
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1280–1297
August 11-16, 2024 ©2024 Association for Computational Linguistics

DeepSeekMoE: Towards Ultimate Expert Specialization in
Mixture-of-Experts Language Models

Damai Dai†‡∗, Chengqi Deng‡, Chenggang Zhao‡§∗, Runxin Xu‡, Huazuo Gao‡, Deli Chen‡, Jiashi Li‡,
Wangding Zeng‡, Xingkai Yu‡¶∗, Y. Wu‡, Zhenda Xie‡, Y.K. Li‡, Panpan Huang‡, Fuli Luo‡, Chong Ruan‡,

Zhifang Sui†, Wenfeng Liang‡⋄
†State Key Laboratory of Multimedia Information Processing, Peking University ‡DeepSeek-AI

§Institute for Interdisciplinary Information Sciences, Tsinghua University
¶National Key Laboratory for Novel Software Technology, Nanjing University
{daidamai,szf}@pku.edu.cn, {damai.dai,wenfeng.liang}@deepseek.com

https://github.com/deepseek-ai/DeepSeek-MoE

Abstract
In the era of large language models, Mixture-
of-Experts (MoE) is a promising architecture
for managing computational costs when scaling
up model parameters. However, conventional
MoE architectures like GShard, which activate
the top-K out of N experts, face challenges in
ensuring expert specialization, i.e. each expert
acquires non-overlapping and focused knowl-
edge. In response, we propose the DeepSeek-
MoE architecture towards ultimate expert spe-
cialization. It involves two principal strategies:
(1) finely segmenting the experts into mN ones
and activating mK from them, allowing for a
more flexible combination of activated experts;
(2) isolating Ks experts as shared ones, aiming
at capturing common knowledge and mitigat-
ing redundancy in routed experts. Starting from
a modest scale with 2B parameters, we demon-
strate that DeepSeekMoE 2B achieves compara-
ble performance with GShard 2.9B, which has
1.5× expert parameters and computation. In
addition, DeepSeekMoE 2B nearly approaches
the performance of its dense counterpart with
the same number of total parameters, which
sets the upper bound of MoE models. Subse-
quently, we scale up DeepSeekMoE to 16B pa-
rameters and show that it achieves comparable
performance with DeepSeek 7B and LLaMA2
7B, with only about 40% of computations.

1 Introduction

Recent research and practices have empirically
demonstrated that, with sufficient training data
available, scaling language models with increased
parameters and computational budgets can yield
remarkably stronger models (Brown et al., 2020;
OpenAI, 2023; Touvron et al., 2023a; Hoffmann
et al., 2022; DeepSeek-AI, 2024). However, the en-
deavor to scale models to an extremely large scale
is also associated with exceedingly high compu-
tational costs. Considering the substantial costs,

∗ Contribution during internship at DeepSeek-AI.
⋄ Corresponding author.

the Mixture-of-Experts (MoE) architecture (Jacobs
et al., 1991; Jordan and Jacobs, 1994; Shazeer et al.,
2017) has emerged as a popular solution, which en-
ables parameter scaling while concurrently keeping
modest computational costs.

Despite the promising potential of MoE architec-
tures, existing MoE architectures like GShard (Lep-
ikhin et al., 2021) potentially suffer from issues of
knowledge hybridity and knowledge redundancy:
(1) Knowledge Hybridity: existing MoE practices
often employ a limited number of experts, and thus
tokens assigned to a specific expert will be likely
to cover diverse knowledge. Consequently, the des-
ignated expert will intend to assemble vastly differ-
ent types of knowledge in its parameters, which
are hard to utilize simultaneously. (2) Knowl-
edge Redundancy: tokens assigned to different
experts may require common knowledge. As a re-
sult, multiple experts may converge in acquiring
shared knowledge in their respective parameters,
thereby leading to redundancy in expert parameters.
These issues collectively limit the expert special-
ization in MoE models, i.e., each expert acquires
non-overlapping and focused knowledge.

In response to the aforementioned issues, we
introduce DeepSeekMoE, an innovative MoE ar-
chitecture specifically designed towards ultimate
expert specialization. Our architecture involves
two principal strategies: (1) Fine-Grained Expert
Segmentation: while maintaining the number of
parameters constant, we segment the experts into
a finer granularity by splitting the FFN intermedi-
ate hidden dimension. Correspondingly, keeping a
constant computational cost, we also activate more
fine-grained experts to enable a more flexible and
adaptable combination of activated experts. Fine-
grained expert segmentation allows diverse knowl-
edge to be decomposed more finely and be learned
more precisely into different experts, where each
expert will retain a higher level of specialization.
In addition, the increased flexibility in combining

1280

https://github.com/deepseek-ai/DeepSeek-MoE

activated experts also contributes to more accurate
knowledge acquisition. (2) Shared Expert Isola-
tion: we isolate certain experts to serve as shared
experts that are always activated, aiming at captur-
ing and consolidating common knowledge across
varying contexts. Through compressing common
knowledge into these shared experts, redundancy
among other routed experts will be mitigated. This
can enhance the parameter efficiency and ensure
that each routed expert remains specialized by fo-
cusing on distinctive aspects. These architectural
innovations in DeepSeekMoE offer opportunities
to train a parameter-efficient MoE language model
where each expert is highly specialized.

Starting from a modest scale with 2B parameters,
we validate the advantages of the DeepSeekMoE
architecture. Empirical results on 12 diverse bench-
marks indicate that DeepSeekMoE 2B surpasses
GShard 2B (Lepikhin et al., 2021) by a substantial
margin, and even matches GShard 2.9B, a larger
MoE model with 1.5× expert parameters and com-
putation. Remarkably, we find that DeepSeekMoE
2B nearly approaches the performance of its dense
counterpart with an equivalent number of parame-
ters, which sets the strict upper bound of MoE lan-
guage models. We also conduct elaborate ablation
studies and specialization analysis, and the studies
validate the effectiveness of our main strategies,
and provide evidence supporting that DeepSeek-
MoE can achieve higher expert specialization.

Subsequently, we scale up the model parameters
to 16B and train DeepSeekMoE 16B on a large-
scale corpus with 2T tokens. Evaluation results
reveal that with only about 40% of computations, it
achieves comparable performance with DeepSeek
7B (DeepSeek-AI, 2024) and LLaMA2 7B (Tou-
vron et al., 2023b), two strong 7B dense models.

Our contributions are summarized as follows: (1)
We introduce DeepSeekMoE, an innovative MoE
architecture aiming at achieving ultimate expert
specialization. (2) We conduct extensive experi-
ments to empirically validate the effectiveness of
DeepSeekMoE and reveal its high level of expert
specialization. (3) We scale up DeepSeekMoE to
train a 16B MoE model which shows strong per-
formance. (4) We will release the code and model
checkpoint of DeepSeekMoE 16B to the public.

2 Preliminaries

We first introduce a generic MoE architecture for
Transformer language models. A standard Trans-

former language model is constructed by stacking
L layers of standard Transformer blocks, where
each block can be represented as follows:

ul
1:T = Self-Att

(
hl−1
1:T

)
+ hl−1

1:T , (1)

hl
t = FFN

(
ul
t

)
+ ul

t, (2)

where T denotes the sequence length, ul
1:T ∈

RT×d are the hidden states after the l-th attention
module, and hl

t ∈ Rd is the output hidden state of
the t-th token after the l-th Transformer block. For
brevity, we omit the layer normalization.

A typical practice to construct an MoE lan-
guage model usually substitutes Feed-Forward Net-
works (FFNs) in a Transformer with MoE layers
at specified intervals (Fedus et al., 2021; Lepikhin
et al., 2021; Du et al., 2022; Zoph, 2022). An MoE
layer is composed of multiple experts, where each
expert is structurally identical to a standard FFN.
Then, each token will be assigned to a few experts.
If the l-th FFN is substituted with an MoE layer, its
computation can be expressed as:

hl
t =

N∑

i=1

(
gi,t FFNi

(
ul
t

))
+ ul

t, (3)

gi,t =

{
si,t, si,t ∈ Topk({sj,t|1 ≤ j ≤ N},K),

0, otherwise,
(4)

si,t = Softmaxi

(
ul
t

T
el
i

)
, (5)

where N denotes the total number of experts,
FFNi(·) is the i-th expert FFN, gi,t denotes the
gate value for the i-th expert, si,t denotes the token-
to-expert affinity, Topk(·,K) denotes the set com-
prising K highest affinity scores among those cal-
culated for the t-th token and all N experts, and eli
is the centroid of the i-th expert in the l-th layer.
Note that for each token, only K out of N gate
values are nonzero. This sparsity property ensures
computational efficiency within an MoE layer.

3 DeepSeekMoE Architecture

On top of the generic MoE architecture, DeepSeek-
MoE introduces two principal strategies, fine-
grained expert segmentation and shared expert iso-
lation, as illustrated in Figure 1. Both strategies
aim at elevating the level of expert specialization.

3.1 Fine-Grained Expert Segmentation
In scenarios where the number of experts is limited,
tokens assigned to a particular expert will be more
likely to cover diverse types of knowledge. As
a consequence, the designated expert will intend

1281

…1 2 𝑁𝑁

Router

Input Hidden

Output Hidden

…

Router

Input Hidden

Output Hidden

1 2 3 4 2𝑁𝑁-1 2𝑁𝑁 …

Router

Input Hidden

Output Hidden

1 2 3 4 2𝑁𝑁-1 2𝑁𝑁

Shared Expert

Routed Expert

𝐾𝐾 = 2 𝐾𝐾 = 4 𝐾𝐾 = 3

(a) Conventional Top-2 Routing (b) + Fine-grained Expert Segmentation (c) + Shared Expert Isolation
(DeepSeekMoE)

Figure 1: Illustration of DeepSeekMoE. (a) showcases an MoE layer with the conventional top-2 routing strategy.
(b) illustrates the fine-grained expert segmentation strategy. Subsequently, (c) introduces the shared expert isolation
strategy, constituting the complete DeepSeekMoE architecture.

to learn vastly different types of knowledge in its
parameters, and they are hard to be simultaneously
utilized. However, if each token can be routed
to more experts, diverse knowledge will gain the
potential to be decomposed and learned in different
experts respectively, where each expert can still
remain specialized and focused.

In pursuit of this goal, while maintaining a con-
sistent number of expert parameters and compu-
tational cost, we segment the experts with a finer
granularity. To be specific, on top of a typical MoE
architecture shown in Figure 1(a), we segment each
expert FFN into m smaller experts by reducing the
FFN intermediate hidden dimension to 1

m times its
original size. Since each expert becomes smaller, in
response, we also increase the number of activated
experts to m times to keep the same computation
cost, as illustrated in Figure 1(b). Then, the output
of an MoE layer can be expressed as:

hl
t =

mN∑

i=1

(
gi,t FFNi

(
ul
t

))
+ ul

t, (6)

gi,t =

{
si,t, si,t ∈ Topk({sj,t|1 ≤ j ≤ mN},mK),

0, otherwise,
(7)

si,t = Softmaxi

(
ul
t

T
el
i

)
, (8)

where the number of expert parameters is equal
to N times a standard FFN, and mN denotes the
number of fine-grained experts. Also, the number
of nonzero gates will increase to mK.

From a combinatorial perspective, fine-grained

expert segmentation substantially enhances the
combinatorial flexibility of activated experts. As an
example, we consider the case where N = 16. A
typical top-2 routing strategy can yield

(
16
2

)
= 120

possible combinations. By contrast, if each ex-
pert is split into 4 smaller experts, we can yield(
64
8

)
= 4, 426, 165, 368 potential combinations.

The surge in combinatorial flexibility enhances the
potential for achieving more accurate and targeted
knowledge acquisition.

3.2 Shared Expert Isolation

With a conventional routing strategy, tokens as-
signed to different experts may require some com-
mon knowledge. As a result, multiple experts will
converge in acquiring shared knowledge in their
respective parameters, leading to parameter redun-
dancy. However, if there are shared experts that
capture and consolidate common knowledge across
varying contexts, the parameter redundancy among
other routed experts will be alleviated.

Towards this objective, we further isolate Ks ex-
perts as shared experts. Regardless of the router,
each token will be deterministically assigned to
these shared experts. In order to maintain a con-
stant computational cost, the number of activated
routed experts will be decreased by Ks, as depicted
in Figure 1(c). Finally, an MoE layer in the com-

1282

plete DeepSeekMoE architecture is formulated as:

hl
t =

Ks∑

i=1

FFNi

(
ul
t

)
+

mN∑

i=Ks+1

(
gi,t FFNi

(
ul
t

))
+ ul

t,

(9)

gi,t=

{
si,t, si,t∈Topk({sj,t|Ks+1≤j≤mN},mK−Ks),

0, otherwise,
(10)

si,t = Softmaxi

(
ul
t

T
el
i

)
. (11)

Finally, the number of shared experts is Ks, the
number of routed experts is mN − Ks, and the
number of nonzero gates is mK − Ks. The pro-
totype of shared expert isolation can be credited
to some previous work Rajbhandari et al. (2022);
Elbayad et al. (2023), but we derive this strategy
from different standpoints.

3.3 Load Balance Consideration

We employ an expert-level balance loss to mitigate
the risk of routing collapse (Shazeer et al., 2017).
The computation of the balance loss is as follows:

LBal = α
N′∑

i=1

fiPi, (12)

fi =
N ′

K′T

T∑

t=1

1(Token t selects Expert i), (13)

Pi =
1

T

T∑

t=1

si,t, (14)

where balance factor α is a hyper-parameter, 1(·)
denotes the indicator function, N ′ is equal to
(mN −Ks), and K ′ is equal to (mK −Ks).

4 Validation Experiments

4.1 Experimental Setup

Training Data and Tokenization. Our training
data is sampled from a large-scale corpus created
by DeepSeek-AI (DeepSeek-AI, 2024), which fo-
cuses on English and Chinese and is derived from
diverse sources. For the purpose of validation ex-
periments, we sample a subset containing 100B
tokens from the corpus to train our models. For to-
kenization, we utilize the HuggingFace Tokenizer1

tools to train a byte pair encoding (BPE) (Sennrich
et al., 2016) tokenizer with an 8K vocabulary size
on a subset of the training corpus.

Hyper-Parameters. In the validation experi-
ments, we set the number of Transformer layers

1https://github.com/huggingface/tokenizers

to 9 and the hidden dimension to 1280. We sub-
stitute all FFNs with MoE layers, and ensure that
the total number of expert parameters equals 16
times that of a standard FFN. Additionally, we keep
the activated expert parameters, including shared
expert parameters and activated routed expert pa-
rameters, as 2 times that of a standard FFN. Under
this configuration, each MoE model has approx-
imately 2B total parameters, with the number of
activated parameters around 0.3B. As for training,
we employ the AdamW optimizer (Loshchilov and
Hutter, 2019) and set the maximum learning rate
to 1.08 × 10−3. The batch size is set to 2K, and
with a maximum sequence length of 2K, each train-
ing batch contains 4M tokens. Correspondingly,
the total number of training steps is set to 25,000
to achieve 100B training tokens. In order to pre-
vent routing collapse, we set a balance factor of
0.01. Due to the page limit, we leave the other
hyper-parameters in Appendix A.1. We also de-
scribe the training framework and infrastructures
in Appendix B.

Evaluation Benchmarks. We conduct evalua-
tions on a wide range of benchmarks covering var-
ious types of tasks. For language modeling, we
evaluate the models on the test set of Pile (Gao
et al., 2020), and the evaluation metric is the cross-
entropy loss. For language understanding and
reasoning, we consider HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2020), ARC-challenge
and ARC-easy (Clark et al., 2018), and the evalu-
ation metric for these tasks is accuracy. For read-
ing comprehension, we consider RACE-high and
RACE-middle (Lai et al., 2017), and the evalu-
ation metric is accuracy. For code generation,
we consider HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021), and the evaluation
metric is Pass@1. For closed-book question an-
swering, we consider TriviaQA (Joshi et al., 2017)
and NaturalQuestions (Kwiatkowski et al., 2019),
and the metric is the Exactly Matching (EM) rate.

4.2 Evaluations

Baselines. Including DeepSeekMoE, we com-
pare five models for validation experiments. Dense
denotes a standard dense Transformer model with
0.2B total parameters. Hash Layer (Roller et al.,
2021) and Switch Transformer (Fedus et al., 2021)
are two well-known MoE architectures based on
top-1 routing, with 2.0B total parameters and 0.2B
activated parameters. GShard (Lepikhin et al.,

1283

Metric # Shot Dense Hash Layer Switch Transformer GShard DeepSeekMoE

Total Params N/A 0.2B 2.0B 2.0B 2.0B 2.0B
Activated Params N/A 0.2B 0.2B 0.2B 0.3B 0.3B
FLOPs per 2K Tokens N/A 2.9T 2.9T 2.9T 4.3T 4.3T

Pile (Loss) N/A 2.060 1.932 1.881 1.867 1.808

HellaSwag (Acc.) 0 38.8 46.2 49.1 50.5 54.8
PIQA (Acc.) 0 66.8 68.4 70.5 70.6 72.3
ARC-easy (Acc.) 0 41.0 45.3 45.9 43.9 49.4
ARC-challenge (Acc.) 0 26.0 28.2 30.2 31.6 34.3

RACE-middle (Acc.) 5 38.8 38.8 43.6 42.1 44.0
RACE-high (Acc.) 5 29.0 30.0 30.9 30.4 31.7

HumanEval (Pass@1) 0 0.0 1.2 2.4 3.7 4.9
MBPP (Pass@1) 3 0.2 0.6 0.4 0.2 2.2

TriviaQA (EM) 5 4.9 6.5 8.9 10.2 16.6
NaturalQuestions (EM) 5 1.4 1.4 2.5 3.2 5.7

Table 1: Evaluation results for validation experiments. Bold font indicates the best.

HellaSwag PIQA ARC-easy ARC-challenge TriviaQA NaturalQuestions

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce 0 shared expert + 2 out of 16 routed experts (GShard)

1 shared expert + 1 out of 15 routed experts (+ shared expert isolation)
1 shared expert + 3 out of 31 routed experts (+ fine-grained expert segmentation)
1 shared expert + 7 out of 63 routed experts (+ finer expert segmentation)

Figure 2: Ablation studies for DeepSeekMoE. The performance is normalized by the best performance.

2021) employs a top-2 learnable routing strategy,
with 2.0B total parameters and 0.3B activated pa-
rameters. DeepSeekMoE has 1 shared expert and
63 routed experts, where each expert is 0.25 times
the size of a standard FFN. Including DeepSeek-
MoE, all compared models share the same training
corpus and training hyper-parameters.

Results. As shown in Table 1, (1) With more total
parameters, Hash Layer and Switch Transformer
achieve significantly stronger performance than the
dense baseline with the same number of activated
parameters. (2) Compared with Hash Layer and
Switch Transformer, GShard has more activated pa-
rameters and achieves slightly better performance.
(3) With the same number of total and activated pa-
rameters, DeepSeekMoE demonstrates overwhelm-
ing advantages over GShard. These results show
the superiority of our DeepSeekMoE architecture.

4.3 DeepSeekMoE Aligns Closely with the
upper bound of MoE Models

For a more precise understanding of the perfor-
mance of DeepSeekMoE, we compare it with larger

baselines with more parameters or computations.

Comparison with GShard×1.5. We first com-
pare DeepSeekMoE with a larger GShard model
with 1.5 times the expert size, which results
in 1.5 times both expert parameters and ex-
pert computation. Evaluation results show that
GShard×1.5 achieves a Pile test loss of 1.808, and
DeepSeekMoE also achieves the same Pile test loss.
This underscores the significant advantage of the
DeepSeekMoE architecture. Due to the page limit,
we show the complete evaluation results including
all the benchmarks in Appendix C.

Comparison with Dense×16. We also compare
DeepSeekMoE and a dense model with the same
number of total parameters. For a fair compar-
ison, we do not use the widely used ratio (1:2)
between the attention and FFN parameters. Instead,
we configure 16 shared experts where each expert
has the same number of parameters as a standard
FFN. This architecture mimics a dense model with
16 times standard FFN parameters, which sets the
strict upper bound of MoE models in terms of the

1284

0 1/16 2/16 3/16 4/16
Ratio of Disabled Top Routed Experts

2

4

6

8
Pi

le
 L

os
s

DeepSeekMoE
GShard × 1.5

Figure 3: Pile test loss with regard to different ratios of
disabled top routed experts.

model capacity. We find that this dense model
achieves a Pile test loss of 1.806, while DeepSeek-
MoE achieves a close Pile test loss of 1.808. Due
to the page limit, we also show the complete evalu-
ation results in Appendix C. To summarize, these
results suggest that, at least at the scale of about
2B parameters and 100B training tokens, the per-
formance of DeepSeekMoE aligns closely with the
theoretical upper bound of MoE models.

4.4 Ablation Studies

We conduct ablation studies for DeepSeekMoE to
substantiate the effectiveness of our two principal
strategies. For a fair comparison, we ensure all
models included in the comparison have the same
number of total and activated parameters.

Shared Expert Isolation. In order to evaluate
the influence of shared expert isolation, based on
GShard, we isolate one expert as the shared one.
From Figure 2, we observe that compared with
GShard, the isolation yields improved performance
across a majority of benchmarks.

Fine-Grained Expert Segmentation. For assess-
ing the effectiveness of fine-grained expert segmen-
tation, we segment each expert into 2 or 4 smaller
experts, resulting in 32 (1 shared + 31 routed) or
64 (1 shared + 63 routed) total experts. Figure 2
shows a consistent trend that finer expert segmenta-
tion granularity corresponds to better performance.

4.5 Analysis on Expert Specialization

We conduct an empirical analysis on the expert
specialization of DeepSeekMoE 2B, which refers
to the model reported in Table 1.

DeepSeekMoE Exhibits Lower Redundancy
Among Routed Experts. In order to assess the
redundancy among routed experts, for each token,
we mask a certain ratio of experts with the highest
routing probability, and then select top-K experts

3 4 5 6 7
Activated Routed Experts

1.85

1.90

1.95

Pi
le

 L
os

s

same activated
expert parameters

DeepSeekMoE
GShard (full top-2 activated)

Figure 4: Pile loss with regard to different numbers of
activated routed experts in DeepSeekMoE.

HellaSwag PIQA ARC-easy ARC-challenge TriviaQA NaturalQuestions0

10

20

30

40

50

60

70

Pe
rfo

rm
an

ce

GShard
DeepSeekMoE (half activated)

Figure 5: Comparison between GShard and DeepSeek-
MoE trained from scratch and with half the activated
experts.

from the remaining routed experts. For fairness, we
compare DeepSeekMoE with GShard×1.5 since
they have the same Pile loss when no experts are
disabled. As shown in Figure 3, compared with
GShard×1.5, DeepSeekMoE is more sensitive to
the disabling of top routed experts. This implies
lower parameter redundancy in DeepSeekMoE,
since each routed expert is more irreplaceable.

Shared Experts Are Irreplaceable by Routed
Experts. In order to investigate the role of the
shared expert in DeepSeekMoE, we disable it and
activate one more routed expert. The evaluation on
Pile shows a significant increase in the Pile loss, ris-
ing from 1.808 to 2.414, even though we maintain
the same computational cost. This result indicates
that the shared expert captures fundamental and
essential knowledge not shared with routed experts,
making it irreplaceable by routed ones.

DeepSeekMoE Acquires Knowledge More Ac-
curately. In order to validate our claim that
higher flexibility in combining activated experts
contributes to more accurate and targeted knowl-
edge acquisition, we investigate whether DeepSeek-
MoE can acquire requisite knowledge with fewer
activated experts. To be specific, we vary the num-
ber of activated routed experts from 3 to 7 and
evaluate the resulting Pile loss. As demonstrated in
Figure 4, even with only 4 routed experts activated,

1285

DeepSeekMoE is still comparable with GShard.
Encouraged by these findings, we further train

a new MoE model from scratch, which comprises
1 shared expert and 63 routed experts but only 3
routed experts are activated. Figure 5 demonstrates
that, even with the same total expert parameters
and only half of the activated expert parameters,
DeepSeekMoE still outperforms GShard.

5 Scaling up to DeepSeekMoE 16B

With the DeepSeekMoE architecture, we further
scale up our MoE model to a larger scale with 16B
total parameters and train it on 2T tokens.

5.1 Experimental Setup

Training Data and Tokenization For training
DeepSeekMoE 16B, we sample 2T tokens from the
same corpus as described in Section 4.1, and use a
larger BPE tokenizer with a 100K vocabulary size.

Hyper-Parameters For DeepSeekMoE 16B, we
set the number of Transformer layers to 28 and the
hidden dimension to 2048. We substitute all FFNs
except for the first layer with MoE layers, since
we observe that the load balance status converges
especially slower for the first layer. Each MoE
layer consists of 2 shared experts and 64 routed
experts, where each expert is 0.25 times the size
of a standard FFN. Each token will be routed to
these 2 shared experts and 6 out of 64 routed ex-
perts. Under this configuration, DeepSeekMoE
16B has approximately 16.4B total parameters,
with the number of activated parameters around
2.8B. As for training, we employ the AdamW op-
timizer (Loshchilov and Hutter, 2019) and set the
maximum learning rate to 4.2× 10−4. The batch
size is set to 4.5K, and with a maximum sequence
length of 4K, each training batch contains 18M
tokens. Correspondingly, the total number of train-
ing steps is set to 106,449 to achieve 2T training
tokens. In order to prevent routing collapse, we set
a balance factor of 0.001. Due to the page limit, we
leave the other hyper-parameters in Appendix A.2.

Evaluation Benchmarks In addition to the
benchmarks used in the validation experiments,
we incorporate additional benchmarks for a more
comprehensive evaluation. For language model-
ing, we also evaluate the models on the test set
of Pile (Gao et al., 2020). Since the tokenizer
used in DeepSeekMoE 16B is different from that
used in LLaMA2 7B, we use bits per byte (BPB)

as the evaluation metric for a fair comparison.
For reading comprehension, we additionally con-
sider DROP (Dua et al., 2019) and the evaluation
metric is EM. For math reasoning, we addition-
ally incorporate GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), using EM as the
evaluation metric. For multi-subject multiple-
choice, we additionally evaluate the models on
MMLU (Hendrycks et al., 2020) and the evalu-
ation metric is accuracy. For disambiguation,
we additionally consider WinoGrande (Sakaguchi
et al., 2019) and the evaluation metric is accuracy.
Since DeepSeekMoE 16B is pretrained on a bilin-
gual corpus, we also evaluate it on four Chinese
benchmarks: CLUEWSC (Xu et al., 2020), CE-
val (Huang et al., 2023), CMMLU (Li et al., 2023),
and CHID (Zheng et al., 2019). Evaluation metrics
for these benchmarks are accuracy or EM.

5.2 Evaluations

We compare DeepSeekMoE 16B with LLaMA2
7B (Touvron et al., 2023b) and DeepSeek
7B (DeepSeek-AI, 2024), two strong and well-
known dense models trained on 2T tokens. In
addition, DeepSeekMoE 16B and DeepSeek 7B
use the same training data. As shown in Table 2,
we have the following observations: (1) On the
whole, with about only 40% of the computations,
DeepSeekMoE 16B achieves comparable perfor-
mance with LLaMA2 7B and DeepSeek 7B. (2)
DeepSeekMoE 16B exhibits notable strengths in
language modeling and knowledge-intensive tasks
such as Pile, HellaSwag, and TriviaQA. (3) Com-
pared with the excellent performance on other tasks,
DeepSeekMoE exhibits limitations in addressing
multiple-choice tasks, which may stem from the
limited attention parameters in DeepSeekMoE 16B.
(4) Compared with LLaMA2 7B, DeepSeek 7B
and DeepSeekMoE 16B have much stronger perfor-
mance on math, coding, and Chinese benchmarks.
For a more comprehensive understanding of the
training process of DeepSeekMoE 16B, we also
provide the benchmark curves of DeepSeekMoE
16B and DeepSeek 7B (Dense) during training in
Appendix D.

In addition, we provide a comparison between
DeepSeekMoE 16B and other open source models
on the Open LLM Leaderboard in Appendix E.

1286

Metric # Shot LLaMA2 7B (Dense) DeepSeek 7B (Dense) DeepSeekMoE 16B

Total Params N/A 6.7B 6.9B 16.4B
Activated Params N/A 6.7B 6.9B 2.8B
FLOPs per 4K Tokens N/A 187.9T 183.5T 74.4T

Pile (BPB) N/A 0.76 0.75 0.74

HellaSwag (Acc.) 0 75.6 75.4 77.1
PIQA (Acc.) 0 78.0 79.2 80.2
ARC-easy (Acc.) 0 69.1 67.9 68.1
ARC-challenge (Acc.) 0 49.0 48.1 49.8

RACE-middle (Acc.) 5 60.7 63.2 61.9
RACE-high (Acc.) 5 45.8 46.5 46.4
DROP (EM) 1 34.0 34.9 32.9

GSM8K (EM) 8 15.5 17.4 18.8
MATH (EM) 4 2.6 3.3 4.3

HumanEval (Pass@1) 0 14.6 26.2 26.8
MBPP (Pass@1) 3 21.8 39.0 39.2

TriviaQA (EM) 5 63.8 59.7 64.8
NaturalQuestions (EM) 5 25.5 22.2 25.5

MMLU (Acc.) 5 45.8 48.2 45.0

WinoGrande (Acc.) 0 69.6 70.5 70.2

CLUEWSC (EM) 5 64.0 73.1 72.1
CEval (Acc.) 5 33.9 45.0 40.6
CMMLU (Acc.) 5 32.6 47.2 42.5
CHID (Acc.) 0 37.9 89.3 89.4

Table 2: Comparison among LLaMA2 7B, DeepSeek 7B, and DeepSeekMoE 16B.

6 Related Work

The Mixture of Experts (MoE) technique is first
proposed by Jacobs et al. (1991); Jordan and Jacobs
(1994) to deal with different samples with indepen-
dent expert modules. Shazeer et al. (2017) intro-
duce MoE into language model training and build a
large-scale LSTM-based (Hochreiter and Schmid-
huber, 1997) MoE models. As Transformer be-
come the most popular architecture for NLP, many
attempts extend FFNs in a Transformer as MoE lay-
ers to build MoE language models. GShard (Lep-
ikhin et al., 2021) and Switch Transformer (Fedus
et al., 2021) are pioneers which employ learnable
top-2 or top-1 routing strategies to scale the MoE
language models to an extremely large scale. Hash
Layer (Roller et al., 2021) and StableMoE (Dai
et al., 2022) use fixed routing strategies for more
stable routing and training. Zhou et al. (2022) pro-
pose an expert-choice routing strategy, where each
token can be assigned to different numbers of ex-
perts. Zoph (2022) focus on the issues of train-
ing instability and fine-tuning difficulty in MoE
models, and propose ST-MoE to overcome these
challenges. Gao et al. (2022) investigate parameter-
efficient MoE architectures via sharing informa-

tion among experts. Krishnamurthy et al. (2023)
attempt to improve the expert specialization on
toy data. In addition to research on MoE archi-
tectures and training strategies, recent years have
also witnessed the emergence of numerous large-
scale language or multimodal models (Lin et al.,
2021; Du et al., 2022; Ren et al., 2023; Xue et al.,
2023) based on existing MoE architectures. By and
large, most of the previous MoE models are based
on conventional top-1 or top-2 routing strategies,
leaving large room for improving expert special-
ization. In response, we design the DeepSeekMoE
architecture to improve the expert specialization.

7 Conclusion

In this paper, we introduce the DeepSeekMoE
architecture for MoE language models, with the
objective of achieving ultimate expert specializa-
tion. Through fine-grained expert segmentation and
shared expert isolation, DeepSeekMoE achieves
significantly higher expert specialization and per-
formance compared with prevailing MoE architec-
tures. Starting with a modest scale of 2B parame-
ters, we validate the advantages of DeepSeekMoE,
demonstrating its capability to approach the up-
per bound performance for MoE models. Further-

1287

more, we provide empirical evidence to show that
DeepSeekMoE has a higher level of expert special-
ization than GShard. Scaling up to a larger scale
of 16B total parameters, we train DeepSeekMoE
16B on 2T tokens and demonstrate its outstanding
performance comparable with DeepSeek 7B and
LLaMA2 7B, with only about 40% of computa-
tions. For research purposes, we will release the
model checkpoint of DeepSeekMoE 16B to the
public, which can be deployed on a single GPU
with 40GB of memory. We aspire for this work to
provide valuable insights for both academia and
industry, and contribute to the accelerated advance-
ment of large language models.

Limitations and Future Work

Although we find that finer granularity in expert
segmentation always leads to better model per-
formance, we just use a moderate granularity in
DeepSeekMoE 16B, since too fine granularity will
decrease the computational efficiency. In future
research, we plan to build a scaling law for the
expert segmentation granularity and explore finer
segmentation on larger-scale models.

In addition, since DeepSeekMoE will select
more experts, it has the potential to result in ad-
ditional communication overhead when the experts
are distributed across different devices. In the fu-
ture, we will also design better algorithms and par-
allelism strategies to mitigate such additional com-
munication overhead.

Finally, in this paper, we fix the number of expert
parameters to 16 times that of a standard FFN, and
the number of activated expert parameters to twice
that of a standard FFN. In larger model settings, the
optimal numbers of total parameters and activated
parameters are also a topic for future research and
discussion.

Acknowledgement

Damai Dai and Zhifang Sui are supported by the
National Key Research and Development Program
of China 2020AAA0106700.

References

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Merouane Debbah, Etienne Goffinet, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.

2023. Falcon-40B: an open large language model
with state-of-the-art performance.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
2397–2430. PMLR.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this misc, please cite it using
these metadata.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-
cessing Systems 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie

1288

https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang
Sui, Baobao Chang, and Furu Wei. 2022. Stable-
moe: Stable routing strategy for mixture of experts.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 7085–7095. Association for Com-
putational Linguistics.

DeepSeek-AI. 2024. Deepseek llm: Scaling open-
source language models with longtermism. arXiv
preprint arXiv:2401.02954.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten P. Bosma, Zongwei
Zhou, Tao Wang, Yu Emma Wang, Kellie Webster,
Marie Pellat, Kevin Robinson, Kathleen S. Meier-
Hellstern, Toju Duke, Lucas Dixon, Kun Zhang,
Quoc V. Le, Yonghui Wu, Zhifeng Chen, and Claire
Cui. 2022. Glam: Efficient scaling of language mod-
els with mixture-of-experts. In International Con-
ference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
5547–5569. PMLR.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 2368–2378.
Association for Computational Linguistics.

Maha Elbayad, Anna Y. Sun, and Shruti Bhosale. 2023.
Fixing moe over-fitting on low-resource languages
in multilingual machine translation. In Findings
of the Association for Computational Linguistics:

ACL 2023, Toronto, Canada, July 9-14, 2023, pages
14237–14253. Association for Computational Lin-
guistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. CoRR,
abs/2101.03961.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The Pile: An 800GB dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Ze-Feng Gao, Peiyu Liu, Wayne Xin Zhao, Zhong-
Yi Lu, and Ji-Rong Wen. 2022. Parameter-efficient
mixture-of-experts architecture for pre-trained lan-
guage models. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
COLING 2022, Gyeongju, Republic of Korea, Oc-
tober 12-17, 2022, pages 3263–3273. International
Committee on Computational Linguistics.

Xinyang Geng and Hao Liu. 2023. Openllama: An open
reproduction of llama.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R.
Ganger, and Phillip B. Gibbons. 2018. Pipedream:
Fast and efficient pipeline parallel DNN training.
CoRR, abs/1806.03377.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset.

High-Flyer. 2023. Hai-llm: An efficient and lightweight
tool for training large models.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computing, 9(8):1735–
1780.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. CoRR, abs/2203.15556.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, et al. 2023.
C-Eval: A multi-level multi-discipline chinese eval-
uation suite for foundation models. arXiv preprint
arXiv:2305.08322.

1289

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://doi.org/10.18653/V1/2022.ACL-LONG.489
https://doi.org/10.18653/V1/2022.ACL-LONG.489
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://doi.org/10.18653/V1/N19-1246
https://doi.org/10.18653/V1/N19-1246
https://doi.org/10.18653/v1/2023.findings-acl.897
https://doi.org/10.18653/v1/2023.findings-acl.897
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
https://aclanthology.org/2022.coling-1.288
https://aclanthology.org/2022.coling-1.288
https://aclanthology.org/2022.coling-1.288
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
http://arxiv.org/abs/1806.03377
http://arxiv.org/abs/1806.03377
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
https://www.high-flyer.cn/en/blog/hai-llm
https://www.high-flyer.cn/en/blog/hai-llm
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.2203.15556
https://doi.org/10.48550/arXiv.2203.15556

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. 1991. Adaptive mixtures of
local experts. Neural Computing, 3(1):79–87.

Michael I. Jordan and Robert A. Jacobs. 1994. Hier-
archical mixtures of experts and the EM algorithm.
Neural Computing, 6(2):181–214.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. triviaqa: A Large Scale Distantly
Supervised Challenge Dataset for Reading Compre-
hension. arXiv e-prints, page arXiv:1705.03551.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym,
Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. 2023. Reducing ac-
tivation recomputation in large transformer models.
Proceedings of Machine Learning and Systems, 5.

Yamuna Krishnamurthy, Chris Watkins, and Thomas
Gärtner. 2023. Improving expert specialization in
mixture of experts. CoRR, abs/2302.14703.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard H. Hovy. 2017. RACE: large-scale read-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017,
pages 785–794. Association for Computational Lin-
guistics.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In 9th International
Conference on Learning Representations, ICLR 2021.
OpenReview.net.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023. CMMLU: Measuring massive multitask
language understanding in Chinese. arXiv preprint
arXiv:2306.09212.

Junyang Lin, Rui Men, An Yang, Chang Zhou, Ming
Ding, Yichang Zhang, Peng Wang, Ang Wang,
Le Jiang, Xianyan Jia, Jie Zhang, Jianwei Zhang,
Xu Zou, Zhikang Li, Xiaodong Deng, Jie Liu, Jin-
bao Xue, Huiling Zhou, Jianxin Ma, Jin Yu, Yong Li,
Wei Lin, Jingren Zhou, Jie Tang, and Hongxia Yang.
2021. M6: A chinese multimodal pretrainer. CoRR,
abs/2103.00823.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3214–3252. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Ef-
ficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
15.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ah-
mad Awan, Jeff Rasley, and Yuxiong He. 2022.
Deepspeed-moe: Advancing mixture-of-experts in-
ference and training to power next-generation AI
scale. In International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pages 18332–18346.
PMLR.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimizations
toward training trillion parameter models. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC 2020, Virtual Event / Atlanta, Georgia,
USA, November 9-19, 2020, page 20. IEEE/ACM.

Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing
Huang, Yadao Wang, Weichao Wang, Pengfei Li,
Xiaoda Zhang, Alexander Podolskiy, Grigory Arshi-
nov, Andrey Bout, Irina Piontkovskaya, Jiansheng
Wei, Xin Jiang, Teng Su, Qun Liu, and Jun Yao.
2023. Pangu-Σ: Towards trillion parameter language
model with sparse heterogeneous computing. CoRR,
abs/2303.10845.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam,
and Jason Weston. 2021. Hash layers for large sparse
models. CoRR, abs/2106.04426.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,

1290

https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1994.6.2.181
https://doi.org/10.1162/neco.1994.6.2.181
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
http://arxiv.org/abs/1705.03551
https://doi.org/10.48550/arXiv.2302.14703
https://doi.org/10.48550/arXiv.2302.14703
https://doi.org/10.18653/V1/D17-1082
https://doi.org/10.18653/V1/D17-1082
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://arxiv.org/abs/2103.00823
https://doi.org/10.18653/V1/2022.ACL-LONG.229
https://doi.org/10.18653/V1/2022.ACL-LONG.229
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/arXiv.2303.08774
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.48550/arXiv.2303.10845
https://doi.org/10.48550/arXiv.2303.10845
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/2106.04426
http://arxiv.org/abs/1907.10641
http://arxiv.org/abs/1907.10641

Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoît Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, and et al. 2022. BLOOM:
A 176b-parameter open-access multilingual language
model. CoRR, abs/2211.05100.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. The Association for
Computer Linguistics.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. In 5th
International Conference on Learning Representa-
tions, ICLR 2017. OpenReview.net.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Philippe Tillet, H. T. Kung, and David Cox. 2019. Tri-
ton: An intermediate language and compiler for tiled
neural network computations. In Proceedings of the
3rd ACM SIGPLAN International Workshop on Ma-
chine Learning and Programming Languages, MAPL
2019, page 10–19, New York, NY, USA. Association
for Computing Machinery.

Together-AI. 2023. Redpajama-data: An open source
recipe to reproduce llama training dataset.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan

Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020.
CLUE: A chinese language understanding evaluation
benchmark. In Proceedings of the 28th International
Conference on Computational Linguistics, COLING
2020, Barcelona, Spain (Online), December 8-13,
2020, pages 4762–4772. International Committee on
Computational Linguistics.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei
Zheng, Wangchunshu Zhou, and Yang You. 2023.
Openmoe: Open mixture-of-experts language mod-
els. https://github.com/XueFuzhao/OpenMoE.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Chujie Zheng, Minlie Huang, and Aixin Sun. 2019.
Chid: A large-scale chinese idiom dataset for cloze
test. In Proceedings of the 57th Conference of the As-
sociation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 778–787. Association for Com-
putational Linguistics.

1291

https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.18653/V1/P16-1162
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/V1/2020.COLING-MAIN.419
https://doi.org/10.18653/V1/2020.COLING-MAIN.419
https://github.com/XueFuzhao/OpenMoE
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://doi.org/10.18653/V1/P19-1075
https://doi.org/10.18653/V1/P19-1075

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Zhao, Andrew M. Dai, Zhifeng Chen,
Quoc V. Le, and James Laudon. 2022. Mixture-of-
experts with expert choice routing. In NeurIPS.

Barret Zoph. 2022. Designing effective sparse expert
models. In IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS Workshops
2022, Lyon, France, May 30 - June 3, 2022, page
1044. IEEE.

1292

http://papers.nips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2f00ecd787b432c1d36f3de9800728eb-Abstract-Conference.html
https://doi.org/10.1109/IPDPSW55747.2022.00171
https://doi.org/10.1109/IPDPSW55747.2022.00171

Appendices

A Details of Hyper-Parameters

A.1 Validation Experiments
Model Settings. In the validation experiments,
we set the number of Transformer layers to 9 and
the hidden dimension to 1280. We employ the
multi-head attention mechanism with a total of 10
attention heads, where each head has a dimension
of 128. For initialization, all learnable parameters
are randomly initialized with a standard deviation
of 0.006. We substitute all FFNs with MoE lay-
ers, and ensure that the total number of expert pa-
rameters equals 16 times that of a standard FFN.
Additionally, we keep the activated expert parame-
ters, including shared expert parameters and acti-
vated routed expert parameters, as 2 times that of a
standard FFN. Under this configuration, each MoE
model has approximately 2B total parameters, with
the number of activated parameters around 0.3B.

Training Settings. We employ the AdamW op-
timizer (Loshchilov and Hutter, 2019) with hyper-
parameters set to β1 = 0.9, β2 = 0.95, and
weight_decay = 0.1. The learning rate is sched-
uled using a warmup-and-step-decay strategy. Ini-
tially, the learning rate linearly increases from 0 to
the maximum value during the first 2K steps. Sub-
sequently, the learning rate is multiplied by 0.316
at 80% of the training steps, and again by 0.316 at
90% of the training steps. The maximum learning
rate for validation experiments is set to 1.08×10−3,
and the gradient clipping norm is set to 1.0. The
batch size is set to 2K, and with a maximum se-
quence length of 2K, each training batch contains
4M tokens. Correspondingly, the total number of
training steps is set to 25,000 to achieve 100B train-
ing tokens. Due to the abundance of training data,
we do not use dropout during training. Given the
relatively small model size, all parameters, includ-
ing expert parameters, are deployed on a single
GPU device to avoid unbalanced computation. In
order to prevent routing collapse, we set the balance
factor to 0.01.

A.2 DeepSeekMoE 16B
Model Settings. For DeepSeekMoE 16B, we set
the number of Transformer layers to 28 and the hid-
den dimension to 2048. We employ the multi-head
attention mechanism with a total of 16 attention
heads, where each head has a dimension of 128.
As for initialization, all learnable parameters are

randomly initialized with a standard deviation of
0.006. We substitute all FFNs except for the first
layer with MoE layers, since we observe that the
load balance status converges especially slower
for the first layer. Each MoE layer consists of 2
shared experts and 64 routed experts, where each
expert is 0.25 times the size of a standard FFN.
Each token will be routed to these 2 shared ex-
perts and 6 out of 64 routed experts. An even finer
expert segmentation granularity is not employed
due to the potential reduction in computational ef-
ficiency associated with excessively small expert
sizes. At a larger scale over 16B, a finer granularity
can still be employed. Under our configuration,
DeepSeekMoE 16B has approximately 16.4B total
parameters, with the number of activated parame-
ters around 2.8B.

Training Settings. We employ the AdamW op-
timizer (Loshchilov and Hutter, 2019) with hyper-
parameters set to β1 = 0.9, β2 = 0.95, and
weight_decay = 0.1. The learning rate is also
scheduled using a warmup-and-step-decay strat-
egy. Initially, the learning rate linearly increases
from 0 to the maximum value during the first 2K
steps. Subsequently, the learning rate is multiplied
by 0.316 at 80% of the training steps, and again
by 0.316 at 90% of the training steps. The max-
imum learning rate for DeepSeekMoE 16B is set
to 4.2 × 10−4, and the gradient clipping norm is
set to 1.0. The batch size is set to 4.5K, and with
a maximum sequence length of 4K, each training
batch contains 18M tokens. Correspondingly, the
total number of training steps is set to 106,449 to
achieve 2T training tokens. Due to the abundance
of training data, we do not use dropout during train-
ing. We leverage pipeline parallelism to deploy
different layers of a model on different devices,
and for each layer, all the experts will be deployed
on the same device. Therefore, there will not be
unbalanced computation during training. In order
to prevent routing collapse, we set a quite small
balance factor of 0.001 because we find that under
our parallelization strategy, a higher balance fac-
tor cannot increase the computation efficiency, but
instead, it will compromise the model performance.

B Infrastructures

We conduct experiments based on HAI-
LLM (High-Flyer, 2023), an efficient and
light-weight training framework which integrates
multiple parallelism strategies, including tensor

1293

parallelism (Shoeybi et al., 2019; Narayanan
et al., 2021; Korthikanti et al., 2023), ZeRO data
parallelism (Rajbhandari et al., 2020), PipeDream
pipeline parallelism (Harlap et al., 2018), and more
specifically, expert parallelism (Lepikhin et al.,
2021) by combining data and tensor parallelism. In
order to optimize performance, we develop GPU
kernels with CUDA and Triton (Tillet et al., 2019)
for gating algorithms and fusing computations
across linear layers in different experts.

All experiments are carried out on clusters
equipped with NVIDIA A100 or H800 GPUs. Each
node in the A100 cluster contains 8 GPUs con-
nected pairwise via the NVLink bridge. The H800
cluster also features 8 GPUs per node, intercon-
nected using NVLink and NVSwitch within nodes.
For both A100 and H800 clusters, InfiniBand inter-
connects are utilized to facilitate communication
across nodes.

C Comparisons among DeepSeekMoE
and Larger Models

We show the comparisons among DeepSeekMoE,
larger GShard models, and larger dense models in
Table 3.

D Training Benchmark Curves of
DeepSeekMoE 16B

We present the benchmark curves during training
of DeepSeekMoE 16B and DeepSeek 7B (Dense)
in Figure 6 for reference.

E Evaluation on Open LLM Leaderboard

Beyond our internal evaluations, we also evalu-
ate DeepSeekMoE 16B on the Open LLM Leader-
board2 and compare it with other open source mod-
els. The Open LLM Leaderboard is a public leader-
board supported by HuggingFace, it consists of six
tasks: ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2020),
TruthfulQA (Lin et al., 2022), Winogrande (Sak-
aguchi et al., 2019), and GSM8K (Cobbe et al.,
2021). In addition to LLaMA2 7B, we take a
broader set of open source models into consid-
eration, including LLaMA 7B (Touvron et al.,
2023a), Falcon 7B (Almazrouei et al., 2023), GPT-J
6B (Wang and Komatsuzaki, 2021), RedPajama-
INCITE 7B and 3B (Together-AI, 2023), Open
LLaMA 7B and 3B (Geng and Liu, 2023), OPT

2https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

2.7B (Zhang et al., 2022), Pythia 2.8B (Biderman
et al., 2023), GPT-neo 2.7B (Black et al., 2021),
and BLOOM 3B (Scao et al., 2022). The evalu-
ation results, as presented in Figure 7, show that
DeepSeekMoE 16B consistently outperforms mod-
els with similar activated parameters by a large
margin. Moreover, it achieves comparable perfor-
mance with LLaMA2 7B, which has approximately
2.5 times the activated parameters.

1294

Metric # Shot GShard×1.5 Dense×16 DeepSeekMoE

Relative Expert Size N/A 1.5 1 0.25
Experts N/A 0 + 16 16 + 0 1 + 63
Activated Experts N/A 0 + 2 16 + 0 1 + 7
Total Expert Params N/A 2.83B 1.89B 1.89B
Activated Expert Params N/A 0.35B 1.89B 0.24B
FLOPs per 2K Tokens N/A 5.8T 24.6T 4.3T
Training Tokens N/A 100B 100B 100B

Pile (Loss) N/A 1.808 1.806 1.808

HellaSwag (Acc.) 0 54.4 55.1 54.8
PIQA (Acc.) 0 71.1 71.9 72.3
ARC-easy (Acc.) 0 47.3 51.9 49.4
ARC-challenge (Acc.) 0 34.1 33.8 34.3

RACE-middle (Acc.) 5 46.4 46.3 44.0
RACE-high (Acc.) 5 32.4 33.0 31.7

HumanEval (Pass@1) 0 3.0 4.3 4.9
MBPP (Pass@1) 3 2.6 2.2 2.2

TriviaQA (EM) 5 15.7 16.5 16.6
NaturalQuestions (EM) 5 4.7 6.3 5.7

Table 3: Comparisons among DeepSeekMoE, larger GShard models, and larger dense models. In the line of “#
Experts”, a + b denotes a shared experts and b routed experts. In the line of “# Activated Experts”, a + b denotes
a activated shared experts and b activated routed experts. DeepSeekMoE achieves comparable performance with
a GShard model containing 1.5 times expert parameters and computation. In addition, DeepSeekMoE nearly
approaches the performance of a dense model with 16 times FFN parameters, which sets the upper bound for MoE
models in terms of the model capacity.

1295

0 500 1000 1500 2000
Training Tokens (B)

0.3

0.4

0.5

0.6

0.7

Pe
rfo

rm
an

ce

HellaSwag (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.60

0.65

0.70

0.75

0.80

Pe
rfo

rm
an

ce

PIQA (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.4

0.5

0.6

0.7

Pe
rfo

rm
an

ce

ARC-easy (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.3

0.4

0.5

Pe
rfo

rm
an

ce

ARC-challenge (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.4

0.5

0.6
Pe

rfo
rm

an
ce

RACE-middle (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.30

0.35

0.40

0.45

Pe
rfo

rm
an

ce

RACE-high (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.1

0.2

0.3

Pe
rfo

rm
an

ce

DROP (EM)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.00

0.05

0.10

0.15

0.20

Pe
rfo

rm
an

ce

GSM8K (EM)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.0

0.1

0.2

0.3

Pe
rfo

rm
an

ce

HumanEval (Pass@1)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.0

0.1

0.2

0.3

0.4

Pe
rfo

rm
an

ce

MBPP (Pass@1)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.0

0.2

0.4

0.6

Pe
rfo

rm
an

ce

TriviaQA (EM)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rfo

rm
an

ce

NaturalQuestions (EM)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.25

0.30

0.35

0.40

0.45

Pe
rfo

rm
an

ce

MMLU (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.50

0.55

0.60

0.65

0.70

Pe
rfo

rm
an

ce

WinoGrande (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.0

0.2

0.4

0.6

Pe
rfo

rm
an

ce

CLUEWSC (EM)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.25

0.30

0.35

0.40

0.45

Pe
rfo

rm
an

ce

CEval (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.25

0.30

0.35

0.40

0.45

Pe
rfo

rm
an

ce

CMMLU (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

0 500 1000 1500 2000
Training Tokens (B)

0.5

0.6

0.7

0.8

0.9

Pe
rfo

rm
an

ce

CHID (Acc.)

DeepSeekMoE 16B
DeepSeek 7B (Dense)

Figure 6: Benchmark curves during training of DeepSeekMoE 16B and DeepSeek 7B (Dense).

1296

2 3 4 5 6 7
Number of Activated Parameters (Billions)

36

38

40

42

44

46

48

50

52

Av
er

ag
e

Pe
rfo

rm
an

ce

DeepSeekMoE 16B
LLaMA2 7B

LLaMA 7B
Falcon 7B

Open LLaMA 7B

RedPajama-INCITE 7B
GPT-J 6BRedPajama-INCITE 3B

Open LLaMA 3B
Pythia 2.8BOPT 2.7B

GPT-neo 2.7B
BLOOM 3B

Figure 7: Comparison between DeepSeekMoE 16B and open source models on the Open LLM Leaderboard.

1297

