned LLAMA-7B)
model leads to correct responses while either model
alone fails to do so. When the base model is tasked
to solve the math question alone (i.e, deferral fre-
quency f = 0), it fails to produce a valid answer,
generating 125 rather than 3125. As we increase
the frequency of deferral by lowering the threshold
η, we observe Co-LLM starts to invoke the assistant
model to generate latex code and compute the re-
sults, and when f = 0.4, the joint model produces
the correct answer. More deferral in this case does
not yield better generations. When we fully rely on
the assistant model (f = 1), since it is not tuned or
aligned, it produces no helpful solutions.

We also evaluate the joint model at different
deferral frequencies on small validation sets for
GSM8k, MATH, and BioASQ, and plot the results
in Fig. 3 and Fig. 4 in the Appendix. Across differ-
ent domains and scales, the models exhibit a sim-
ilar concave performance curve: at some optimal
deferral frequencies, the joint model can achieve

better performance than using either of the mod-
els alone, with decreased performance at both ex-
tremes. The optima vary across different datasets,
corresponding to the different patterns of invoking
assistant models (e.g., API-call or “leading” style).
In practice, one can pick the proper η to balance
the accuracy and the efficiency/cost.

6 Related Work

Learning to compose models. Composing ex-
pert models has been a recurring strategy to im-
prove large models, and the way of composing
expert models is largely related to the underlying
learning settings. Mixture of Experts (Shazeer
et al., 2017; Jiang et al., 2024; Dai et al., 2024;
Xue et al., 2024, MoE) requires that all experts
are trained simultaneously using the same data. In
contrast, post-hoc methods assume the presence
of pretrained language models but usually pose
implicit constraints on the model families to com-
pose. Proxy Tuning (Liu et al., 2024, 2021) works
best when all models are all pretrained on the same
data mixture; PHATGOOSE (Muqeeth et al., 2024)
requires that all models are LoRA-finetuned (Hu
et al., 2021) models; Contrastive Decoding (Li
et al., 2022b, CD) requires an amateur model,
which is not clear for tasks such as math reasoning.
Co-LLM is more flexible, mainly because our base
model learns to interact with assistant models in-
stead of relying on prescribed strategies. Our exper-
iments also indicate that Proxy Tuning (concurrent
work) only performs well when all models are pre-
trained in the same domain, whereas Co-LLM can
effectively combine general and domain-specific
models. Compared to CD and Proxy Tuning, Co-
LLM also makes fewer calls to the language models
at inference time, as described in Section 4.1.

12981

Perhaps most similar to our work are speculative
decoding (Leviathan et al., 2023) and CombLM
(Ormazabal et al., 2023). Like our approach, specu-
lative decoding generates some tokens with one
model and some tokens with another, but our
method differs in that the goal is to improve gen-
eration quality rather than to sample more quickly
from a large model by approximating its genera-
tions with a smaller one. CombLM also learns to
combine the probability distributions of multiple
models, but their combination is not time-varying,
and they mainly demonstrate wins on perplexity.

Our approach could be seen as a special case of
Toolformer (Schick et al., 2023), where the assis-
tant model is the tool/API called by the base model.
However, our latent variable formulation allows
fine-grained deferral decisions to evolve over the
course of fine-tuning, whereas Toolformer derives
a fixed dataset prescribing which tool gets called
(and where) before training. Co-LLM enables vary-
ing the frequency of calling the assistant model,
whereas Toolformer has no provision for flexibly
adjusting the amount of tool use at inference time.

Is this just Mixture of Experts? In Mixture of
Experts (MoE) LLMs (Zhou et al., 2022; Li et al.,
2022a; Jiang et al., 2024; Xue et al., 2024; Dai
et al., 2024), the goal is to train a model that can be
partially executed during inference time. A com-
mon choice in MoEs is to decompose FFN layers
(feed forward network) in a transformer into modu-
lar “experts”. These experts are subnetworks—they
cannot be used standalone, and the experts are typ-
ically expected to have the same size (parameter
count). MoE also requires gradient access to all
experts and assumes every expert has access to the
same training data.

In contrast, we aim to learn how to collaborate
with existing off-the-shelf models. First, we do not
assume gradient access to assistant models, and
we only fine-tune the base model. This saves in
training cost, but poses a more difficult learning
problem, since we only assume access to logprobs
from the assistant model. Co-LLM is able to learn
effective collaboration patterns between models de-
spite this limited access to the assistants. Second,
because of our less restrictive assumptions on assis-
tant model access and architecture, Co-LLM can be
applied in more constrained scenarios. For exam-
ple, Co-LLM can still be applied when the assistant
is trained on proprietary data (e.g., due to copyright
issues (Duetting et al., 2023)). Third, our framing

allows flexible collaboration between models of
different sizes or even architectures. Table 3 shows
performance gains from combining a dense model
with an MoE model using Co-LLM, indicating that
the gains are orthogonal to MoE. Finally, in our ap-
proach, each “expert” is a full-fledged LLM rather
than a sub-network. This allows for interpretable
generation patterns (as illustrated in Figs. 1 and 2),
as well as flexible inference-time tradeoffs between
how much each model is used (e.g., in Table 4, we
show Co-LLM can work well at different frequen-
cies of deferral).

Learning to defer. A large body of literature fo-
cuses on the related problems of prediction with
rejection (Cortes et al., 2016), where the goal is
to train a model that can predict on some inputs
and decline to predict on others, and learning with
deferral (Mozannar and Sontag, 2020; Mozannar
et al., 2023), where the goal is to train a model to
make predictions on some inputs and defer to a hu-
man expert on others. Mohri et al. (2023) combine
prediction with example-level rejection and LLMs
on the text decontextualization problem. We use a
latent variable formulation inspired by Mozannar
et al. (2023), initially developed for learning to de-
fer to a human expert on classification problems.
We replace the human expert with a fixed LLM
assistant model and extend the loss to allow for
token-level rather than sequence-level deferral.

7 Conclusion

We propose Co-LLM, a latent variable approach
that learns to collaboratively decode using multiple
LMs. Co-LLM can interleave token generations
from different LMs in patterns most suitable for
the task at hand (e.g., scaffolding the generation,
or using the other model like an API), and learns
the collaboration pattern organically from data. We
empirically show that Co-LLM can produce gen-
erations of better quality compared to using either
of the models alone, in tasks ranging from math
reasoning, medical question answering, and instruc-
tion following. The latent “defer” variable offers
a flexible and interpretable way for adjusting the
frequency for invoking other LMs at inference time
without re-training. In the future, we plan to ex-
tend Co-LLM to integrate more than two LMs and
investigate potentially more complex collaboration
strategies emerging from this setting.

12982

Limitations

As shown in Fig. 4 and Table 6 of the Appendix,
the optimal deferral threshold may be different
across different datasets and models. Co-LLM thus
requires picking the deferral threshold per task,
which can be inconvenient in practice. However,
the threshold also enables inference-time control
over the amount of collaboration. Second, not ev-
ery deferral matters: for some positions, the assis-
tant model may generate an identical token as the
base model does. This suggests the development
of more fine-grained control of deferral strategies,
potentially via more sophisticated modeling of de-
ferral model parameters θ.

Another limitation in our method comes from
fully relying on an assistant model at some point
in decoding. For example, if the assistant model is
not well-tuned or aligned, it may unintentionally
break the generation due to occasional mistakes.
As shown in the example below, one erroneous
token might lead to a cascade of errors, causing
repetition patterns or generating irrelevant content.
One future work is to develop a more robust de-
ferral strategy that allows backtracking when the
assistant model fails to generate a proper response.
Here’s a recipe for Kubdari, a traditional
Georgian dish:
Ingredients:
* 1 lb ground beef
* 1 onion, finely cho pped
* 2 cloves garlic, minced
* 1 cup chopped parsley
* 1 cup chopped cilantro
* 1 cup chopped dill
* 1 cup chopped ...

[...repeating the same pattern...]

Acknowledgements

SS and DS were supported by the National Science
Foundation (NSF award no. IIS-2205320 Concep-
tualizing ML for Dynamic Information Retrieval
of EHR Notes). HL was funded by an NDSEG
fellowship. BW and YK were partially supported
by MIT-IBM Watson AI and an Amazon award.
We thank CloudBank (Norman et al., 2021) for
supplying computational resources, which is sup-
ported by the National Science Foundation under
award #1925001. And thanks to Jacob Andreas,
Lucas Torroba Hennigen, Hussein Mozannar, Ilker
Demirel, Andreas Haupt, Tiwalayo Eisape, Alex
Gu, Ruochen Zhang, and Doug Downey for feed-
back on the draft of this paper.

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.
2023. Llemma: An open language model for mathe-
matics.

Zeming Chen, Alejandro Hernández Cano, Angelika
Romanou, Antoine Bonnet, Kyle Matoba, Francesco
Salvi, Matteo Pagliardini, Simin Fan, Andreas
Köpf, Amirkeivan Mohtashami, Alexandre Sallinen,
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,
Deniz Bayazit, Axel Marmet, Syrielle Montariol,
Mary-Anne Hartley, Martin Jaggi, and Antoine
Bosselut. 2023. Meditron-70b: Scaling medical pre-
training for large language models.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri.
2016. Learning with rejection. In Algorithmic Learn-
ing Theory: 27th International Conference, ALT
2016, Bari, Italy, October 19-21, 2016, Proceedings
27, pages 67–82. Springer.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Yu Wu, Zhenda Xie, Y. K. Li, Panpan
Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wen-
feng Liang. 2024. Deepseekmoe: Towards ultimate
expert specialization in mixture-of-experts language
models. ArXiv, abs/2401.06066.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Paul Duetting, Vahab Mirrokni, Renato Paes Leme,
Haifeng Xu, and Song Zuo. 2023. Mechanism
design for large language models. arXiv preprint
arXiv:2310.10826.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset.

12983

http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2311.16079
http://arxiv.org/abs/2311.16079
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2307.08691
http://arxiv.org/abs/2307.08691
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Belt-
agy, and Hannaneh Hajishirzi. 2023. Camels in a
changing climate: Enhancing lm adaptation with tulu
2.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-
cas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2022. Few-shot learning with re-
trieval augmented language models. arXiv preprint
arXiv:2208.03299.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Michael I Jordan and Robert A Jacobs. 1994. Hierarchi-
cal mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214.

Anastasia Krithara, Anastasios Nentidis, Konstantinos
Bougiatiotis, and Georgios Paliouras. 2023. Bioasq-
qa: A manually curated corpus for biomedical ques-
tion answering. Scientific Data, 10(1):170.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. 2022. Solving quantita-
tive reasoning problems with language models.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A. Smith, and Luke Zettle-
moyer. 2022a. Branch-train-merge: Embarrassingly
parallel training of expert language models.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and M. Lewis. 2022b. Contrastive decoding:
Open-ended text generation as optimization. pages
12286–12312.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2023a. Contrastive decod-
ing: Open-ended text generation as optimization. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 12286–12312, Toronto, Canada.
Association for Computational Linguistics.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia
Tsvetkov, Yejin Choi, and Noah A. Smith. 2024. Tun-
ing language models by proxy.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6691–6706, Online. Association for Computational
Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language mod-
els: a survey.

Christopher Mohri, Daniel Andor, Eunsol Choi, and
Michael Collins. 2023. Learning to reject with a
fixed predictor: Application to decontextualization.
arXiv preprint arXiv:2301.09044.

Hussein Mozannar, Hunter Lang, Dennis Wei, Prasanna
Sattigeri, Subhro Das, and David Sontag. 2023. Who
should predict? exact algorithms for learning to defer
to humans. In International Conference on Artifi-
cial Intelligence and Statistics, pages 10520–10545.
PMLR.

Hussein Mozannar and David Sontag. 2020. Consistent
estimators for learning to defer to an expert. In In-
ternational Conference on Machine Learning, pages
7076–7087. PMLR.

Mohammed Muqeeth, Haokun Liu, Yufan Liu, and
Colin Raffel. 2024. Learning to route among spe-
cialized experts for zero-shot generalization. arXiv
preprint arXiv:2402.05859.

12984

http://arxiv.org/abs/2311.10702
http://arxiv.org/abs/2311.10702
http://arxiv.org/abs/2311.10702
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2208.03306
http://arxiv.org/abs/2208.03306
https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/2023.acl-long.687
https://github.com/tatsu-lab/alpaca_eval
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2401.08565
http://arxiv.org/abs/2401.08565
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2302.07842

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Michael Norman, Vince Kellen, Shava Smallen, Brian
DeMeulle, Shawn Strande, Ed Lazowska, Naomi
Alterman, Rob Fatland, Sarah Stone, Amanda Tan,
et al. 2021. Cloudbank: Managed services to sim-
plify cloud access for computer science research and
education. In Practice and Experience in Advanced
Research Computing, pages 1–4.

Sean O’Brien and Mike Lewis. 2023. Contrastive de-
coding improves reasoning in large language models.

Aitor Ormazabal, Mikel Artetxe, and Eneko Agirre.
2023. Comblm: Adapting black-box language mod-
els through small fine-tuned models. arXiv preprint
arXiv:2305.16876.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Danielle Saunders, Felix Stahlberg, A. Gispert, and
B. Byrne. 2019. Domain adaptive inference for neu-
ral machine translation. ArXiv, abs/1906.00408.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, D. Bikel, Lukas Blecher, Cristian Cantón
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal,
A. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Is-
abel M. Kloumann, A. Korenev, Punit Singh Koura,

Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, R. Subramanian,
Xia Tan, Binh Tang, Ross Taylor, Adina Williams,
Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kam-
badur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. 2023.
Llama 2: Open foundation and fine-tuned chat mod-
els. ArXiv, abs/2307.09288.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq large-scale
biomedical semantic indexing and question answer-
ing competition. BMC bioinformatics, 16(1):1–28.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hanna Hajishirzi. 2023. How far can
camels go? exploring the state of instruction tuning
on open resources. ArXiv, abs/2306.04751.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li,
Erkang Zhu, Yue Wang, Yin Tat Lee, Richard Peng,
Qingyun Wu, and Chi Wang. 2023. An empirical
study on challenging math problem solving with gpt-
4.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zang-
wei Zheng, Wangchunshu Zhou, and Yang You.
2024. Openmoe: An early effort on open mixture-of-
experts language models. ArXiv, abs/2402.01739.

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535, Online. Association for Computational
Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew Dai, Zhifeng Chen,
Quoc Le, and James Laudon. 2022. Mixture-of-
experts with expert choice routing.

12985

http://arxiv.org/abs/2309.09117
http://arxiv.org/abs/2309.09117
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2306.01337
http://arxiv.org/abs/2306.01337
http://arxiv.org/abs/2306.01337
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
http://arxiv.org/abs/2202.09368
http://arxiv.org/abs/2202.09368

A Additional Experimental Details

A.1 Model Training and Computation

Training details. In our experiments, we finetune
the base model and learn the latent variable parame-
ters θ jointly: i.e., we optimize both the “base” and
θ parameters by optimizing the marginal likelihood
from Eq. (4) with AdamW (Loshchilov and Hutter,
2018). We train our models primarily using 4 A100
80G GPUs, and we use FlashAttention (Dao, 2023)
and DeepSpeed ZeRO Stage 2 (Rasley et al., 2020)
during training to reduce the GPU memory usage.

We follow Ivison et al. (2023) and Liu et al.
(2024), using similar hyperparameters and settings
detailed in Table 5. In all training experiments, we
compute the marginal likelihood loss on only target
tokens (i.e., we mask out the input tokens). It takes
around 2 hours to finish the finetuning experiments
for GSM8k, and we estimate a total of 3,000 GPU
hours used for all experiments.

Datasets and prompts. Table 8 details the sizes
of the training and evaluation datasets. We format
the data using the same simple prompts during
training and evaluation, with examples shown in
Table 11.

Model and data licenses. We use three different
LLMs in our experiments, i.e., LLAMA (Touvron
et al., 2023), LLEMMA (Azerbayev et al., 2023),
and MEDITRON (Chen et al., 2023), and they all
share the same LLaMA 2 community license.8 The
licenses for the dataset are listed in Table 9.

Threshold search. For all methods with a learn-
able model selector (including Co-LLM), we
choose the best η for Eq. (6) using a small vali-
dation set before testing, described in Algorithm 1.
For GSM8k, MATH, and BioASQ, we conduct the
search in-domain, using a small hold-out subset
for that dataset; for AlpacaEval, we use a subset
of a separate instruction following benchmark MT-
Bench (Zheng et al., 2023) to search and pick the
η∗. We report the used values under different set-
tings in Table 6 (for Co-LLM) and Table 6 (for
Weakly-supervised Co-LLM).

A.2 BioASQ Evaluation

There are four different substasks in the BioASQ
dataset, and they are evaluated using different met-

8https://ai.meta.com/llama/license/.

0 20 40 60 80

f - Deferral Frequency

5
1
0

1
5

2
0

2
5

3
0

E
x
a
ct

M
a
tc

h

MATH (Validation)

Asst. Llama-70B

Asst. Llemma-7B

Asst. Llemma-34B

0 20 40 60 80

f - Deferral Frequency

25
30

35
40

45

A
ve

ra
ge

S
co

re

BioASQ (Validation)

Asst. Llama-70B

Asst. Meditron-7B

Asst. Meditron-70B

Figure 4: Performance of Co-LLM at different frequen-
cies of deferral on GSM8k, MATH and BioASQ. There
exists an optimal f that the joint model achieves better
performance than using either of them alone.

Algorithm 1: Find Optimal Deferral Th. η
Input :Base Model, Asst. Model, Model

Selector ϕ, Validation Dataset D
Let P = {}
for i = 0 to |D| do

Given the input prompt in Di, generate
response X(i) using the base model

Predict per-token deferral probability
Pϕ(Z

(i)
t = 1 | X(i)

<t), and append it to P
end
Sort P in ascending order
Set current best threshold η = 0 and

evaluation score s = 0
for j = 0 to 100 by 10 do

Get the j-th quantile pj in P and use it
as the deferral threshold ηj

Generate responses X(i) for i in from 0
to |D| using the base and asst. model
controlled by Pϕ(Z

(i)
t = 1 | X(i)

<t) > ηj

Evaluate the responses, and if the
evaluation score is better than s, set
η = ηj and s to the new score

end
Return η

12986

https://ai.meta.com/llama/license/

Hyperparameter Configuration

Default and Co-LLM Finetuning for 7B Modelsa

Training Epoch 2
Max Sequence Length 2048
Effective Batch Size 128
Gradient Accumulation Steps 16
Learning Rate 2e-5
Warmup Ratio 0.04
Weight Decay 0
AdamW β1, β2 0.9, 0.999

QLoRA Finetuning for 70B modelsb

Training Epoch 2
LoRA Rank 64
LoRA Alpha 16
LoRA Dropout 0.1
Learning Rate 1e-4
Warmup Ratio 0.03

Weak Supervision Experiment

λ for binary classifier loss 0.5
Positive Class Weight in binary loss 8 or 5c

a The settings are similar to the ones used by Liu et al. (2024).
b We adopt the same values as Ivison et al. (2023).
c 8 for Tülu-v2-mixture training and 5 for the rest, set based on the
class imbalance in the training data.

Table 5: Training hyperparameters for our experiments.

rics according to the guideline:9

• Factoid: It require a particular entity name (e.g.,
of a disease, drug, or gene, or a number) to be
generated per the question, which might not ap-
pera in the original question. The model may
generate a list of candidate, and we pick the first
generation (as the model often only generates
one) and search for matching among the allowed
candidate answers. This is the Strict Accuracy
(SAcc.) metric in Krithara et al. (2023).

• List: Similar to Factoid questions but the model
is expected to generate a list of entities. The
model is required to produce the answer in a
bullet list format, and we use F1 score to evaluate
the performance.

• Summary: The answer is expected to be a long-
form text like the description of a treatment. Fol-
lowing Krithara et al. (2023), we report ROUGE-
2 (Lin, 2004) (using the implementation from the
Huggingface Evaluate library10) to measure the

9http://participants-area.bioasq.org/general_
information/Task9b/

10https://huggingface.co/spaces/
evaluate-metric/rouge

Base Asst. η∗ f

AlpacaEval
N = 2048

LLAMA-7B LLAMA-70B 0.80 0.1

GSM8k
N = 512

LLAMA-7B LLAMA-70B 0.17 0.1
LLAMA-7B LLEMMA-7B 0.08 0.1
LLAMA-7B LLEMMA-34B 0.05 0.3

MATH
N = 512

LLAMA-7B LLAMA-70B 0.57 0.6
LLAMA-7B LLEMMA-7B 0.05 0.9
LLAMA-7B LLEMMA-34B 0.30 0.8

BioASQ
N = 512

LLAMA-7B LLAMA-70B 0.38 0.2
LLAMA-7B MEDITRON-7B 0.07 0.5
LLAMA-7B MEDITRON-70B 0.20 0.5

Table 6: For each dataset, we show the max number
of generated tokens N (used for all models) and the
optimal deferral threshold η∗ (corresponding frequency
f) used to generate the responses (available only for
Co-LLM).

Base Asst. η∗ f

AlpacaEval LLAMA-7B LLAMA-70B 0.11 0.1
GSM8k LLAMA-7B LLAMA-70B 1.00 0.0
MATH LLAMA-7B LLAMA-70B 0.44 0.1
BioASQ LLAMA-7B LLAMA-70B 1.00 0.0

Table 7: Similar to Table 6, we report the the optimal
deferral threshold η∗ and frequency used for Weakly-
supervised Co-LLM.

of Samples
Dataset Train Dev Test

Tülu-v2-mixture 326,115
MT-Bench 24
AlpacaEval 805

GSM8k 7,473 50 200
MATH 7,498 60 750
BioASQ 4,719 20 310

(Factiod) 93
(List) 61

(Summary) 75
(Yes/No) 81

Table 8: The training and evaluation dataset sizes. For
the instruction following task, we train a model on the
Tülu mixture, uses a small validation set from the MT-
Bench dataset to pick the deferral threshold η, and eval-
uate on the AlpacaEval dataset. For the other tasks, we
train and test in-domain.

textual overlapping between the generation and
the ground truth.

• Yes/No: The model needs to provide a binary

12987

http://participants-area.bioasq.org/general_information/Task9b/
http://participants-area.bioasq.org/general_information/Task9b/
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/rouge

Dataset Name License

AlpacaEval CC BY-NC 4.0
GSM8k MIT
MATH MIT
BioASQ CC BY 2.5
Tülu v2 mix ODC BY

Table 9: The licenses of the datasets used.

answer yes or no to the given question, and the
classification accuracy is reported.

B Additional Generation Examples

Fig. 2 shows an simplified version of generation
for clarity, and we show the original generation
in Table 10. An additional example generation on
MATH is shown in Table 12.

Opdu alag contains two active components: 1)
n iv ol umab and 2) rel at lim ab. The final
answer is: 1) nivolumab 2) relatlimab

Table 10: The original (token-level) model generation
for the example in Fig. 2. Fig. 2 shows the generation at
the word level rather than the token level for simplicity.

12988

Dataset Prompt

AlpacaEval

<|user|>
What are some species of bears that are now extinct?
<|assistant|>

GSM8k

Please solve the following math problem with detailed steps.

Question: Tom’s ship can travel at 10 miles per hour. He is sailing
from 1 to 4 PM. He then travels back at a rate of 6 mph. How long does it
take him to get back?
Answer:

MATH

Given a mathematics problem, determine the answer. Simplify your
answer as much as possible. You can use latex to format your answer
and you should state your final answer as “The final answer is
$(final-answer)$.”

Problem: Consider the function $g(x)=3x-4$. What is $g(0)$?

Solution:

BioASQ

You are a medical expert answering real-world biomedical questions.
Based on your understanding of basic and clinical science, medical
knowledge, and mechanisms underlying health, disease, patient care,
and modes of therapy, write a list of entity names, numbers, or
short expressions that answer the following question.

Question: Which genes are related to Emery-Dreifuss Muscular Dys
trophy (EDMD)?
Answer:

Table 11: Prompts used for formatting the datasets during training and evaluation. For training on the Tülu mixture,
we adopt the same chat template as Wang et al. (2023). The prompt for GSM8k and MATH is based on the prompt
by Wei et al. (2022) and Hendrycks et al. (2021). We modify the prompt for MedMCQA questions in the Meditron
paper (Chen et al., 2023) for BioASQ, and adapt it for different tasks.

12989

f Generation (Source TEX) Rendered

GT Completing the square in x and $y,$ we
get \[9(x + 4)^2 + 4(y - 1)^2 = 324.\]
Then \[\frac{(x + 4)^2}{36} + \frac{(y -
1)^2}{81} = 1.\]Thus, the center of the
ellipse is $\boxed{(-4,1)}.$

Completing the square in x and y, we get

9(x+ 4)2 + 4(y − 1)2 = 324.

Then
(x+ 4)2

36
+

(y − 1)2

81
= 1.

Thus, the center of the ellipse is (−4, 1) .

0.0 Completing the square in x and $y,$ we
get \[9x^2 + 72x + 4y^2 - 8y - 176 = 0
\Rightarrow 9x^2 + 72x + 4y^2 - 8y - 176 =
9(x - 2)^2 + 72(x - 2) + 4(y - 2)^2 - 8(y - 2)
- 176.\]Then \[\boxed{2} = \frac{1}{9}(9(x
- 2)^2 + 72(x - 2) + 4(y - 2)^2 - 8(y - 2)
- 176).\] The final answer is 2.

Completing the square in x and y, we get

9x2 + 72x+ 4y2 − 8y − 176 = 0 ⇒
9x2 + 72x+ 4y2 − 8y − 176 =

9(x− 2)2 + 72(x− 2) + 4(y − 2)2

− 8(y − 2)− 176.

Then
2 =

1

9
(9(x− 2)2 + 72(x− 2)

+ 4(y − 2)2 − 8(y − 2)− 176).

The final answer is 2.

0.4 Completing the square in x and $y,$ we
get \[9x^2 + 72x + 4y^2 - 8y - 176 = 0
\Rightarrow 9 (x - 4)^2 + 4 (y - 1)^2 =
1.\]Then \[\ frac{ 9 (x - 4)^ 2 }{ 1 } + \

frac{ 4(y - 1)^2}{ 1} = 1.\]Hence, \[a = \
sqrt { 9 } = 3,\]and $b = \ sqrt { 4} = 2.$
Then the center of the ellipse is $\boxed
{\ textbf{ (4, 1)}}.$ The final answer is
$\textbf{ (4, 1)}$.

Completing the square in x and y, we get

9x2 + 72x+ 4y2 − 8y − 176 = 0 ⇒
9 (x− 4)2 + 4(y − 1)

2
= 1.

Then
9(x− 4)2

1
+

4(y − 1)2

1
= 1.

Hence,
a =

√
9 = 3,

and b =
√
4 = 2. Then the center of the ellipse is

(4, 1) . The final answer is (4, 1).

0.8 Completing the square in x and $y,$ we
get \[9 (x ^ 2 + 8 x) + 4 (y ^ 2 - 2 y) =
1 7 6.\]Then \[\ begin{aligned} 9 (x ^ 2 +
8 x + 1 6) + 4 (y ^ 2 - 2 y + 1) &= 1 7 6
\\ 9 (x + 4)^ 2 + 4 (y - 1)^ 2 &= 1 7 6.
\end { aligned}\]There fore, the center of
the ellipse is $\boxed { (- 4 , 1)}.$ The
final answer is $(-4, 1)$.

Completing the square in x and y, we get

9(x2 + 8x) + 4(y2 − 2y) = 176.

Then

9(x2 + 8x+ 16) + 4(y2 − 2y + 1) = 176

9(x+ 4)2 + 4(y − 1)2 = 176.

There fore, the center of the ellipse is (−4, 1) . The

final answer is (−4, 1).

Table 12: Model answers with different deferral frequencies to the question “Find the center of the ellipse whose
equation is 9x2 + 72x+ 4y2 − 8y − 176 = 0.” In this example, the base model is a LLAMA-7B model fine-tuned
on the MATH dataset, and the reference model is the LLEMMA-34B model. We show the ground-truth answer in
the first row, and the 0-shot model answers with different deferral ratios, with the original outputs and rendered. We
use yellow background to indicate the token is produced by the reference model rather than the base model.

12990

