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Abstract

The upscaling of Large Language Models
(LLMs) has yielded impressive advances in nat-
ural language processing, yet it also poses sig-
nificant deployment challenges. Weight quan-
tization has emerged as a widely embraced so-
lution to reduce memory and computational
demands. This paper introduces BitDistiller,
a framework that synergizes Quantization-
Aware Training (QAT) with Knowledge Distil-
lation (KD) to boost the performance of LLMs
at ultra-low precisions (sub-4-bit). Specif-
ically, BitDistiller first incorporates a tai-
lored asymmetric quantization and clipping
technique to maximally preserve the fidelity
of quantized weights, and then proposes a
novel Confidence-Aware Kullback-Leibler Di-
vergence (CAKLD) objective, which is em-
ployed in a self-distillation manner to enable
faster convergence and superior model per-
formance. Empirical evaluations demonstrate
that BitDistiller significantly surpasses exist-
ing methods in both 3-bit and 2-bit configura-
tions on general language understanding and
complex reasoning benchmarks. Notably, Bit-
Distiller is shown to be more cost-effective, de-
manding fewer data and training resources. The
code is available at https://github.com/
DD-DuDa/BitDistiller.

1 Introduction

Scaling up model sizes has been pivotal to the suc-
cess of large language models (LLMs), yielding
unprecedented performance across diverse natu-
ral language processing tasks (Brown et al., 2020;
Touvron et al., 2023; Kaplan et al., 2020). How-
ever, such escalating model size poses significant
challenges in deployment, particularly on resource-
constrained devices, due to the substantial memory
footprint and computational requirements.

Weight quantization has emerged as a popular
strategy to enhance the efficiency and accessibility
of LLMs by reducing model size with minimal per-
formance loss (Gholami et al., 2022). In practice,
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Figure 1: Bit-Level scaling laws for code generation
performance for 3B to 34B parameter coder models.
BitDistiller outperforms existing QAT methods in both
3-bit and 2-bit settings. Details in Table 2.

4-bit quantization has been widely adopted, offer-
ing a balance between a considerable compression
ratio and the preservation of LLM capabilities (Lin
et al., 2023; Frantar et al., 2022; Liu et al., 2023a).

However, sub-4-bit quantization significantly
degrades the fidelity of model weights, leading
to deteriorated model performance, especially in
smaller models or tasks requiring complex rea-
soning (Dettmers and Zettlemoyer, 2023). To ad-
dress this, researchers have developed various Post-
Training Quantization (PTQ) and Quantization-
Aware Training (QAT) methods (Chee et al., 2023;
Shao et al., 2023). PTQ, while appealing with-
out retraining, struggles to preserve model perfor-
mance at very low precisions. In contrast, QAT
incorporates quantization into the training loop, en-
abling dynamic adaptation to reduced precision and
thus maintaining higher accuracy (Liu et al., 2023b;
Kim et al., 2023a). Despite its early promise, two
fundamental challenges are essential for achieving
high model performance in extreme low-bit QAT:
how to maximally preserve weight fidelity during
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quantization, and how to effectively learn low-bit
representations during training.

In this work, we present BitDistiller, a novel
framework that synergizes QAT with Knowledge
Distillation (KD) to significantly boost the perfor-
mance of sub-4-bit quantized LLMs. To minimize
quantization error, BitDistiller employs a tailored
asymmetric quantization and clipping strategy to
maintain the capabilities of the full-precision model
as much as possible, particularly at ultra-low-bit
levels. For efficient and effective low-bit repre-
sentation learning, BitDistiller leverages a simple
yet effective self-distillation approach, wherein the
full-precision model acts as its own teacher to re-
fine the low-bit student model. Notably, BitDis-
tiller innovates with a Confidence-Aware Kullback-
Leibler divergence (CAKLD) objective that opti-
mizes knowledge transferring efficacy, enabling
faster convergence and enhanced model perfor-
mance.

Our empirical evaluations, conducted on a di-
verse suite of general language understanding and
complex reasoning tasks including mathematics
and coding, demonstrate that BitDistiller signifi-
cantly outperforms existing PTQ and QAT meth-
ods in the realm of sub-4-bit quantization. As il-
lustrated in Figure 1, BitDistiller achieves the most
favorable scaling law in both 3-bit and 2-bit config-
urations on the code reasoning benchmark. More-
over, BitDistiller is demonstrated to be more cost-
effective, requiring less training data and fewer
training resources, thereby marking a significant
advancement toward deploying robust Large Lan-
guage Models on resource-constrained devices.

2 Background and Related Work

2.1 Weight Quantization for LLMs

PTQ and QAT PTQ is directly applied to pre-
trained models without additional training. PTQ
for LLMs typically employs techniques that either
adjust quantization error (Frantar et al., 2022; Chee
et al., 2023) or prioritize salient weights (Dettmers
et al., 2023b; Lin et al., 2023; Kim et al., 2023b).
However, the lack of retraining with PTQ may
cause notable decreases in model performance at
extremely low precisions. In contrast, QAT inte-
grates quantization into the training phase, enabling
the model to learn better representations for low-
bit weights, as demonstrated by approaches like
LLM-QAT (Liu et al., 2023b), OmniQuant (Shao
et al., 2023), PB-LLM (Shang et al., 2023), and Bit-

Net (Wang et al., 2023). Despite improved model
performance, QAT is still challenged by the need of
extensive training and data, with significant poten-
tial for further optimization and enhancement. In
this work, we harness the synergy of QAT and KD
to enhance the performance of quantized LLMs,
especially at sub-4-bit settings.

Granularity and Format Optimizations Exten-
sive research indicates that adopting finer-grained
quantization approaches, such as group-wise quan-
tization, can achieve higher accuracy compared to
layer-wise or channel-wise methods (Shen et al.,
2020; Frantar et al., 2022). Floating-point for-
mats (FP8/FP4/NF4) have been demonstrated to
deliver superior accuracy compared to integer for-
mats (INT8/INT4) in LLM quantization (Kuzmin
et al., 2022; Dettmers and Zettlemoyer, 2023;
Zhang et al., 2023b). Notably, asymmetric quanti-
zation methods, particularly for floating-point for-
mats, outperform their symmetric counterparts by
better accommodating the distribution of model
weights (Zhang et al., 2023a). BitDistiller aligns
with these insights, employing finer granularity and
asymmetric techniques for quantization.

2.2 Knowledge Distillation for LLMs

In the realm of LLMs, white-box knowledge distil-
lation (KD) has become increasingly prevalent due
to the accessible distribution of the teacher model,
which facilitates the transmission of knowledge
representations to the student model (Hinton et al.,
2015; Zhu et al., 2023). Notably, MINILLM (Gu
et al., 2023) utilizes the reverse KLD to ensure
the accuracy and fidelity of language generation.
GKD (Agarwal et al., 2023) has explored alter-
native divergences and addressed the distribution
mismatch by sampling outputs from the student
model during training.

To attain exceedingly high compression ratios, a
promising method is to combine KD with model
quantization, where KD can be effectively used to
mitigate the accuracy decline of quantized mod-
els (Zhang et al., 2020; Kim et al., 2022). In
cutting-edge research applying QAT-based KD for
LLMs, TSLD (Kim et al., 2023a) considers risks
of overfitting and conducts logit distillation with
ground truth loss. Similarly, LLM-QAT leverages
randomly teacher-generated data for data-free dis-
tillation. In distinction from TSLD and LLM-QAT,
we achieve better performance and cost-efficiency
in the extremely low-bit quantization level.
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3 Methodology

LogitsLogits

Confidence-Aware KLD 

Teacher Asymmetric 
Quantization

Student
Asymmetric 

Clipping

Input 𝑥 Output 𝑦𝑃

Teacher generationTeacher generation

Input 𝑥 Output 𝑦𝑃

Figure 2: Depiction of the QAT-based KD framework
of BitDistiller.

In this section, we introduce BitDistiller, a QAT
with self-distillation framework for LLMs, as illus-
trated in Figure 2. To maximally preserve weight
fidelity during quantization, we first present an
asymmetric quantization and clipping method (see
Section 3.1). Second, to counteract the perfor-
mance degradation caused by precision reduction,
we adopt Knowledge Distillation and propose a
novel Confidence-Aware KL divergence (CAKLD)
objective, in which the full-precision model acts as
a teacher and the low-precision one plays a student
(see Section 3.2).

Algorithm 1 outlines the process of BitDistiller.
Given the full-precision weight w, BitDistiller
adopts the asymmetric clipping to alleviate outliers
in w (Line 1), prior to the training loop. Then, in
each training step, BitDistiller forwards the model
with the quantized weights (wt

Q), computes the
loss with the proposed CAKLD objective (Line 4-
5), and updates the full-precision weights (Line 6-
7) (Bengio et al., 2013). When the training finishes,
BitDistiller returns the final quantized weights.

3.1 Asymmetric Quantization and Clipping
The adoption of finer granularities, or smaller
group sizes, in weight quantization of LLMs inher-
ently leads to asymmetrical distributions and the
presence of outliers in weight groups. Proper man-
agement of asymmetry is crucial to maintaining
model performance in low-bit PTQ regimes. Our
investigation reveals that the effects of asymme-
try are more prominent in extremely low-bit QAT,
such as 3-bit and 2-bit configurations, necessitat-
ing tailored strategies to address these challenges.

Algorithm 1 BitDistiller
Input: Full-precision weight w, Dataset D =

{(x, y)}, Learning rate η, Training step T
Require: Clipping function Clip, Quantization

function Q, Loss function DCAKLD
Output: Low-precision weight wT

Q

1: w1 = Clip(w);
2: for t = 1 to T do
3: Sample a batch of data B from D;

▷ Forward with quantized weight
4: wt

Q = Q(wt);

5: Compute DCAKLD(P
w ∥ Pwt

Q) on B;
▷ Backward on full-precision weight wt

6: Compute gradients ∂DCAKLD
∂wt ;

7: wt+1 = Update(wt, ∂DCAKLD
∂wt , η);

8: end for
9: wT

Q = Q(wT );

Therefore, in BitDistiller, we adopt asymmetric
quantization techniques coupled with asymmetric
clipping strategies to enhance the representational
fidelity of quantized weights and maximally pre-
serve the capabilities of the full-precision model.

Asymmetric Quantization Previous studies
have shown that floating-point formats (e.g., FP,
NF) often outperform integer formats (INT) in
LLM quantization (Dettmers et al., 2023a; Liu
et al., 2023a). However, as the quantization level
falls to 2-bit, we observed a notable decline in the
effectiveness of FP/NF formats. This advantage of
FP/NF formats is attributed to their non-uniform
nature, which can capture a wider range of values.
Such a non-uniform distribution aligns better with
the natural distribution of weight tensors in LLMs.
In 2-bit cases, the limited representational capacity,
offering only four distinct values, undermines the
benefits of non-uniform distribution and impedes
the efficient utilization of each numerical value. In
light of these findings, we employ NF formats for
quantization above 2-bit, while opting for the INT
format at the 2-bit level.

For NF formats (e.g., NF3), we adopt the AFPQ
method (Zhang et al., 2023a) to enable asymmet-
ric quantization, which establishes separate scales,
spos for positive weights wpos and sneg for negative
weights wneg, as shown in Equation 1. For INT
formats (e.g., INT2), we utilize conventional asym-
metric methods with a single scale and a designated
zero point, as detailed in Equation 2.
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NF -Asym : Q(w) =

{
⌊wpos

spos
⌉, if w > 0

⌊wneg

sneg
⌉, if w ≤ 0

(1)

INT -Asym : Q(w) = ⌊w − z

s
⌉ (2)

Asymmetric Clipping The strategy of clipping,
which involves constraining the range of weight
values, has been recognized for its contribution to
maintaining high accuracy after quantization (Sakr
et al., 2022; Shao et al., 2023). However, naive
clipping methods often fall short in effectiveness,
while advanced clipping techniques come at a high
computational cost which is prohibitive for practi-
cal QAT use (Li et al., 2019; Jung et al., 2019). To
circumvent these limitations, we propose the use of
asymmetric clipping solely during the initial phase,
prior to the commencement of QAT. Asymmetric
clipping at initialization provides a good starting
point that significantly contributes to the final over-
all quantized model accuracy without incurring the
prohibitive costs associated with iterative clipping
optimization.

To enable asymmetric clipping for QAT initial-
ization, given input features X cached from a small
calibration set, we conduct an automatic search for
two optimal clipping values, α and β, for each layer
of the model. These values aim to minimize the
output difference after quantization. Formally, the
objective is to optimize the following:

α∗, β∗ = argmin
α,β

||Q(wc)X − wX||

wc = Clip(w,α, β)
{
α ∈ [min _val, 0)
β ∈ (0,max _val]

(3)

To demonstrate the efficacy of asymmetric quan-
tization and clipping, we conduct a tensor-wise
analysis. We selected a random weight tensor from
the LLaMa-2-7B model and focused on a single
output channel. As illustrated in Figure 3, our ap-
proach to asymmetric quantization and clipping
achieves higher fidelity preservation compared to
symmetric quantization. A more detailed ablation
study on the impact of asymmetric quantization
and clipping on model performance is presented in
Table 3 in Section 4.4.

3.2 Self Distillation with CAKLD
To better counteract the performance degradation
caused by precision reduction, we propose to adopt
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Figure 3: (Top) The original weight distribution of a
single output channel in the final down projection layer
of LLaMA-2-7B. (Middle&Bottom) The weight dis-
tribution after symmetric quantization and asymmetric
quantization and clipping, both using 3-bit quantization
with the group size of 128.

Knowledge Distillation (KD) in QAT, where the
full-precision model acts as a teacher and its quan-
tized variant plays a student:

L = D(PT ∥ PS), (4)

where D is a divergence measure of two distribu-
tions. PT and PS denote the full-precision and
quantized model, respectively.

The intuition for KD is two-fold. First, learn-
ing the token-level probability distributions po-
tentially helps the quantized model better imitate
its full-precision counterpart (Hinton et al., 2015),
thereby re-gaining the strong downstream perfor-
mance. Second, owing to the generative nature of
LLM, it is easy to scale up the data size for QAT
with the full-precision model.

The divergence D chosen for distillation plays
a crucial role. Agarwal et al. (2023) find that the
mode-seeking behavior advocated by the Reverse
KL divergence (i.e., DKL(PS ∥ PT )) leads to bet-
ter performance than Forward KL (i.e., DKL(PT ∥
PS)) on instruction tuning (Chung et al., 2022),
while Forward KL promotes mode-covering and
is superior on general text generation tasks like
summarization (Narayan et al., 2018). To provide
a general receipt for QAT, we aim to seek a way
to trade off the mode-seeking and mode-covering
behaviors automatically, instead of manual selec-
tion according to some empirical understanding of
downstream tasks.

To this end, we propose a novel Confidence-
Aware KL divergence, shorted as CAKLD. It
blends the Reverse KL and Forward KL with a co-
efficient γ estimated by the averaged token proba-
bility, so that the mode-seeking and mode-covering
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Figure 4: Comparison of Reverse KL, Forward KL and
CAKLD, when a Gaussian distribution tries to fit a
Gaussian mixture (Teacher).

behaviors can be automatically traded off accord-
ing to the full-precision model’s confidence on the
training data:

DCAKLD(PT ∥ PS) = γDKL(PS ∥ PT )

+ (1− γ)DKL(PT ∥ PS)

DKL(PT ∥ PS) =E(x,y)∼D[
1

|{y}|

|{y}|∑

i=1

Ec∼PT (·|x,y<i)[log
PT (c|x, y<i)

PS(c|x, y<i)
]]

γ = E(x,y)∼D[
1

|{y}|

|{y}|∑

i=1

PT (yi|x, y<i)]

(5)

Intuitively, when the full-precision model is con-
fident on the training data, CAKLD will prefer
more on the mode-seeking behaviors. Otherwise,
CAKLD will advocate more on the mode-covering
behaviors, as the full-precision model is not certain
about the data and modeling its single mode is sub-
optimal. Figure 4 visualizes the difference between
Reverse KLD, Forward KLD and CAKLD when
a Gaussian distribution tries to fit a Gaussian mix-
ture. It is clear that CAKLD manages to trade off
mode-seeking and mode-covering behaviors with
the coefficient. For a detailed performance compar-
ison and in-depth analysis, please refer to Figure 6
and Appendix A.2

4 Experiments

We evaluate BitDistiller on the LLaMA-2 (Touvron
et al., 2023) families and domain-specific LLMs
with sub-4–bit quantization. We have set up com-
parative experiments to demonstrate the proficiency
of our method against existing PTQ and QAT meth-
ods. Our findings illustrate that BitDistiller sub-
stantially enhances both the general language per-
formance and the accuracy of reasoning tasks.

4.1 Experimental Settings
Tasks and Models Following (Frantar et al.,
2022; Lin et al., 2023), we benchmark LLaMA-2

(Touvron et al., 2023) on general language tasks, in-
cluding language modeling tasks (WikiText-2 (Mer-
ity et al., 2016)), common sense QA benchmarks
(PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), ARC
(Clark et al., 2018)) and in-context learning ability
(MMLU (Hendrycks et al., 2020)) under a few-shot
setting. We also consider the complex reasoning
tasks and evaluate various sizes of domain-specific
LLMs, including WizardCoder (Luo et al., 2023)
on LLM-Humaneval-Benchmarks (Chen et al.,
2021) in the setting of greedy decode, and Meta-
Math (Yu et al., 2023) on GSM8K (Cobbe et al.,
2021). To evaluate the domain-specific LLMs of
smaller sizes, we finetune OpenLLaMA-3B (Geng
and Liu, 2023) with domain-specific datasets.

Baselines PTQ baselines include vanilla round-
to-nearest (RTN), GPTQ (Frantar et al., 2022),
AWQ (Lin et al., 2023), SpQR (Dettmers et al.,
2023b) and QuIP (Chee et al., 2023). QAT base-
lines include Omniquant (Shao et al., 2023), LLM-
QAT (Liu et al., 2023b) and TSLD (Kim et al.,
2023a). Detailed PTQ and QAT settings can be
found in appendix A.1.

Quantization and Distillation We focus on 3-
bit/2-bit group-wise quantization, with a group size
of 128 (represented as ’g’) as the default setting
except for the 3B models with a group size of 64
because of the dimension constraint. Following
(Liu et al., 2023b; Kim et al., 2023a), we utilize
logits distillation. Prior to QAT, the coefficient γ,
key for CAKLD, is pre-calculated from a subset
of D. The implementation details and example
analysis of CAKLD are available in Appendix A.2.

Training Datasets We use the instruction-tuning
data from Alpaca (Taori et al., 2023) and the train-
ing set of WikiText-2 for general language tasks.
For code understanding and generation, we use
Evol-Instruct-Code (Rosh, 2023). For math reason-
ing we use MetaMathQA (Yu et al., 2023).

Given the instruction prompt x, sequence s =
{x, y} where output y ∼ p(·|x) have three differ-
ent choices: Ground Truth yg, Student-generated
Output yq and Teacher-generated Output yp. As
suggested by (Agarwal et al., 2023; Zhou et al.,
2023), we opt to generate the Teacher-generated
Output yp using sampling with a temperature of
0.7 (Yuan et al., 2023). We conduct experiments
in Section 4.4 for an ablation study on the choices
of output y. (See Appendix A.3 for more details of
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LLaMA-2-7B PPL ↓ MMLU (5s) PIQA Hella. Wino. ARC-c Avg

BF16 5.47 46.45 77.86 57.14 68.35 43.34 58.63

RTN 6.65 38.65 75.24 53.70 67.32 38.56 54.69

3 Bits
GPTQ 6.38 39.57 75.46 51.68 67.16 38.39 54.45

g128
AWQ 6.71 39.68 76.27 55.14 67.56 40.61 55.85

OmniQuant 6.10 41.22 77.47 54.41 67.09 39.08 55.85
LLM-QAT 6.02 41.32 77.26 54.74 68.35 40.61 56.46

BitDistiller (ours) 5.97 43.65 76.99 55.38 68.35 41.21 57.12

RTN 3453 24.12 53.43 26.33 49.96 21.58 35.08
GPTQ NaN 23.12 49.51 25.04 49.57 22.69 33.99

2 Bits AWQ 2.2e5 25.38 52.39 25.70 50.12 21.33 34.98
g128 OmniQuant 12.84 25.42 58.92 29.20 50.83 19.45 36.76

LLM-QAT 9.30 23.62 70.08 43.79 61.64 29.09 45.64
BitDistiller (ours) 8.08 29.25 73.61 48.70 61.09 33.27 49.18

Table 1: General language task results of BitDistiller versus established PTQ and QAT methods on LLaMA-2-7B
Model. Our method achieves leading performance in both 3-bit and 2-bit quantization.

training datasets composition).

Training Implementation We leverage Deep-
Speed (Rasley et al., 2020) and HuggingFace repos-
itory (Wolf et al., 2020) to devise a QAT-based
KD framework enabling the distillation of models.
The model optimization is facilitated through the
AdamW optimizer (Loshchilov and Hutter, 2017),
applied with zero weight decay. We initialize the
constant learning rate to 8e-6 and set the sequence
length to 1024 for the code-related task and 512 for
others.

4.2 Evaluation on Language Modeling Tasks

Table 1 presents a comparative analysis of Bit-
Distiller’s performance against previous PTQ and
QAT methods on general language tasks. BitDis-
tiller surpasses competing methods in terms of
WikiText-2 perplexity and MMLU (5-shot) accu-
racy. Furthermore, BitDistiller demonstrates con-
sistent performance across various QA benchmarks.
Notably, in 2-bit weight quantization, BitDistiller
substantially increases the average accuracy by
+3.54% over LLM-QAT (Liu et al., 2023b) and
by +12.43% compared to the leading PTQ method
(Shao et al., 2023). Similar results on LLaMA-2-
13B and LLaMA-2-70B can be found in the Ap-
pendix A.4.

4.3 Evaluation on Reasoning Tasks

Table 2 demonstrates the superior performance of
BitDistiller on reasoning-based benchmarks, in-
cluding HumanEval and GSM8K, across a range of
domain-specific language model families. BitDis-

tiller achieves improvements over other methods
in both 3-bit and 2-bit quantization. Especially
in 2-bit quantization, while other methods exhibit
significant performance drops, BitDistiller main-
tains a commendable level of accuracy. Detailedly,
our method outperforms LLM-QAT by a remark-
able margin of 24.69%, achieving an accuracy of
61.33% on complex mathematical reasoning tasks.
These outcomes bolster the potential for imple-
menting ultra-low-precision inference deployment
in practical reasoning tasks without substantially
compromising performance.

4.4 Ablation Studies

Asymmetric Quantization and Clipping In this
ablation study, we evaluate the efficacy of quanti-
zation strategies on the LLaMA-2-7B model. Our
approach examines the impact of asymmetric quan-
tization and clipping techniques within QAT. We
specifically assess the 3-bit and 2-bit quantization
levels, reporting our findings in terms of Perplexity
(PPL) and MMLU (5-shot).

As demonstrated in Table 3, asymmetric quanti-
zation significantly enhances model performance.
Notably, under a 2-bit configuration, PPL can be
reduced from 3.4e2 to 16.94 in post-training. Fur-
thermore, the application of asymmetric clipping
during initialization yields additional performance
gains upon training completion. See Appendix A.5
for integration with other PTQ methods.

Data Generation In our analysis, we metic-
ulously evaluated the logit information of the
teacher model by computing the cross-entropy
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Domain-specific LLMs HumanEval @WizardCoder GSM8K @MetaMath
3B 7B 13B 34B 3B 7B 13B

BF16 23.17 54.88 62.80 71.95 36.40 66.41 72.30

RTN 4.27 34.15 50.00 33.54 17.50 59.30 68.51
GPTQ 4.30 46.34 55.48 63.41 6.72 62.11 68.75

3 Bits AWQ 16.46 45.73 53.04 67.07 21.87 62.34 68.67
g128 OmniQuant 10.36 44.51 54.88 68.90 23.67 61.70 68.28

LLM-QAT 18.29 48.78 57.92 66.46 26.25 60.78 66.62
BitDistiller (ours) 20.73 53.66 63.41 69.51 32.50 64.38 69.69

RTN 0.0 0.0 0.0 0.61 0.0 0.0 7.89
GPTQ 0.0 0.0 1.83 3.65 0.0 0.0 11.43

2 Bits AWQ 0.0 0.0 0.0 0.0 0.0 0.0 7.89
g128 OmniQuant 0.0 0.0 20.12 26.83 0.0 0.0 9.45

LLM-QAT 0.0 14.63 15.21 29.27 6.56 23.13 36.64
BitDistiller (ours) 7.31 36.59 42.07 46.34 16.09 51.02 61.33

Table 2: Reasoning task results of BitDistiller versus established PTQ and QAT methods on domain-specific LLMs.
Our method achieves leading performance in both 3-bit and 2-bit quantization.

LLaMA-2-7B PPL ↓ MMLU (5s) ↑
(start 7→ end ) (start 7→ end )

3 Bits
NF-Sym 6.45 7→ 6.10 38.28 7→ 39.27

g128
→ NF-Asym 6.30 7→ 6.01 41.53 7→ 42.61
+ Clip-Asym 6.08 7→ 5.97 42.90 7→ 43.65

2 Bits
INT-Sym 2.4e5 7→ 2.5e5 24.95 7→ 26.03

g128
→ INT-Asym 3.4e2 7→ 16.94 24.12 7→ 24.82
+ Clip-Asym 17.98 7→ 8.08 26.75 7→ 29.25

Table 3: Ablation study of asymmetric quantization and
clipping on WikiText2 perplexity and MMLU (5-shot).
The "start 7→ end" notation denotes the metric values
before and after training.

loss (CELoss) for various outputs y. Figure 5a
illustrates that the data generated by the teacher
model yp exhibits low CELoss, indicative of a
high-confidence logit distribution, which in turn
facilitates better convergence with our proposed
CAKLD. The comparative performance results de-
picted in Figure 5b reveal that the use of teacher-
generated data in conjunction with CAKLD yields
superior outcomes when compared to employing
either a fixed dataset or student-generated data yq.

Distillation Objectives In Figure 6, we demon-
strate the effectiveness of our proposed Confidence-
Aware KL Divergence (CAKLD) by showcasing
performance indicators for reasoning tasks under
different objective functions. Our findings show
that CAKLD outperforms other objective functions.
Though JSD also has a bounded coefficient for in-
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Figure 5: Comparative analysis of using various data
generation methods on WizardCoder-7B. (a) shows
the per-token cross-entropy loss. (b) presents the Hu-
manEval Pass@1. (‘QAT w.o. KD’ indicates the base-
line where only the ground truth dataset is used for
supervised fine-tuning, without knowledge distillation.)

terpolation, in practice we observe that it has a
weak ability to converge for QAT.

4.5 Analysis and Discussion

Comparison with SpQR SpQR automatically
identifies sensitivity outliers and stores them in
sparse matrices at higher precision while compress-
ing all other weights to lower bits. For a fair com-
parison, we experimented with the configuration
of SpQR to achieve an average bit rate similar to
BitDistiller. As shown in Table 4, BitDistiller con-
sistently outperforms SpQR across various bench-
marks. Since sparse representation is orthogonal to
QAT with distillation, we plan to investigate how
QAT can effectively manage outliers using higher
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Figure 6: Performance comparison between different
objective functions on WizardCoder-7B and MetaMath-
7B with domain-specific tasks.

precision in sparse matrices.

Model Avg bits Method PPL ↓ MMLU (5s) QA-avg

LLama-2-7B

3.16 SpQR 6.06 40.96 59.61
3.15 BitDistiller 5.97 43.65 60.48
2.36 SpQR 11.99 26.35 48.47
2.15 BitDistiller 8.08 29.25 54.17

LLama-2-13B

3.16 SpQR 5.28 52.42 63.23
3.15 BitDistiller 5.20 53.21 63.90
2.28 SpQR 10.54 28.87 49.69
2.15 BitDistiller 6.78 37.50 57.63

Table 4: Performance comparison of quantized mod-
els using SpQR and BitDistiller on LLaMA-2-7B and
LLaMA-2-13B.

Comparison with QuIP QuIP enhances 2-bit
PTQ for LLMs through incoherence processing.
Its subsequent iteration, QuIP#1, refines this ap-
proach by shifting from scalar quantization to vec-
tor quantization via lattice codebooks, significantly
narrowing the performance gap with 16-bit mod-
els. For a consistent comparison, we utilize the
BF16 pretrained model and then apply Quip(#) and
BitDistiller. As shown in Table 5, our BitDistiller
surpasses QuIP across all benchmarks. In compar-
ison with QuIP#, BitDistiller retains its superior
performance in language modeling and program-
ming, while QuIP# outperforms in mathematical
reasoning. Being orthogonal to QAT with distil-
lation, PTQ incorporating incoherence processing
and vector quantization could potentially serve as
an effective initialization method for BitDistiller.
We intend to explore whether the integration of
QuIP(#) into BitDistiller can further improve the
performance of low-bit models.

Comparison with TSLD Prior work (Kim et al.,
2023a) introduced Token-Scaled Logit Distillation

1https://cornell-relaxml.github.io/
quip-sharp/

Method LLaMA-2-7B WizardCoder-7B MetaMath-7B
PPL↓ MMLU (5s) QA-avg HumanEval GSM8K

BF16 5.47 46.45 61.67 54.88 66.41

Quip 55.65 24.70 39.23 0.0 0.0
2 Bits Quip# 8.97 30.90 52.40 12.96 60.00

BitDistiller 8.08 29.25 54.17 36.58 51.02

Table 5: Performance comparison of 2-bit quantized
models using QuIP, QuIP#, and BitDistiller on LLaMA-
2-7B, WizardCoder-7B, and MetaMath-7B.

(TSLD) to alleviate overfitting during QAT. To fa-
cilitate a direct and fair comparison between TSLD
and our CAKLD, we incorporate TSLD into the
BitDistiller framework by replacing CAKLD with
TSLD while keeping all other settings unchanged.
As depicted in Figure 7, CAKLD not only con-
verges more rapidly but also delivers superior over-
all performance compared to TSLD.
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Figure 7: Comparison of TSLD and CAKLD on per-
plexity (left) and reasoning tasks performance (right).

Effectiveness of Self-Distillation Table 6 com-
pares 2-bit QAT performance using the LLaMA-2-
7B or larger LLaMA-2-13B as the teacher model.
Surprisingly, in practice the larger 13B model
didn’t improve accuracy, hinting that a teacher with
the same model architecture as the student may
enhance weight alignment and probability distri-
bution matching, thereby improving model effec-
tiveness. Further investigation and deeper analysis
are needed in future work to fully understand the
implications of different teacher-student sizes and
architectures in QAT.

LLaMA-2-7B Quantized Student Teacher PPL ↓ MMLU (5s) ↑

2 Bits 7B 13B 8.12 28.27
g128 7B 7B 8.08 29.25

Table 6: Performance comparison of 2-bit quantized
models using LLaMA-2-13B and LLaMA-2-7B as the
teacher model.

Training Efficiency Table 7 highlights the effi-
ciency of BitDistiller compared to LLM-QAT (Liu
et al., 2023b) in quantizing the WizardCoder-7B
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model. The results demonstrate a dramatic reduc-
tion in the total time required for quantization: Bit-
Distiller completes the process in approximately 3
hours on a single A100-80G GPU, as opposed to
the hundreds of GPU hours required by LLM-QAT.
(Original LLM-QAT uses 64 GPUs. For a direct
and fair comparison, we evaluate the GPU hours
needed for LLM-QAT on a single GPU.)

Method Devices #Data Time (Hours)
Data Gen Quant Init QAT Total

LLM-QAT
1 * A100 80G

100K 270 0 10.64 280.64
BitDistiller 2K 1.47 0.63 0.92 3.02

Table 7: Time required for LLM-QAT and BitDistiller
to quantize WizardCoder-7B on a NVIDIA A100-80G.

5 Conclusion

BitDistiller leverages QAT with self-distillation to
boost sub-4-bit LLM performance. The asymmet-
ric quantization and clipping strategies, coupled
with the innovative CAKLD objective, facilitate
faster learning and superior performance. BitDis-
tiller outperforms existing PTQ and QAT methods,
achieving notable improvements in 3/2-bit settings
across diverse language and reasoning tasks. More-
over, BitDistiller is more cost-efficient with fewer
data and training resources required.

Limitations

Despite the promising results demonstrated by Bit-
Distiller, it is important to acknowledge certain
limitations and areas for future investigation.

A key limitation lies in the empirical nature of
our findings. For instance, the reason behind the
counterintuitive outcome where a 7B model out-
performs a 13B model as a teacher during the dis-
tillation of a 2-bit 7B student model. Having the
same model architecture may be the reason but not
detailed explained and understood. This highlights
the need for a deeper investigation and theoretical
exploration to complement our empirical observa-
tions.

Looking ahead, we aim to extend BitDistiller
to the realm of 1-bit (binary) quantization. While
this presents a more challenging scenario, it also
offers the potential for significant advancements
in efficient LLM inference as binary weights en-
ables computation with only additions and without
multiplications.

Moreover, the current iteration of BitDistiller ap-
plies exclusively to scalar quantization. As future

work, we plan to explore the adaptation of BitDis-
tiller to vector quantization. Preliminary research
in this area indicates that vector quantization could
yield substantial benefits, and incorporating it into
our framework represents a natural and promising
progression of our research.
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A Appendix

A.1 Details of PTQ and QAT Configuration
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Figure 8: Comparative Evaluation of PTQ Methods
Using Various Calibration Datasets

We evaluate PTQ methods by examining the im-
pact of different calibration dataset distributions.
Illustrated in Figure 8, calibrating with domain-
specific data significantly enhances task-specific
performance. For a fair comparison, all PTQ meth-
ods utilize the default calibration datasets for gen-
eral language tasks and domain-specific calibration
datasets (Rosh, 2023; Yu et al., 2023) for reasoning
tasks.

Regarding QAT methods, it should be noted that
the use of symmetric quantization in LLM-QAT re-
sults in degradation when grouped quantization is
applied. To ensure a fair comparison, we replicate
the approach with our setup and employ asymmet-
ric uniform quantization.

A.2 Implementation Details and Analysis of
Confidence-Aware KLD
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Figure 9: Per-token confidence scores when teacher
model (full-precision) conducting text generation task
and reasoning task.

We use a straightforward method in the pre-
calculation of the coefficient γ. We utilize ten

batches of training data to perform forward passes
without updating parameters. Subsequently, we ob-
tain the logits from the teacher model to compute
the average token probability. In Figure 9, we have
conducted analysis by examining the confidence
scores of the teacher model in various tasks during
next-word prediction. This analysis reveals that
confidence levels can vary in text generation tasks,
in contrast to reasoning tasks where each step is
critical. Notably, in text generation tasks using
LLMs, relying solely on the highest conditional
probability through Greedy Search may result in
local optima, overlooking more optimal sequences.
These observations advocate for a mean-seeking
Kullback-Leibler (KL) approach, encouraging the
student model to encompass all potential modes
of the teacher, thereby more effectively capturing
the teacher’s general generative capabilities. In rea-
soning tasks, where the teacher model shows high
confidence in next-word predictions, the student
model should concentrate on learning the predomi-
nant mode from the teacher. Our proposed method,
CAKLD, is designed to balance these two distinct
modes effectively.

A.3 Training Datasets Examples
For general language tasks, we mix token se-
quences from Alpaca and WikiText-2 datasets with
a ratio of 2:1. Since WikiText-2 lacks explicit in-
structions, we utilize the first 128 tokens from
the corpus as the input prompt for the teacher
model’s generation process, setting the tempera-
ture to 0.7. For tasks related to code understanding
and generation, we employ the Evol-Instruct-Code
dataset. For mathematical reasoning, we utilize
MetaMathQA. Examples of the training data uti-
lized are shown in Table 9.

It is essential to highlight that our self-distillation
process utilizes only a small portion of the involved
datasets.

A.4 Evaluation of General Language Tasks on
LLaMA-2-13B and LLaMA-2-70B

Additional results for the General Language Tasks
for LLaMA-2-13B and LLaMA-2-70B are pre-
sented in Table 10 and Table 11, respectively.

A.5 Integration with AWQ For Quantization
Strategies

As shown in Table 8, we explore the efficacy of
combining asymmetric clipping with AWQ during
the self-distillation process. Our results indicate
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LLaMA-2-7B PPL ↓
(start 7→ end )

INT-Asym 6.65 7→ 6.15
3 Bits AWQ 6.48 7→ 6.09
g128 Clip-Asym 6.21 7→ 6.00

AWQ + Clip-Asym 6.18 7→ 6.00

INT-Asym 3.4e2 7→ 16.94
2 Bits AWQ 2.2e5 7→ Inf
g128 Clip-Asym 17.98 7→ 8.08

AWQ + Clip-Asym 16.61 7→ 8.13

Table 8: Results of quantization initialization for QAT
combining with AWQ on PPL of WikiText-2.

that asymmetric clipping significantly enhances ro-
bustness in sub-4-bit quantization scenarios. For
instance, at the 2-bit quantization level, both INT-
Asym and AWQ methods are unable to complete
the task. Conversely, Clip-Asym not only succeeds
but also achieves a marked improvement in per-
plexity. It is also noteworthy that while integrating
AWQ prior to QAT yields improvements initially,
there is no additional performance gain after train-
ing. This suggests that a straightforward clipping
approach is sufficiently effective for initializing
QAT.
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Tasks Resources Number Instruction Teacher Response

General Language Tasks Alpaca 4K Find the five steps to meditate 1. Find a quiet place to meditate\n2.
Sit in a comfortable position\n3.
Close your eyes and take a deep
breath\n4. Focus your attention on
your breath\n5. When thoughts in-
vade your mind, gently bring your
attention back to your breath

General Language Tasks WikiText 2K In December 1856 , Rice brought forward two bills
in Congress : an enabling act that would allow Min-
nesota to form a state cons

itution, and a bill that would allow
Missouri to secede from the Union.
The bills were defeated, and Rice
was removed from the chairmanship
of the House Judiciary Committee.
......

Code-related Tasks Evol-Instruct-Code 2K Create a nested loop to print every combination of
numbers between 0-9, excluding any combination
that contains the number 5. Additionally, exclude any
combination that contains a repeating digit. Imple-
ment the solution without using any built-in functions
or libraries to check for repeating digits.

Here’s one way to implement the
solution:\n“‘ python\r\n for i in
range(10):......

Math-related Tasks MetaMathQA 2K A store is comparing their profits throughout the year.
They had profits of $1,500 in the first quarter of the
year, $3,000 in the third quarter, and $2,000 in the
fourth quarter. If their annual profits are $8,000, how
much profit, in dollars, did they make in the second
quarter?

\nThe annual profit is the sum of
the profits in each quarter, so $8,000
= $1,500 + $3,000 + $2,000 + x,
where x is the profit in the sec-
ond quarter.\nTo find x, we need
to isolate it on one side of the equa-
tion.......

Table 9: The Training Dataset examples for different tasks.

LLaMA-2-13B PPL ↓ MMLU (5s) PIQA Hella. Wino. ARC-c Avg

BF16 4.88 55.54 79.16 60.13 72.14 48.12 63.02

RTN 5.52 50.74 78.35 57.75 71.11 43.86 60.36

3 Bits
GPTQ 5.41 50.63 77.26 56.84 70.72 42.83 59.66

g128
AWQ 5.47 49.64 77.09 57.52 70.32 43.86 59.69

OmniQuant 5.48 48.97 77.64 57.08 70.88 44.28 59.77
LLM-QAT 5.32 51.60 78.29 58.45 70.56 44.62 60.70

BitDistiller (ours) 5.20 53.21 78.67 58.66 71.59 46.67 61.76

RTN 109.21 24.74 57.56 32.56 50.75 21.84 37.49
GPTQ 15.08 23.70 56.04 30.99 51.22 19.28 36.25

2 Bits AWQ 1.2e5 27.04 53.16 25.82 51.70 23.04 36.15
g128 OmniQuant 25.69 26.09 61.81 31.92 51.38 22.27 38.69

LLM-QAT 7.80 29.37 74.10 49.49 63.14 33.87 49.99
BitDistiller (ours) 6.78 37.50 75.84 51.30 65.90 37.46 53.60

Table 10: General language task results of BitDistiller versus established PTQ and QAT Methods on LLaMA-2-
13B Model. Our method achieves leading performance in both 3-bit and 2-bit quantization.
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LLaMA-2-70B PPL ↓ PIQA Hella. Wino. ARC-c Avg

BF16 3.32 82.32 64.68 77.74 54.18 69.73

RTN 28.45 94.96 40.11 55.17 26.45 46.67
GPTQ 8.35 62.79 36.54 57.30 23.97 45.15

2 Bits AWQ 7e5 52.29 25.82 48.15 22.78 37.18
OmniQuant 9.77 70.72 45.18 56.20 31.40 50.88

BitDistiller (ours) 5.54 79.54 60.38 75.37 47.10 65.60

Table 11: General language task results of BitDistiller versus established PTQ and QAT Methods on LLaMA-2-
70B Model. Our method achieves leading performance in 2-bit quantization.
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