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Abstract
In the era of large language models, Mixture-
of-Experts (MoE) is a promising architecture
for managing computational costs when scaling
up model parameters. However, conventional
MoE architectures like GShard, which activate
the top-K out of N experts, face challenges in
ensuring expert specialization, i.e. each expert
acquires non-overlapping and focused knowl-
edge. In response, we propose the DeepSeek-
MoE architecture towards ultimate expert spe-
cialization. It involves two principal strategies:
(1) finely segmenting the experts into mN ones
and activating mK from them, allowing for a
more flexible combination of activated experts;
(2) isolating Ks experts as shared ones, aiming
at capturing common knowledge and mitigat-
ing redundancy in routed experts. Starting from
a modest scale with 2B parameters, we demon-
strate that DeepSeekMoE 2B achieves compara-
ble performance with GShard 2.9B, which has
1.5× expert parameters and computation. In
addition, DeepSeekMoE 2B nearly approaches
the performance of its dense counterpart with
the same number of total parameters, which
sets the upper bound of MoE models. Subse-
quently, we scale up DeepSeekMoE to 16B pa-
rameters and show that it achieves comparable
performance with DeepSeek 7B and LLaMA2
7B, with only about 40% of computations.

1 Introduction

Recent research and practices have empirically
demonstrated that, with sufficient training data
available, scaling language models with increased
parameters and computational budgets can yield
remarkably stronger models (Brown et al., 2020;
OpenAI, 2023; Touvron et al., 2023a; Hoffmann
et al., 2022; DeepSeek-AI, 2024). However, the en-
deavor to scale models to an extremely large scale
is also associated with exceedingly high compu-
tational costs. Considering the substantial costs,
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the Mixture-of-Experts (MoE) architecture (Jacobs
et al., 1991; Jordan and Jacobs, 1994; Shazeer et al.,
2017) has emerged as a popular solution, which en-
ables parameter scaling while concurrently keeping
modest computational costs.

Despite the promising potential of MoE architec-
tures, existing MoE architectures like GShard (Lep-
ikhin et al., 2021) potentially suffer from issues of
knowledge hybridity and knowledge redundancy:
(1) Knowledge Hybridity: existing MoE practices
often employ a limited number of experts, and thus
tokens assigned to a specific expert will be likely
to cover diverse knowledge. Consequently, the des-
ignated expert will intend to assemble vastly differ-
ent types of knowledge in its parameters, which
are hard to utilize simultaneously. (2) Knowl-
edge Redundancy: tokens assigned to different
experts may require common knowledge. As a re-
sult, multiple experts may converge in acquiring
shared knowledge in their respective parameters,
thereby leading to redundancy in expert parameters.
These issues collectively limit the expert special-
ization in MoE models, i.e., each expert acquires
non-overlapping and focused knowledge.

In response to the aforementioned issues, we
introduce DeepSeekMoE, an innovative MoE ar-
chitecture specifically designed towards ultimate
expert specialization. Our architecture involves
two principal strategies: (1) Fine-Grained Expert
Segmentation: while maintaining the number of
parameters constant, we segment the experts into
a finer granularity by splitting the FFN intermedi-
ate hidden dimension. Correspondingly, keeping a
constant computational cost, we also activate more
fine-grained experts to enable a more flexible and
adaptable combination of activated experts. Fine-
grained expert segmentation allows diverse knowl-
edge to be decomposed more finely and be learned
more precisely into different experts, where each
expert will retain a higher level of specialization.
In addition, the increased flexibility in combining
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activated experts also contributes to more accurate
knowledge acquisition. (2) Shared Expert Isola-
tion: we isolate certain experts to serve as shared
experts that are always activated, aiming at captur-
ing and consolidating common knowledge across
varying contexts. Through compressing common
knowledge into these shared experts, redundancy
among other routed experts will be mitigated. This
can enhance the parameter efficiency and ensure
that each routed expert remains specialized by fo-
cusing on distinctive aspects. These architectural
innovations in DeepSeekMoE offer opportunities
to train a parameter-efficient MoE language model
where each expert is highly specialized.

Starting from a modest scale with 2B parameters,
we validate the advantages of the DeepSeekMoE
architecture. Empirical results on 12 diverse bench-
marks indicate that DeepSeekMoE 2B surpasses
GShard 2B (Lepikhin et al., 2021) by a substantial
margin, and even matches GShard 2.9B, a larger
MoE model with 1.5× expert parameters and com-
putation. Remarkably, we find that DeepSeekMoE
2B nearly approaches the performance of its dense
counterpart with an equivalent number of parame-
ters, which sets the strict upper bound of MoE lan-
guage models. We also conduct elaborate ablation
studies and specialization analysis, and the studies
validate the effectiveness of our main strategies,
and provide evidence supporting that DeepSeek-
MoE can achieve higher expert specialization.

Subsequently, we scale up the model parameters
to 16B and train DeepSeekMoE 16B on a large-
scale corpus with 2T tokens. Evaluation results
reveal that with only about 40% of computations, it
achieves comparable performance with DeepSeek
7B (DeepSeek-AI, 2024) and LLaMA2 7B (Tou-
vron et al., 2023b), two strong 7B dense models.

Our contributions are summarized as follows: (1)
We introduce DeepSeekMoE, an innovative MoE
architecture aiming at achieving ultimate expert
specialization. (2) We conduct extensive experi-
ments to empirically validate the effectiveness of
DeepSeekMoE and reveal its high level of expert
specialization. (3) We scale up DeepSeekMoE to
train a 16B MoE model which shows strong per-
formance. (4) We will release the code and model
checkpoint of DeepSeekMoE 16B to the public.

2 Preliminaries

We first introduce a generic MoE architecture for
Transformer language models. A standard Trans-

former language model is constructed by stacking
L layers of standard Transformer blocks, where
each block can be represented as follows:

ul
1:T = Self-Att

(
hl−1
1:T

)
+ hl−1

1:T , (1)

hl
t = FFN

(
ul
t

)
+ ul

t, (2)

where T denotes the sequence length, ul
1:T ∈

RT×d are the hidden states after the l-th attention
module, and hl

t ∈ Rd is the output hidden state of
the t-th token after the l-th Transformer block. For
brevity, we omit the layer normalization.

A typical practice to construct an MoE lan-
guage model usually substitutes Feed-Forward Net-
works (FFNs) in a Transformer with MoE layers
at specified intervals (Fedus et al., 2021; Lepikhin
et al., 2021; Du et al., 2022; Zoph, 2022). An MoE
layer is composed of multiple experts, where each
expert is structurally identical to a standard FFN.
Then, each token will be assigned to a few experts.
If the l-th FFN is substituted with an MoE layer, its
computation can be expressed as:

hl
t =

N∑

i=1

(
gi,t FFNi

(
ul
t

))
+ ul

t, (3)

gi,t =

{
si,t, si,t ∈ Topk({sj,t|1 ≤ j ≤ N},K),

0, otherwise,
(4)

si,t = Softmaxi

(
ul
t

T
el
i

)
, (5)

where N denotes the total number of experts,
FFNi(·) is the i-th expert FFN, gi,t denotes the
gate value for the i-th expert, si,t denotes the token-
to-expert affinity, Topk(·,K) denotes the set com-
prising K highest affinity scores among those cal-
culated for the t-th token and all N experts, and eli
is the centroid of the i-th expert in the l-th layer.
Note that for each token, only K out of N gate
values are nonzero. This sparsity property ensures
computational efficiency within an MoE layer.

3 DeepSeekMoE Architecture

On top of the generic MoE architecture, DeepSeek-
MoE introduces two principal strategies, fine-
grained expert segmentation and shared expert iso-
lation, as illustrated in Figure 1. Both strategies
aim at elevating the level of expert specialization.

3.1 Fine-Grained Expert Segmentation
In scenarios where the number of experts is limited,
tokens assigned to a particular expert will be more
likely to cover diverse types of knowledge. As
a consequence, the designated expert will intend
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(DeepSeekMoE)

Figure 1: Illustration of DeepSeekMoE. (a) showcases an MoE layer with the conventional top-2 routing strategy.
(b) illustrates the fine-grained expert segmentation strategy. Subsequently, (c) introduces the shared expert isolation
strategy, constituting the complete DeepSeekMoE architecture.

to learn vastly different types of knowledge in its
parameters, and they are hard to be simultaneously
utilized. However, if each token can be routed
to more experts, diverse knowledge will gain the
potential to be decomposed and learned in different
experts respectively, where each expert can still
remain specialized and focused.

In pursuit of this goal, while maintaining a con-
sistent number of expert parameters and compu-
tational cost, we segment the experts with a finer
granularity. To be specific, on top of a typical MoE
architecture shown in Figure 1(a), we segment each
expert FFN into m smaller experts by reducing the
FFN intermediate hidden dimension to 1

m times its
original size. Since each expert becomes smaller, in
response, we also increase the number of activated
experts to m times to keep the same computation
cost, as illustrated in Figure 1(b). Then, the output
of an MoE layer can be expressed as:

hl
t =

mN∑

i=1

(
gi,t FFNi

(
ul
t

))
+ ul

t, (6)

gi,t =

{
si,t, si,t ∈ Topk({sj,t|1 ≤ j ≤ mN},mK),

0, otherwise,
(7)

si,t = Softmaxi

(
ul
t

T
el
i

)
, (8)

where the number of expert parameters is equal
to N times a standard FFN, and mN denotes the
number of fine-grained experts. Also, the number
of nonzero gates will increase to mK.

From a combinatorial perspective, fine-grained

expert segmentation substantially enhances the
combinatorial flexibility of activated experts. As an
example, we consider the case where N = 16. A
typical top-2 routing strategy can yield

(
16
2

)
= 120

possible combinations. By contrast, if each ex-
pert is split into 4 smaller experts, we can yield(
64
8

)
= 4, 426, 165, 368 potential combinations.

The surge in combinatorial flexibility enhances the
potential for achieving more accurate and targeted
knowledge acquisition.

3.2 Shared Expert Isolation

With a conventional routing strategy, tokens as-
signed to different experts may require some com-
mon knowledge. As a result, multiple experts will
converge in acquiring shared knowledge in their
respective parameters, leading to parameter redun-
dancy. However, if there are shared experts that
capture and consolidate common knowledge across
varying contexts, the parameter redundancy among
other routed experts will be alleviated.

Towards this objective, we further isolate Ks ex-
perts as shared experts. Regardless of the router,
each token will be deterministically assigned to
these shared experts. In order to maintain a con-
stant computational cost, the number of activated
routed experts will be decreased by Ks, as depicted
in Figure 1(c). Finally, an MoE layer in the com-
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plete DeepSeekMoE architecture is formulated as:
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0, otherwise,
(10)

si,t = Softmaxi

(
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t

T
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)
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Finally, the number of shared experts is Ks, the
number of routed experts is mN − Ks, and the
number of nonzero gates is mK − Ks. The pro-
totype of shared expert isolation can be credited
to some previous work Rajbhandari et al. (2022);
Elbayad et al. (2023), but we derive this strategy
from different standpoints.

3.3 Load Balance Consideration

We employ an expert-level balance loss to mitigate
the risk of routing collapse (Shazeer et al., 2017).
The computation of the balance loss is as follows:

LBal = α
N′∑

i=1

fiPi, (12)

fi =
N ′

K′T

T∑

t=1

1(Token t selects Expert i), (13)

Pi =
1

T

T∑

t=1

si,t, (14)

where balance factor α is a hyper-parameter, 1(·)
denotes the indicator function, N ′ is equal to
(mN −Ks), and K ′ is equal to (mK −Ks).

4 Validation Experiments

4.1 Experimental Setup

Training Data and Tokenization. Our training
data is sampled from a large-scale corpus created
by DeepSeek-AI (DeepSeek-AI, 2024), which fo-
cuses on English and Chinese and is derived from
diverse sources. For the purpose of validation ex-
periments, we sample a subset containing 100B
tokens from the corpus to train our models. For to-
kenization, we utilize the HuggingFace Tokenizer1

tools to train a byte pair encoding (BPE) (Sennrich
et al., 2016) tokenizer with an 8K vocabulary size
on a subset of the training corpus.

Hyper-Parameters. In the validation experi-
ments, we set the number of Transformer layers

1https://github.com/huggingface/tokenizers

to 9 and the hidden dimension to 1280. We sub-
stitute all FFNs with MoE layers, and ensure that
the total number of expert parameters equals 16
times that of a standard FFN. Additionally, we keep
the activated expert parameters, including shared
expert parameters and activated routed expert pa-
rameters, as 2 times that of a standard FFN. Under
this configuration, each MoE model has approx-
imately 2B total parameters, with the number of
activated parameters around 0.3B. As for training,
we employ the AdamW optimizer (Loshchilov and
Hutter, 2019) and set the maximum learning rate
to 1.08 × 10−3. The batch size is set to 2K, and
with a maximum sequence length of 2K, each train-
ing batch contains 4M tokens. Correspondingly,
the total number of training steps is set to 25,000
to achieve 100B training tokens. In order to pre-
vent routing collapse, we set a balance factor of
0.01. Due to the page limit, we leave the other
hyper-parameters in Appendix A.1. We also de-
scribe the training framework and infrastructures
in Appendix B.

Evaluation Benchmarks. We conduct evalua-
tions on a wide range of benchmarks covering var-
ious types of tasks. For language modeling, we
evaluate the models on the test set of Pile (Gao
et al., 2020), and the evaluation metric is the cross-
entropy loss. For language understanding and
reasoning, we consider HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2020), ARC-challenge
and ARC-easy (Clark et al., 2018), and the evalu-
ation metric for these tasks is accuracy. For read-
ing comprehension, we consider RACE-high and
RACE-middle (Lai et al., 2017), and the evalu-
ation metric is accuracy. For code generation,
we consider HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021), and the evaluation
metric is Pass@1. For closed-book question an-
swering, we consider TriviaQA (Joshi et al., 2017)
and NaturalQuestions (Kwiatkowski et al., 2019),
and the metric is the Exactly Matching (EM) rate.

4.2 Evaluations

Baselines. Including DeepSeekMoE, we com-
pare five models for validation experiments. Dense
denotes a standard dense Transformer model with
0.2B total parameters. Hash Layer (Roller et al.,
2021) and Switch Transformer (Fedus et al., 2021)
are two well-known MoE architectures based on
top-1 routing, with 2.0B total parameters and 0.2B
activated parameters. GShard (Lepikhin et al.,
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Metric # Shot Dense Hash Layer Switch Transformer GShard DeepSeekMoE

# Total Params N/A 0.2B 2.0B 2.0B 2.0B 2.0B
# Activated Params N/A 0.2B 0.2B 0.2B 0.3B 0.3B
FLOPs per 2K Tokens N/A 2.9T 2.9T 2.9T 4.3T 4.3T

Pile (Loss) N/A 2.060 1.932 1.881 1.867 1.808

HellaSwag (Acc.) 0 38.8 46.2 49.1 50.5 54.8
PIQA (Acc.) 0 66.8 68.4 70.5 70.6 72.3
ARC-easy (Acc.) 0 41.0 45.3 45.9 43.9 49.4
ARC-challenge (Acc.) 0 26.0 28.2 30.2 31.6 34.3

RACE-middle (Acc.) 5 38.8 38.8 43.6 42.1 44.0
RACE-high (Acc.) 5 29.0 30.0 30.9 30.4 31.7

HumanEval (Pass@1) 0 0.0 1.2 2.4 3.7 4.9
MBPP (Pass@1) 3 0.2 0.6 0.4 0.2 2.2

TriviaQA (EM) 5 4.9 6.5 8.9 10.2 16.6
NaturalQuestions (EM) 5 1.4 1.4 2.5 3.2 5.7

Table 1: Evaluation results for validation experiments. Bold font indicates the best.
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Figure 2: Ablation studies for DeepSeekMoE. The performance is normalized by the best performance.

2021) employs a top-2 learnable routing strategy,
with 2.0B total parameters and 0.3B activated pa-
rameters. DeepSeekMoE has 1 shared expert and
63 routed experts, where each expert is 0.25 times
the size of a standard FFN. Including DeepSeek-
MoE, all compared models share the same training
corpus and training hyper-parameters.

Results. As shown in Table 1, (1) With more total
parameters, Hash Layer and Switch Transformer
achieve significantly stronger performance than the
dense baseline with the same number of activated
parameters. (2) Compared with Hash Layer and
Switch Transformer, GShard has more activated pa-
rameters and achieves slightly better performance.
(3) With the same number of total and activated pa-
rameters, DeepSeekMoE demonstrates overwhelm-
ing advantages over GShard. These results show
the superiority of our DeepSeekMoE architecture.

4.3 DeepSeekMoE Aligns Closely with the
upper bound of MoE Models

For a more precise understanding of the perfor-
mance of DeepSeekMoE, we compare it with larger

baselines with more parameters or computations.

Comparison with GShard×1.5. We first com-
pare DeepSeekMoE with a larger GShard model
with 1.5 times the expert size, which results
in 1.5 times both expert parameters and ex-
pert computation. Evaluation results show that
GShard×1.5 achieves a Pile test loss of 1.808, and
DeepSeekMoE also achieves the same Pile test loss.
This underscores the significant advantage of the
DeepSeekMoE architecture. Due to the page limit,
we show the complete evaluation results including
all the benchmarks in Appendix C.

Comparison with Dense×16. We also compare
DeepSeekMoE and a dense model with the same
number of total parameters. For a fair compar-
ison, we do not use the widely used ratio (1:2)
between the attention and FFN parameters. Instead,
we configure 16 shared experts where each expert
has the same number of parameters as a standard
FFN. This architecture mimics a dense model with
16 times standard FFN parameters, which sets the
strict upper bound of MoE models in terms of the
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Figure 3: Pile test loss with regard to different ratios of
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model capacity. We find that this dense model
achieves a Pile test loss of 1.806, while DeepSeek-
MoE achieves a close Pile test loss of 1.808. Due
to the page limit, we also show the complete evalu-
ation results in Appendix C. To summarize, these
results suggest that, at least at the scale of about
2B parameters and 100B training tokens, the per-
formance of DeepSeekMoE aligns closely with the
theoretical upper bound of MoE models.

4.4 Ablation Studies

We conduct ablation studies for DeepSeekMoE to
substantiate the effectiveness of our two principal
strategies. For a fair comparison, we ensure all
models included in the comparison have the same
number of total and activated parameters.

Shared Expert Isolation. In order to evaluate
the influence of shared expert isolation, based on
GShard, we isolate one expert as the shared one.
From Figure 2, we observe that compared with
GShard, the isolation yields improved performance
across a majority of benchmarks.

Fine-Grained Expert Segmentation. For assess-
ing the effectiveness of fine-grained expert segmen-
tation, we segment each expert into 2 or 4 smaller
experts, resulting in 32 (1 shared + 31 routed) or
64 (1 shared + 63 routed) total experts. Figure 2
shows a consistent trend that finer expert segmenta-
tion granularity corresponds to better performance.

4.5 Analysis on Expert Specialization

We conduct an empirical analysis on the expert
specialization of DeepSeekMoE 2B, which refers
to the model reported in Table 1.

DeepSeekMoE Exhibits Lower Redundancy
Among Routed Experts. In order to assess the
redundancy among routed experts, for each token,
we mask a certain ratio of experts with the highest
routing probability, and then select top-K experts
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Figure 4: Pile loss with regard to different numbers of
activated routed experts in DeepSeekMoE.
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Figure 5: Comparison between GShard and DeepSeek-
MoE trained from scratch and with half the activated
experts.

from the remaining routed experts. For fairness, we
compare DeepSeekMoE with GShard×1.5 since
they have the same Pile loss when no experts are
disabled. As shown in Figure 3, compared with
GShard×1.5, DeepSeekMoE is more sensitive to
the disabling of top routed experts. This implies
lower parameter redundancy in DeepSeekMoE,
since each routed expert is more irreplaceable.

Shared Experts Are Irreplaceable by Routed
Experts. In order to investigate the role of the
shared expert in DeepSeekMoE, we disable it and
activate one more routed expert. The evaluation on
Pile shows a significant increase in the Pile loss, ris-
ing from 1.808 to 2.414, even though we maintain
the same computational cost. This result indicates
that the shared expert captures fundamental and
essential knowledge not shared with routed experts,
making it irreplaceable by routed ones.

DeepSeekMoE Acquires Knowledge More Ac-
curately. In order to validate our claim that
higher flexibility in combining activated experts
contributes to more accurate and targeted knowl-
edge acquisition, we investigate whether DeepSeek-
MoE can acquire requisite knowledge with fewer
activated experts. To be specific, we vary the num-
ber of activated routed experts from 3 to 7 and
evaluate the resulting Pile loss. As demonstrated in
Figure 4, even with only 4 routed experts activated,

1285



DeepSeekMoE is still comparable with GShard.
Encouraged by these findings, we further train

a new MoE model from scratch, which comprises
1 shared expert and 63 routed experts but only 3
routed experts are activated. Figure 5 demonstrates
that, even with the same total expert parameters
and only half of the activated expert parameters,
DeepSeekMoE still outperforms GShard.

5 Scaling up to DeepSeekMoE 16B

With the DeepSeekMoE architecture, we further
scale up our MoE model to a larger scale with 16B
total parameters and train it on 2T tokens.

5.1 Experimental Setup

Training Data and Tokenization For training
DeepSeekMoE 16B, we sample 2T tokens from the
same corpus as described in Section 4.1, and use a
larger BPE tokenizer with a 100K vocabulary size.

Hyper-Parameters For DeepSeekMoE 16B, we
set the number of Transformer layers to 28 and the
hidden dimension to 2048. We substitute all FFNs
except for the first layer with MoE layers, since
we observe that the load balance status converges
especially slower for the first layer. Each MoE
layer consists of 2 shared experts and 64 routed
experts, where each expert is 0.25 times the size
of a standard FFN. Each token will be routed to
these 2 shared experts and 6 out of 64 routed ex-
perts. Under this configuration, DeepSeekMoE
16B has approximately 16.4B total parameters,
with the number of activated parameters around
2.8B. As for training, we employ the AdamW op-
timizer (Loshchilov and Hutter, 2019) and set the
maximum learning rate to 4.2× 10−4. The batch
size is set to 4.5K, and with a maximum sequence
length of 4K, each training batch contains 18M
tokens. Correspondingly, the total number of train-
ing steps is set to 106,449 to achieve 2T training
tokens. In order to prevent routing collapse, we set
a balance factor of 0.001. Due to the page limit, we
leave the other hyper-parameters in Appendix A.2.

Evaluation Benchmarks In addition to the
benchmarks used in the validation experiments,
we incorporate additional benchmarks for a more
comprehensive evaluation. For language model-
ing, we also evaluate the models on the test set
of Pile (Gao et al., 2020). Since the tokenizer
used in DeepSeekMoE 16B is different from that
used in LLaMA2 7B, we use bits per byte (BPB)

as the evaluation metric for a fair comparison.
For reading comprehension, we additionally con-
sider DROP (Dua et al., 2019) and the evaluation
metric is EM. For math reasoning, we addition-
ally incorporate GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), using EM as the
evaluation metric. For multi-subject multiple-
choice, we additionally evaluate the models on
MMLU (Hendrycks et al., 2020) and the evalu-
ation metric is accuracy. For disambiguation,
we additionally consider WinoGrande (Sakaguchi
et al., 2019) and the evaluation metric is accuracy.
Since DeepSeekMoE 16B is pretrained on a bilin-
gual corpus, we also evaluate it on four Chinese
benchmarks: CLUEWSC (Xu et al., 2020), CE-
val (Huang et al., 2023), CMMLU (Li et al., 2023),
and CHID (Zheng et al., 2019). Evaluation metrics
for these benchmarks are accuracy or EM.

5.2 Evaluations

We compare DeepSeekMoE 16B with LLaMA2
7B (Touvron et al., 2023b) and DeepSeek
7B (DeepSeek-AI, 2024), two strong and well-
known dense models trained on 2T tokens. In
addition, DeepSeekMoE 16B and DeepSeek 7B
use the same training data. As shown in Table 2,
we have the following observations: (1) On the
whole, with about only 40% of the computations,
DeepSeekMoE 16B achieves comparable perfor-
mance with LLaMA2 7B and DeepSeek 7B. (2)
DeepSeekMoE 16B exhibits notable strengths in
language modeling and knowledge-intensive tasks
such as Pile, HellaSwag, and TriviaQA. (3) Com-
pared with the excellent performance on other tasks,
DeepSeekMoE exhibits limitations in addressing
multiple-choice tasks, which may stem from the
limited attention parameters in DeepSeekMoE 16B.
(4) Compared with LLaMA2 7B, DeepSeek 7B
and DeepSeekMoE 16B have much stronger perfor-
mance on math, coding, and Chinese benchmarks.
For a more comprehensive understanding of the
training process of DeepSeekMoE 16B, we also
provide the benchmark curves of DeepSeekMoE
16B and DeepSeek 7B (Dense) during training in
Appendix D.

In addition, we provide a comparison between
DeepSeekMoE 16B and other open source models
on the Open LLM Leaderboard in Appendix E.
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Metric # Shot LLaMA2 7B (Dense) DeepSeek 7B (Dense) DeepSeekMoE 16B

# Total Params N/A 6.7B 6.9B 16.4B
# Activated Params N/A 6.7B 6.9B 2.8B
FLOPs per 4K Tokens N/A 187.9T 183.5T 74.4T

Pile (BPB) N/A 0.76 0.75 0.74

HellaSwag (Acc.) 0 75.6 75.4 77.1
PIQA (Acc.) 0 78.0 79.2 80.2
ARC-easy (Acc.) 0 69.1 67.9 68.1
ARC-challenge (Acc.) 0 49.0 48.1 49.8

RACE-middle (Acc.) 5 60.7 63.2 61.9
RACE-high (Acc.) 5 45.8 46.5 46.4
DROP (EM) 1 34.0 34.9 32.9

GSM8K (EM) 8 15.5 17.4 18.8
MATH (EM) 4 2.6 3.3 4.3

HumanEval (Pass@1) 0 14.6 26.2 26.8
MBPP (Pass@1) 3 21.8 39.0 39.2

TriviaQA (EM) 5 63.8 59.7 64.8
NaturalQuestions (EM) 5 25.5 22.2 25.5

MMLU (Acc.) 5 45.8 48.2 45.0

WinoGrande (Acc.) 0 69.6 70.5 70.2

CLUEWSC (EM) 5 64.0 73.1 72.1
CEval (Acc.) 5 33.9 45.0 40.6
CMMLU (Acc.) 5 32.6 47.2 42.5
CHID (Acc.) 0 37.9 89.3 89.4

Table 2: Comparison among LLaMA2 7B, DeepSeek 7B, and DeepSeekMoE 16B.

6 Related Work

The Mixture of Experts (MoE) technique is first
proposed by Jacobs et al. (1991); Jordan and Jacobs
(1994) to deal with different samples with indepen-
dent expert modules. Shazeer et al. (2017) intro-
duce MoE into language model training and build a
large-scale LSTM-based (Hochreiter and Schmid-
huber, 1997) MoE models. As Transformer be-
come the most popular architecture for NLP, many
attempts extend FFNs in a Transformer as MoE lay-
ers to build MoE language models. GShard (Lep-
ikhin et al., 2021) and Switch Transformer (Fedus
et al., 2021) are pioneers which employ learnable
top-2 or top-1 routing strategies to scale the MoE
language models to an extremely large scale. Hash
Layer (Roller et al., 2021) and StableMoE (Dai
et al., 2022) use fixed routing strategies for more
stable routing and training. Zhou et al. (2022) pro-
pose an expert-choice routing strategy, where each
token can be assigned to different numbers of ex-
perts. Zoph (2022) focus on the issues of train-
ing instability and fine-tuning difficulty in MoE
models, and propose ST-MoE to overcome these
challenges. Gao et al. (2022) investigate parameter-
efficient MoE architectures via sharing informa-

tion among experts. Krishnamurthy et al. (2023)
attempt to improve the expert specialization on
toy data. In addition to research on MoE archi-
tectures and training strategies, recent years have
also witnessed the emergence of numerous large-
scale language or multimodal models (Lin et al.,
2021; Du et al., 2022; Ren et al., 2023; Xue et al.,
2023) based on existing MoE architectures. By and
large, most of the previous MoE models are based
on conventional top-1 or top-2 routing strategies,
leaving large room for improving expert special-
ization. In response, we design the DeepSeekMoE
architecture to improve the expert specialization.

7 Conclusion

In this paper, we introduce the DeepSeekMoE
architecture for MoE language models, with the
objective of achieving ultimate expert specializa-
tion. Through fine-grained expert segmentation and
shared expert isolation, DeepSeekMoE achieves
significantly higher expert specialization and per-
formance compared with prevailing MoE architec-
tures. Starting with a modest scale of 2B parame-
ters, we validate the advantages of DeepSeekMoE,
demonstrating its capability to approach the up-
per bound performance for MoE models. Further-
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more, we provide empirical evidence to show that
DeepSeekMoE has a higher level of expert special-
ization than GShard. Scaling up to a larger scale
of 16B total parameters, we train DeepSeekMoE
16B on 2T tokens and demonstrate its outstanding
performance comparable with DeepSeek 7B and
LLaMA2 7B, with only about 40% of computa-
tions. For research purposes, we will release the
model checkpoint of DeepSeekMoE 16B to the
public, which can be deployed on a single GPU
with 40GB of memory. We aspire for this work to
provide valuable insights for both academia and
industry, and contribute to the accelerated advance-
ment of large language models.

Limitations and Future Work

Although we find that finer granularity in expert
segmentation always leads to better model per-
formance, we just use a moderate granularity in
DeepSeekMoE 16B, since too fine granularity will
decrease the computational efficiency. In future
research, we plan to build a scaling law for the
expert segmentation granularity and explore finer
segmentation on larger-scale models.

In addition, since DeepSeekMoE will select
more experts, it has the potential to result in ad-
ditional communication overhead when the experts
are distributed across different devices. In the fu-
ture, we will also design better algorithms and par-
allelism strategies to mitigate such additional com-
munication overhead.

Finally, in this paper, we fix the number of expert
parameters to 16 times that of a standard FFN, and
the number of activated expert parameters to twice
that of a standard FFN. In larger model settings, the
optimal numbers of total parameters and activated
parameters are also a topic for future research and
discussion.
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Appendices

A Details of Hyper-Parameters

A.1 Validation Experiments
Model Settings. In the validation experiments,
we set the number of Transformer layers to 9 and
the hidden dimension to 1280. We employ the
multi-head attention mechanism with a total of 10
attention heads, where each head has a dimension
of 128. For initialization, all learnable parameters
are randomly initialized with a standard deviation
of 0.006. We substitute all FFNs with MoE lay-
ers, and ensure that the total number of expert pa-
rameters equals 16 times that of a standard FFN.
Additionally, we keep the activated expert parame-
ters, including shared expert parameters and acti-
vated routed expert parameters, as 2 times that of a
standard FFN. Under this configuration, each MoE
model has approximately 2B total parameters, with
the number of activated parameters around 0.3B.

Training Settings. We employ the AdamW op-
timizer (Loshchilov and Hutter, 2019) with hyper-
parameters set to β1 = 0.9, β2 = 0.95, and
weight_decay = 0.1. The learning rate is sched-
uled using a warmup-and-step-decay strategy. Ini-
tially, the learning rate linearly increases from 0 to
the maximum value during the first 2K steps. Sub-
sequently, the learning rate is multiplied by 0.316
at 80% of the training steps, and again by 0.316 at
90% of the training steps. The maximum learning
rate for validation experiments is set to 1.08×10−3,
and the gradient clipping norm is set to 1.0. The
batch size is set to 2K, and with a maximum se-
quence length of 2K, each training batch contains
4M tokens. Correspondingly, the total number of
training steps is set to 25,000 to achieve 100B train-
ing tokens. Due to the abundance of training data,
we do not use dropout during training. Given the
relatively small model size, all parameters, includ-
ing expert parameters, are deployed on a single
GPU device to avoid unbalanced computation. In
order to prevent routing collapse, we set the balance
factor to 0.01.

A.2 DeepSeekMoE 16B
Model Settings. For DeepSeekMoE 16B, we set
the number of Transformer layers to 28 and the hid-
den dimension to 2048. We employ the multi-head
attention mechanism with a total of 16 attention
heads, where each head has a dimension of 128.
As for initialization, all learnable parameters are

randomly initialized with a standard deviation of
0.006. We substitute all FFNs except for the first
layer with MoE layers, since we observe that the
load balance status converges especially slower
for the first layer. Each MoE layer consists of 2
shared experts and 64 routed experts, where each
expert is 0.25 times the size of a standard FFN.
Each token will be routed to these 2 shared ex-
perts and 6 out of 64 routed experts. An even finer
expert segmentation granularity is not employed
due to the potential reduction in computational ef-
ficiency associated with excessively small expert
sizes. At a larger scale over 16B, a finer granularity
can still be employed. Under our configuration,
DeepSeekMoE 16B has approximately 16.4B total
parameters, with the number of activated parame-
ters around 2.8B.

Training Settings. We employ the AdamW op-
timizer (Loshchilov and Hutter, 2019) with hyper-
parameters set to β1 = 0.9, β2 = 0.95, and
weight_decay = 0.1. The learning rate is also
scheduled using a warmup-and-step-decay strat-
egy. Initially, the learning rate linearly increases
from 0 to the maximum value during the first 2K
steps. Subsequently, the learning rate is multiplied
by 0.316 at 80% of the training steps, and again
by 0.316 at 90% of the training steps. The max-
imum learning rate for DeepSeekMoE 16B is set
to 4.2 × 10−4, and the gradient clipping norm is
set to 1.0. The batch size is set to 4.5K, and with
a maximum sequence length of 4K, each training
batch contains 18M tokens. Correspondingly, the
total number of training steps is set to 106,449 to
achieve 2T training tokens. Due to the abundance
of training data, we do not use dropout during train-
ing. We leverage pipeline parallelism to deploy
different layers of a model on different devices,
and for each layer, all the experts will be deployed
on the same device. Therefore, there will not be
unbalanced computation during training. In order
to prevent routing collapse, we set a quite small
balance factor of 0.001 because we find that under
our parallelization strategy, a higher balance fac-
tor cannot increase the computation efficiency, but
instead, it will compromise the model performance.

B Infrastructures

We conduct experiments based on HAI-
LLM (High-Flyer, 2023), an efficient and
light-weight training framework which integrates
multiple parallelism strategies, including tensor
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parallelism (Shoeybi et al., 2019; Narayanan
et al., 2021; Korthikanti et al., 2023), ZeRO data
parallelism (Rajbhandari et al., 2020), PipeDream
pipeline parallelism (Harlap et al., 2018), and more
specifically, expert parallelism (Lepikhin et al.,
2021) by combining data and tensor parallelism. In
order to optimize performance, we develop GPU
kernels with CUDA and Triton (Tillet et al., 2019)
for gating algorithms and fusing computations
across linear layers in different experts.

All experiments are carried out on clusters
equipped with NVIDIA A100 or H800 GPUs. Each
node in the A100 cluster contains 8 GPUs con-
nected pairwise via the NVLink bridge. The H800
cluster also features 8 GPUs per node, intercon-
nected using NVLink and NVSwitch within nodes.
For both A100 and H800 clusters, InfiniBand inter-
connects are utilized to facilitate communication
across nodes.

C Comparisons among DeepSeekMoE
and Larger Models

We show the comparisons among DeepSeekMoE,
larger GShard models, and larger dense models in
Table 3.

D Training Benchmark Curves of
DeepSeekMoE 16B

We present the benchmark curves during training
of DeepSeekMoE 16B and DeepSeek 7B (Dense)
in Figure 6 for reference.

E Evaluation on Open LLM Leaderboard

Beyond our internal evaluations, we also evalu-
ate DeepSeekMoE 16B on the Open LLM Leader-
board2 and compare it with other open source mod-
els. The Open LLM Leaderboard is a public leader-
board supported by HuggingFace, it consists of six
tasks: ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2020),
TruthfulQA (Lin et al., 2022), Winogrande (Sak-
aguchi et al., 2019), and GSM8K (Cobbe et al.,
2021). In addition to LLaMA2 7B, we take a
broader set of open source models into consid-
eration, including LLaMA 7B (Touvron et al.,
2023a), Falcon 7B (Almazrouei et al., 2023), GPT-J
6B (Wang and Komatsuzaki, 2021), RedPajama-
INCITE 7B and 3B (Together-AI, 2023), Open
LLaMA 7B and 3B (Geng and Liu, 2023), OPT

2https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

2.7B (Zhang et al., 2022), Pythia 2.8B (Biderman
et al., 2023), GPT-neo 2.7B (Black et al., 2021),
and BLOOM 3B (Scao et al., 2022). The evalu-
ation results, as presented in Figure 7, show that
DeepSeekMoE 16B consistently outperforms mod-
els with similar activated parameters by a large
margin. Moreover, it achieves comparable perfor-
mance with LLaMA2 7B, which has approximately
2.5 times the activated parameters.
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Metric # Shot GShard×1.5 Dense×16 DeepSeekMoE

Relative Expert Size N/A 1.5 1 0.25
# Experts N/A 0 + 16 16 + 0 1 + 63
# Activated Experts N/A 0 + 2 16 + 0 1 + 7
# Total Expert Params N/A 2.83B 1.89B 1.89B
# Activated Expert Params N/A 0.35B 1.89B 0.24B
FLOPs per 2K Tokens N/A 5.8T 24.6T 4.3T
# Training Tokens N/A 100B 100B 100B

Pile (Loss) N/A 1.808 1.806 1.808

HellaSwag (Acc.) 0 54.4 55.1 54.8
PIQA (Acc.) 0 71.1 71.9 72.3
ARC-easy (Acc.) 0 47.3 51.9 49.4
ARC-challenge (Acc.) 0 34.1 33.8 34.3

RACE-middle (Acc.) 5 46.4 46.3 44.0
RACE-high (Acc.) 5 32.4 33.0 31.7

HumanEval (Pass@1) 0 3.0 4.3 4.9
MBPP (Pass@1) 3 2.6 2.2 2.2

TriviaQA (EM) 5 15.7 16.5 16.6
NaturalQuestions (EM) 5 4.7 6.3 5.7

Table 3: Comparisons among DeepSeekMoE, larger GShard models, and larger dense models. In the line of “#
Experts”, a + b denotes a shared experts and b routed experts. In the line of “# Activated Experts”, a + b denotes
a activated shared experts and b activated routed experts. DeepSeekMoE achieves comparable performance with
a GShard model containing 1.5 times expert parameters and computation. In addition, DeepSeekMoE nearly
approaches the performance of a dense model with 16 times FFN parameters, which sets the upper bound for MoE
models in terms of the model capacity.
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Figure 6: Benchmark curves during training of DeepSeekMoE 16B and DeepSeek 7B (Dense).
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