API-BLEND: A Comprehensive Corpora for Training and
Benchmarking API LLLMs

Kinjal Basu*, Ibrahim Abdelaziz*, Subhajit Chaudhury, Soham Dan,
Maxwell Crouse, Asim Munawar, Vernon Austel, Sadhana Kumaravel,
Vinod Muthusamy, Pavan Kapanipathi, and Luis A. Lastras
IBM Research
{kinjal.basu, ibrahim.abdelaziz1, subhajit, soham.dan, maxwell.crouse, asim} @ibm.com

sadhana.kumaravell @ibm.com, {austel, vmuthus, kapanipa, lastrasl} @us.ibm.com

Abstract

There is a growing need for Large Language
Models (LLMs) to effectively use tools and
external Application Programming Interfaces
(APIs) to plan and complete tasks. As such,
there is tremendous interest in methods that
can acquire sufficient quantities of train and
test data that involve calls to tools / APIs. Two
lines of research have emerged as the predom-
inant strategies for addressing this challenge.
The first has focused on synthetic data genera-
tion techniques, while the second has involved
curating task-adjacent datasets which can be
transformed into API / Tool-based tasks. In
this paper, we focus on the task of identifying,
curating, and transforming existing datasets
and, in turn, introduce API-BLEND, a large
corpora for training and systematic testing of
tool-augmented LLMs. The datasets mimic
real-world scenarios involving API-tasks such
as API/tool detection, slot filling, and sequenc-
ing of the detected APIs. We demonstrate the
utility of the API-BLEND dataset for both train-
ing and benchmarking purposes'.

1 Introduction

Large Language Models (LLMs) have shown re-
markable abilities across a variety of Natural Lan-
guage Understanding (NLU) tasks (Min et al.,
2023), e.g., text generation (Brown et al., 2020;
Radford et al., 2019), summarization (Zhang et al.,
2020; Beltagy et al., 2020), and mathematical rea-
soning (Imani et al., 2023). There has been strong
recent interest in enabling LLMs to call APIs or ex-
ternal tools (such as calculators, calendars, or web
searches (Hao et al., 2023; Qin et al., 2023; Tang
et al., 2023a)) to accomplish high level tasks like
booking a hotel, reserving a table, and automating
a job requisition tasks. These higher-level tasks are
generally conversational and complex. However, in

“These authors contributed equally to this work
' API-BLEND data generation code can be accessed here:
https://github.com/IBM/API-BLEND

Input: "Given the APIs and Parameters below, sequence them in order...Here are some
examples...Query: Can you help me search artificial intelligence on wikipedia?\nAnswer:"
Gold Output: "Wiki (keyword = \"artificial intelligence\")"

¥

‘ ToolLLaMA-2-7B ple 4\ ion>...." | Y

y = artificial intelli X

Wiki(keyword = \"artificial intelligence\")

Lynx-7B

LLaMA-2-7B (APIBlend)

Model Comparison on OOD Data

Avg. F1-API

Avg. F1-Params -

Avg. F1-LCS

0 005 01 015 02 025 03 035 04 045

mLLaMA-2-7B (APIBlend) mLynx-7B mToolLLaMA-2-7B

Figure 1: Top: an example from the API Bank-Levell
dataset (OOD) that showcases LLaMA-2-7b fine-tuned
with API-BLEND generates the correct API and pa-
rameter, whereas the other models hallucinate. Bottom:
performance comparison among three models of simi-
lar sizes; two recent tool-augmented models (Lynx and
ToolLLaMA-2-7B) and a LLaMA-2-7B model trained
with API-BLEND (API-BLEND-LLaMA-2-7B), which
significantly outperforms the other two models.

order to perform such complex tasks, LLMs should
be able to perform simpler tasks with APIs such
as (a) APIs detection: Based on a user query, cor-
rectly choose which API to call, (b) Slot filling?:
Given the API, extract either the slots/parameters
from the user utterances or request from the user
more information to fill the required parameters of
the detected API, and (c) Sequencing: Given an
utterance specifying a task, write the sequence of
APISs that needs to be called to accomplish the task.

Data for the above-mentioned API tasks, both
for training and benchmarking LLMs has been
scarce. Addressing this issue, in the recent past,

*In this paper, slot and input parameters are used inter-
changeably.

12859

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12859-12870

August 11-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/IBM/API-BLEND

...

APIBlend

i i
! :
i SeqSGD ‘SquTIS‘ ‘ SeqSNIPS ‘ ‘ ToolLLM ‘ ‘ API Bank ‘ i
i

1| LLM Assisted Generation Grammar- Based Generation Off-the-Shelf Usage i
i i
: ‘ SeqMultiwOZ ‘ ‘ SeqTopV2 ‘ ‘ SeqToolQA ‘ ‘ ToolBench ‘ ‘ ToolAlpaca ‘ 3
i

i i

Figure 2: API-BLEND Datasets: 10 datasets, 6 curated
as part of this paper and 4 are off-the-shelf datasets used
for out-of-domain testing.

most approaches have relied on synthetically gen-
erated data for training API-augmented LLMs. For
instance, ToolLLM (Qin et al., 2023) produces
multi-sequence REST-API data sourced from GPT-
4 (Achiam et al., 2023), while datasets like Go-
rilla (Patil et al., 2023) utilize synthetic, single-
sequence API data, specifically Deep Learning li-
braries’ APIs, generated from language models.

Although generating synthetic data from LLMs
offers a cost-effective means of obtaining substan-
tial training data, they suffer from several draw-
backs. First, data generation methods are plagued
by critical issues such as bias inherent in the sam-
pling model, and a lack of diversity in the training
dataset. Previous work has shown synthetically
generated data suffers from lack of diversity (Gupta
et al., 2023), and diverse data can improve out-of-
domain (OOD) generalization (Yu et al., 2022).
Consequently, models trained on such data can
overfit on in-distribution APIs and struggle to gen-
eralize to OOD APIs that were not encountered
during training, restricting the broad applicability
of LL.Ms for tool usage. In addition, datasets have
primarily included API detection (single and multi-
ple) and Slot filling in different settings, whereas
Sequencing, a prominent task to perform higher-
level human tasks using APIs has rarely been the
focus in existing works. Lastly, datasets in domains
such as digital assistants and semantic parsing that
are related to API-tasks and are human-annotated
have gone unnoticed in literature due to the emer-
gence of synthetic data generation techniques;

In light of the above issues, we have developed
an API-focused training dataset that leverages a hy-
brid approach for data generation. This is built
upon five human-annotated datasets with LLM-
assisted generation comprising of over 150k, 17k,
and 11k train, development, and test instances. The
transformation primarily focuses on sequencing,
including API detection and slot-filling due to the
sparsity and importance of sequencing data for
training models. Furthermore, these datasets are

collected from different domains such as semantic
parsing, dialog, and digital assistants resulting in a
higher diversity of API data. We show that models
trained on this diverse dataset yield significantly
better OOD generalization performance compared
to other state-of-the-art methods, with an exam-
ple shown in Figure 1. As an evaluation/bench-
marking dataset, we include five different existing
benchmarks for OOD evaluation. In conclusion,
we release API-Blend, a comprehensive API train-
ing, and benchmarking dataset, comprising of 10
datasets (5 for training, and 5 for OOD testing), see
Figure 2.

2 Related Work

2.1 Tool-Usage by LLMs

Many recent works (Komeili et al., 2022; Thoppi-
lan et al., 2022; Gao et al., 2023; Schick et al., 2023)
have explored how to address the susceptibility of
current LLMs to certain errors (e.g., arithmetic (Pa-
tel et al., 2021)) through the use of external tools.
Such tools can be called by an LLM to provide it-
self with access to up-to-date information (Komeili
et al., 2022; Schick et al., 2023), perform math-
ematical operations (He-Yueya et al., 2023), and
even execute formal programs (Gao et al., 2023).

Early approaches to general-purpose training of
LLM tool-use leveraged large amounts of human-
annotated data (Komeili et al., 2022; Thoppilan
et al., 2022). The difficulty in scaling these ap-
proaches was addressed by later works, which uti-
lized self-supervision (Schick et al., 2023; Parisi
et al., 2022) and few-shot prompting (Yao et al.,
2022). The prompting framework of (Yao et al.,
2022) has become widely used when augmenting
LLMs with tools, with many follow-up works ex-
ploring how to improve its cost-effectiveness (Xu
et al., 2023a), performance (Shinn et al., 2023;
Yang et al., 2023), and data generation quality (Qin
et al., 2023; Tang et al., 2023b).

The utility of tool-calling itself has been ex-
plored with many standard benchmarks for ques-
tion answering (Saikh et al., 2022; Yang et al.,
2018), mathematical reasoning (Cobbe et al., 2021),
machine translation (Scarton et al., 2019; Lewis
et al., 2020), and planning (Shridhar et al., 2020).
While useful to serve as a comparison against task-
specific, supervised methods, it is unclear to what
extent these datasets actually require the usage
of tools. As observed by (Zhuang et al., 2023),
such benchmarks do not adequately distinguish be-

12860

tween problems that can be solved using only an
LLM’s internal knowledge and those that can only
be solved through tool calls.

2.2 API Datasets

The first self-supervised approaches to constructing
tool-use datasets (Schick et al., 2023; Parisi et al.,
2022) focused on a small set of general-purpose
tools. Soon after, tool-use was quickly expanded
to general API function calling (Qin et al., 2023;
Tang et al., 2023b; Patil et al., 2023), where the vol-
ume and diversity of APIs and scenarios were in-
stead emphasized. While all of the aforementioned
datasets highlight the number of APIs involved in
their respective corpora, they each vary in terms of
how those API calls are utilized. For instance, some
datasets curate scenarios involving only a single
API call (Tang et al., 2023b; Patil et al., 2023; Xu
et al., 2023b) while others involve multiple calls
(Qin et al., 2023; Hao et al., 2023). In addition,
some require actual calls to a real API to solve
their problems (Qin et al., 2023; Li et al., 2023a;
Xu et al., 2023b), which contrasts with other works
that simulate API calls with a prompted LLM (Tang
et al., 2023b; Patil et al., 2023).

A limitation of the above-listed self-supervised
corpora lies in the evaluation of API-use scenarios.
Some approaches evaluate based on hallucination
rate (Patil et al., 2023) while others rely on a sepa-
rate LLM to assess the quality of an example (Tang
et al., 2023b; Qin et al., 2023). Recent works have
focused on this issue, with Farn and Shin (2023) re-
lying on smaller sets of manually collected ground
truth annotations and Huang et al. (2023) perform-
ing manual inspection of generated data.

3 API-BLEND Dataset Curation

We focus on the setting where the input is a sin-
gle natural language utterance and the output is a
sequence of API calls with their parameter names
and values. API-BLEND consists of datasets cre-
ated via the following three approaches: (1) Lan-
guage Model Assisted approach where prompts are
used based on existing API outputs, (2) a grammar
rule-based approach to convert existing semantic
parsing and personal assistant notations into API
data, and (3) off-the-shelf datasets. Table 1 depicts
the statistics of each dataset and the details of the
approach/dataset is below.

Datasets Train Dev Test Seq. .gvg. No.
arams
Le)
SeqATIS 11,670 694 774 2.13 4.85
SeqSGD 6,782 1,092 1,567 2.44 35
SeqSNIPS 39,750 2,198 2,199 1.96 5.06
SeqMultiwOZ 6,816 485 983 2.36 3.67
SeqTopV2 94,458 13,477 6,095 1.2 1.98
Total 159476 17,946 11,618
ToolLLM-G1 - - 197 2.28
Tool LLM-G2 - - 197 2.55
ToolLLM-G3 - - 97 291 -
API Bank-1 - - 386 1.65 2.25
API Bank-2 - - 71 1.34 2.44
ToolBench-HS - - 100 7.01 0.86
ToolBench-B - - 120 9.45 0.89
SeqToolQA - - 358 2.42 1.45
ToolAlpaca - - 211 1.38 2.01
Total 1737

Table 1: API-BLEND Datasets Statistics: datasets col-
ored in red are used for training and in-domain testing,
while the green ones are used for OOD testing only

3.1 Language Model Assisted Generation

SeqSGD: We created SeqSGD, a dataset based on
Schema-Guided Dialogue (SGD) (Rastogi et al.,
2020) dataset tailored towards API sequence evalu-
ation. SGD contains about 20k annotated conver-
sations between a human and a virtual assistant.
These dialogues consist of engagements with vari-
ous services and APIs across 20 domains, including
banks, events, media, calendar, travel, and weather.
To convert this dataset, for each conversation, we
prompted a pretrained FLAN-T5-XXL? model to
convert each API into a request in natural language.
We then append the corresponding text of each
API to generate the summarized utterance. Figure
3 shows an example. We did not summarize the
conversation itself, because it also contains API
execution results, and using this as input to a sum-
marization model resulted in many noisy details.
To make sure the generated text captures all APIs
and parameter values, we post-process the dataset
to remove any examples where the utterance does
not correctly reflect the ground truth APIs. As a re-
sult of this process, we generated 6.8K train, 1.1K
validation, and 1.6K test examples having an aver-
age API count of 2.44 and an average parameters
count per API of 3.5.

SeqMultiWoz: MultiWoz (Ye et al., 2021) is an-
other multi-domain task-oriented dialogue dataset.
Following the same process of curating SeqSGD
from the SGD dataset, we created SeqMultiWoz,
another API dataset based on MultiWoz. The re-
sulting dataset includes about 6.8k train, 485 val-

3https: //huggingface.co/google/flan-t5-xx1

12861

https://huggingface.co/google/flan-t5-xxl

Human-Bot
Conversation

Human: Hi, | need my
savings account balance

Human: | want to send $30 to Jasbir.

Human: Could you also tell me
about the Antioch weather forecast
on the 14th of March?

("API”: "CheckBalance", "API': "TransferMoney", APIs list "API": "GetWeather",)
SGD "Parameters': { "account_type": "Parameters": { "account_type": ["Parameters": { "city": [
["savings" |} "savings"], "recipient_account_type": ["Antioch"], "date"; ["14th of
"checking"], "recipient_name": [March"]}
_ "Jasbir"], "transfer_amount": ["$30" |})
4 - . ™
Check the balance of my savings account. Summarized Single Utterance Text
SeqSGD Transfer $30 from my savings account to my friend Jasbir's checking account.
kGet the weather for Antioch on the 14th of March.")

Figure 3: Example of the creation process of seqSGD. Starting from the list of APIs, we use few-shot prompting to

generate the summarized single utterance.

Rate (O) rajinikanth: (B-object_name) the (l-object_name) definitive biography (I-object_name)

Parameters

one (l-object_name) out (B-rating_value) of (O) 6 (O) Stars (B-best_rating) and (O) then (O) what (O) s (O) The

MixSNIPS (O) Movie (B-object_type) Schedule (I-object_type) For (O) b&b (B-location_name) Theatres (I-location_name)
[RateBook SearchScreeningEvent Intents]
[rate rajinikanth: the definitive biography one out of 6 stars and then what s the movie schedule for b&b theatres]
SeqSNIPS "API': "RateBook”, "API': "SearchScreeningEvent", API Sequence

"Parameters": { "object_name": "rajinikanth: the definitive "Parameters": { "object_type": "movie schedule",

biography", "rating_value': "one", "best_rating": "é",

"rating_unit": "stars" }

"location_name": "b&b theatres" }

Figure 4: Example of how SeqSNIPS is created. Using a natural language utterance from MixSNIPS and the flat list
of slots, we convert it into a sequence of API calls, each with a dictionary of parameter names and values.

idation, and 1k test samples with an average API
count of 2.36 and an average parameters count per
API of 3.67.

3.2 Grammar-Based Generation

SeqATIS and SeqSNIPS: ATIS (Hemphill et al.,
1990) is a collection of human-annotated queries
about flights. Queries ask for information such as
flight numbers, airports, dates, and other relevant
details. The dataset also provides a range of seman-
tic labels, including intent and slot values. Intents
are the overall goals of the queries, such as “flight
query” or “airfare query” while slot values are the
specific pieces of information that are being re-
quested, such as “departure city” or “arrival time”.
SNIPS (Coucke et al., 2018) is another dataset fo-
cused on voice assistants. It consists of human-
annotated queries that cover various domains such
as weather, music, and calendar.

MixATIS and MixSNIPS are multi-intent
datasets (Qin et al., 2020) built based on ATIS
and SNIPS, respectively. It was created by collect-
ing sentences from the ATIS/SNIPS dataset and
connecting them with conjunctions, such as “and”.

The resulting data had sentences with 1-3 intents at
a probability of 30%, 50%, and 20%, respectively.

One issue with using these two datasets for API
calling is that they do not indicate which param-
eters should be associated with which API. For
example, as Figure 4 shows, the original MixS-
NIPS dataset only evaluates model’s ability to de-
tect the two gold intents and which segments of the
text are the target slots. To convert MixATIS and
MixSNIPS datasets to a sequence of API calls, we
divided utterances back to their original single in-
tent utterances to get the corresponding parameters
for each API. We then parsed its IOB (Inside/Out-
side/Beginning) parameter notations to generate
the list of API parameter names and values. Now,
we merge the utterances back along with the APIs
and their parameters to get the sequence of API
calls. In this way, we have curated SeqATIS and
SeqSNIPS from MixATIS and MixSNIPS, respec-
tively. In SeqATIS, we have around 11.5k train,
700 validation, and 800 test examples having an
average API sequence length of 2.13 and an av-
erage parameter count per API of 4.85. Whereas,
SeqSNIPS consists of around 40k train, 2.2k vali-

12862

dation, and 2.2k test samples with an average API
sequence length of 1.96 and an average parameters
count per API of 5.06.

SeqToolQA: ToolQA (Zhuang et al., 2023) is an
open-source dataset designed for tool-augmented
LLMs evaluation. The dataset tries to address the
issue with current tool-based evaluation methods
which do not distinguish between questions that
can be answered using LLMs’ internal knowledge
and those that require external information through
tool use. To do so, the datasets come with 8 in-
dependant datasets (e.g. Kaggle Flights, Coffee,
Yelp, Airbnb, etc.) and a set of questions that can
be answered only by querying those datasets, hence
ruling out the internal knowledge of LLMs. The
dataset is provided as a set of template-based ques-
tions with their final answers.

However, ToolQA does not provide the interme-
diate set of steps (tools) that need to be executed
to generate the answer to the given questions. The
listing below shows some examples:

{
"qid": "easy-flight-0003",
"question”: "What was the departure time of the
DL891 flight from SEA to LAX on 2022-01-22?",
"answer"”: "11:54"

3

Too address this issue, we propose SeqToolQA
where we used the provided implementation of
ToolQA on how each template question is answered
and transformed into a corresponding set of APIs.
We abstracted 17 different APIs covering 6 do-
mains and created a total of 358 examples for test-
ing purposes. We show an example below:

{
"qid": "easy-flight-0000",
"question”: "What was the departure time of the UAS5S
480 flight from ORD to HSV on 2022-07-067?",
"apis”: [
"LoadDB[DBName=flights]",
"FilterDB[Origin=0RD, Dest= HSV, FlightDate= 20
22-07-06, Flight_Number_Marketing_Airline=5
480, IATA_Code_Marketing_Airline=UA]",
"GetValue[ValueName=DepTime]"
1,
"answer”: "18:11"
}
3}

SeqTopV2: Topv2 (Chen et al., 2020) is a multi-
domain task-oriented semantic parsing dataset com-
prising examples from eight domains; alarm, event,
messaging, music, navigation, reminder, timer, and
weather. The total dataset consists of 180k samples,
randomly divided into training, development, and
test sets for each domain. We followed a straight-
forward approach to convert this dataset into APIs
using its intents “IN:” and slot “SL:” notations.
Note that this dataset genuinely has a sequence of

APIs that has to be followed. In the example “Re-
mind me to email Joy about the details with the
new client tonight”, we transform it into two APIs;
“SEND_MESSAGE” and “CREATE_REMINDER”
where “CREATE_REMINDER” has prerequisite
for “SEND_MESSAGE”.

The original dataset had a lot of “UNSUP-
PORTED” notations for examples where there is no
matching intent. We excluded these cases from our
API dataset. Along with them, we also removed the
samples that had duplicate utterances, ambiguous
intents, and analogous slot names inside the same
intent. We call the resulting dataset SeqTopV2, and
it has 94K, 13.5K, and 6K for training, develop-
ment, and testing splits, respectively.

3.3 Off-the-Shelf Usage

ToolBench: This is a subset of ToolBench (Xu
et al., 2023b) focused on two domains, Home-
Search and Booking. We did not do any transfor-
mation to these datasets and rather used it “as-is”,
since they are already in API form.

ToolLLM (Qin et al.,, 2023) proposes an
instruction-tuning tools dataset and a tool-
augmented LLLM model based on LLaMA-2-7B.
The dataset is created synthetically based on Chat-
GPT and a collection of 16K APIs from RapidAPIL.
The dataset includes three subsets; G1,G2, G3
which refer to single-tool, intra-category multi-tool
and intra-collection multi-tool data, respectively.
We used those three subsets above as-is for out-of-
distribution model evaluation.

API Bank (Li et al., 2023b): is a benchmark de-
signed for evaluating tool-augmented LLMs. It
includes 314 tool-use dialogues with 753 API calls
to assess the existing LLMs’ capabilities in plan-
ning, retrieving, and calling APIs. It also comes
with a larger training dataset of 1.8K dialogues and
a model trained on it (Lynx) initialized from Al-
paca. In this paper, we use the the test sets of API
Bank for out-of-distribution evaluation. Since this
is a dialoge with tools being called in between, we
divided each dialogue into multiple test examples
where each example include a conversation and a
sequence of APIs needed thus far.

ToolAlpaca (Tang et al., 2023a): ToolAlpaca is
a training and evaluation benchmark that is auto-
matically curated through a multi-agent simulation
environment using ChatGPT and GPT-3.5. The cor-
pus contains 3,938 tool-use instances from more
than 400 real-world tool APIs spanning 50 distinct

12863

Data Quality (Avg) Annotator Agreement (Avg)

Datasets Intent S&?:::tc)e Slot Intent s(el';llltlf:tc)e Slot
SeqATIS 0.96 0.96 0.89 1.00 1.00 0.90
SeqSGD 0.98 0.98 0.85 1.00 1.00 0.94
SeqSNIPS 0.93 0.94 0.89 0.98 0.96 0.94
SeqMultiwOZ 1.00 1.00 0.97 1.00 1.00 0.98
SeqTopV2 0.97 0.97 0.89 0.98 0.98 0.90

Table 2: Data Quality with Inter-Annotator Agreement
scores for API-BLEND In-Distribution Datasets.

categories. Although it comes with a training set,
in this paper, we have only used the test set for
out-of-distribution evaluation.

4 Data Quality Assessment

To check the quality of API-BLEND datasets, we
perform human annotation over 50 randomly sam-
pled data from 5 in-distribution datasets (at least
2 annotators per dataset). Table 2 demonstrates
the data quality and annotator agreement scores.
The following steps are taken to measure the data
quality: first, the annotators score each gold sample
(1 if correct, O otherwise) based on the following
3 metrics: (1) “Intent”: whether the intents/APIs
in the output are correct to answer the query; (2)
“Sequence(Intent)”: whether the intents are in the
proper sequence; and (3) “Slor”: whether the slot
names and slot-values are correct. Then, we calcu-
late the average scores across all the annotators and
present them under the “Data Quality” section in
table 2. Furthermore, we assess the annotator agree-
ment by examining each of the three segments: (1)
Intent, (2) Sequence(Intent), and (3) Slot, to de-
termine whether there is a unanimous agreement
among annotators (assigning a value of 1 for agree-
ment and O otherwise). Subsequently, we calculate
the average agreement across all these segments.
As the API-BLEND data suite has been generated
from high-quality datasets from different domains,
we are seeing very high scores in our data quality
assessment, particularly for the easier “Intent” and
“Sequence(Intent)” tasks.

5 Experiments and Results

5.1 Baselines

In our experiments, we have used 9 open sourced
models as baselines: (1) LLaMA-2-70B (Touvron
et al., 2023), (2) Falcon-180B (Almazrouei et al.,
2023), (3) LLAMA-2-7B (Touvron et al., 2023), (4)
FLAN-T5-XXL (Chung et al., 2022), (5) Falcon-
40B (Almazrouei et al., 2023), (6) StarCoder-15B
(Lietal., 2023c), (7) MPT-30B (Team et al., 2023),

(8) ToolLLaMA-2-7B (Qin et al., 2023), and (9)
Lynx-7B (Li et al., 2023b). We tested these models
in three settings; (1) few shot testing: we evaluated
LLAMA-2-70B, Falcon-180B, and ToolLLaMA-2-
7B in a 3 shot mode; (2) Instruction fine-tuning on
target dataset: we consider this setting for FLAN-
T5-XXL, StarCoder-15B, Falcon-40B, and MPT-
30B; and (3) Instruction fine-tuning on combined
datasets: we evaluated this setting for all models in
(2) along with LLaMA-2-7B to evaluate whether
we can get a single model trained on the plurality
of all datasets and still perform well on each in-
dividual test set. For the OOD experiments, we
have used all the fine-tuned models from (3) in con-
junction with the ToolLLaMA-2-7B and Lynx-7B
which are already fine-tuned with the ToolLLM
and APIBench data, respectively.

5.2 Instruction Tuning

In all experiments, we have used the same instruc-
tions for training and testing. We show below the
instruction template. Only when evaluating non-
fine-tuned models or for the OOD experiments, we
also provide 3 ICL examples via the part “Here are
some examples: ICL_EXAMPLES” in the instruc-
tion) and remove it otherwise.

Instruction Template with ICL Examples

Given the APIs and Slots below, sequence them in the
order in which they have to be called to

answer the following query.

Possible APIs: {INTENT_LIST}

Possible Slots: {SLOT_LIST}

Here are some examples: {ICL_EXAMPLES}

Query: {QUERY}

Answer :

5.3 Settings and Parameters:

We used QLoRA (Dettmers et al., 2023) to fine-
tune all our models. While fine-tuning the models
on targeted datasets, we made sure that the model
saw 100k samples in the training process. In com-
bined data training, we fine-tuned the models for 2
epochs over the cumulated datasets. In both cases,
the batch size was 1 with gradient accumulation
steps of 8 and a learning rate of 5e 5.

5.4 Metrics

To perform a fine-grained evaluation of the gener-
ated responses, we use two kinds of evaluation -
standard information retrieval metrics (precision,
recall, and F1 scores) and Longest Common Sub-
sequence (LCS). We report F1 APIs and F1 slots/-
Parameters to compute the F1 scores by comparing
the predicted APIs with the gold ones and the pre-

12864

FT Types Models SeqATIS SeqSNIPS SeqSGD SeqMultiwOZ SeqTopV2 Weighted Avg.
Falcon-180B 0.1510.0210.15 0.3910.0710.40 0.2110.0610.21 0.4410.2510.45 0.0810.0010.09 0.1910.0410.20

No FT LLaMA-2-70B 0.1010.0110.11 0.2610.0310.27 0.1010.0210.10 0.2310.1210.25 0.0410.0010.04 0.1110.0210.12
ToolLLaMA-2-7B 0.2910.0310.32 0.4910.0410.47 0.4310.051045 0.7810.4010.79 0.0710.0010.08 0.2710.0510.28

FT w. dataset FLAN-T5-XXL 0.9210.7210.92 0.9710.9010.97 0.9810.6910.98 1.0010.9911.00 0.9610.8310.96 0.9710.8310.97
meﬁtione;i StarCoder-15B 0.9910.8410.99 0.9610.8710.96 0.9810.6710.98 1.0010.9911.00 0.9510.7810.95 0.9610.8010.96
in the column Facon-40B 0.9210.7010.92 0.9710.891097 0.9610.6210.96 1.0010.9711.00 0.9010.5610.91 0.9310.6710.94
MPT-30b 0.9610.8110.96 0.9710.9010.97 0.9810.6810.98 1.0010.9811.00 0.9610.8410.97 0.9710.8410.97

FLAN-T5-XXL 0.9410.721094 0.9610.8910.97 0.9810.7010.98 1.0010.9711.00 0.9710.8710.97 0.9710.8510.97

StarCoder-15B 0.9810.8110.98 0.9610.8610.96 0.9810.6710.98 1.0010.9611.00 0.9610.8310.96 0.9710.8210.97

FT w. all data LLaMA-2-7B 0.9210.7010.92 0.9610.8810.97 0.9710.6510.97 1.0010.9711.00 0.9610.8510.97 0.9610.8310.97
Facon-40B 0.9010.671090 0.9610.871097 0.9410.6210.94 1.0010.9411.00 0.9310.6610.93 0.9410.7210.94

MPT-30B 0.9410.771094 09710901097 0.9810.7010.98 1.0010.9711.00 0.9710.871097 0.9710.8510.97

Table 3: Evaluation Results on In-Distribution datasets

. Each scores are shown in the following format: API-F1 |

Parameter-F1 | LCS-F1. The weighted average scores are calculated using the number of test samples in Table 1.

dicted parameters of each API with its gold counter-
parts. The rationale for using standard metrics such
as precision, recall, and F1 scores is that they em-
phasize exact matches of API and slot names. This
decision is based on the fact that APIs are highly
specific, and successful execution requires every
detail (e.g., name, parameters, input/output format)
to align perfectly with the API descriptions. Sim-
ilarly, to evaluate the model’s ability to adhere to
the sequence of API calls necessary for responding
to the given natural language query, we compute
the LCS metric to capture the overlap between the
gold and predicted sequences of APIs. For each ut-
terance in the test set, first, we identify the longest
common subsequence (LCS) between the sequence
of APIs in the ground truth and the model’s output
sequence, and then calculate sequence-level preci-
sion and recall. Precision is the length of the LCS
divided by the total number of APIs in the model’s
output sequence, while recall is the length of the
LCS divided by the total number of APIs in the
ground truth sequence. We then calculate average
precision (LCS-Precision) and recall (LCS-Recall)
across all sequences, using these values to compute
an average F1-score (LCS-F1).

5.5 In-Distribution Evaluation Results

No Fine-tuning evaluation: The first experiment
we did was to check how the state-of-the-art open
LLMs perform in such a setting. In particular, we
evaluated LLaMA-2-70B and Falcon-180B using 3-
shot prompting. We also considered ToolLLaMA-
2-7B (Qin et al., 2023); a LLAMA-2-7B based
model trained on API datasets generated using
ChatGPT based on specifications from RapidAPIs.
Table 3 shows the evaluation results on five in-
distribution datasets: SeqATIS, SeqSNIPS, Se-
gSGD, SeqMultiWoz, and SeqTopV2. On all

datasets, all three non-fine-tuned models seem to
get some of the APIs correctly but fail to get the
parameters to call such APIs.

Fine-tuning on One Dataset: In this experiment,
we fine-tune the baselines discussed above on each
dataset and test it on the corresponding test split.
We have evaluated four models here: FLAN-T5-
XXL, StarCoder-15B, Falcon-40B, and MPT-30B.
Ideally, this setting should give the best perfor-
mance since the training data is focused towards
one dataset and its APIs. As shown in Table 3, all
models achieved very good performance (> 90%)
detecting the right APIs with the performance of
all models reaching 100% API-F1 scores for Seq-
MultiWoz dataset. We hypothesize that this high
performance is because the number of APIs in most
datasets is not very large (e.g., 12 APIs for Seq-
MultiWoz). Detecting the correct set of parameter
names and values is a more challenging problem
for most models with performance being the low-
est for the SeqSGD dataset. The weighted average
number suggests that the MPT-30B model is doing
slightly better than the other models.

Fine-tuning on All Training Datasets: In this
setting, we combine all training datasets and fine-
tune the five baseline models on them. The goal of
this experiment is to check if we can get a generic
model that works well when tested on each indi-
vidual dataset. We see in Table 3, on SeqATIS
and SeqMultiWoz, models trained on the combined
training data achieve lower performance compared
to models trained on the individual dataset. Per-
formance on SeqSNIPS was similar for both mod-
els, while models trained on the combined data
achieved better performance on SeqSGD and Seq-
TopV2. The average scores suggest that all models
achieved better performance when trained on the
combined datasets compared with the single dataset

12865

Datasets

Fine-Tuned with all API-BLEND data

Tool-Augmented LL.Ms

Falcon-40B FLAN-T5-XXL MPT-30B LlaMA-2-7B StarCoder-15B ToolLLaMA-2-7B Lynx-7B

ToolLLM-G1 0.4810.47 0.1110.11 0.0710.07 0.3210.32 0.1210.12 0.4310.44

ToolLLM-G2 0.4810.47 0.2410.23 0.0910.08 0.5310.53 0.0110.01 0.3310.34

ToolLLM-G3 0.5010.49 - 0.5110.49 0.1910.20 0.4910.48 0.1610.16 0.5010.50
API Bank-1 0.4210.151044 0.5710.1210.59 0.5910.2110.62 0.5210.1610.55 0.4910.1510.55 0.1110.0410.12 0.3110.1110.33
API Bank-2 0.3710.1610.39 0.5110.1110.53 0.4910.2010.52 0.3810.1410.40 0.4510.1310.48 0.0510.0310.05 0.1910.0910.20
ToolBench-HS ~ 0.9510.7710.92 0.4210.161043 09110.7610.80 0.6910.4110.54 0.9010.8110.89 0.5910.3510.56 0.7710.5510.76
ToolBench-B 0.8910.7610.76 0.3610.0910.33 0.8510.7210.78 0.7610.4910.56 0.4410.3410.40 0.7310.5210.63 0.5710.4710.48
SeqToolQA 0.2710.0210.28 0.1810.0010.19 0.4810.0210.51 0.5010.0010.53 0.2410.0110.26 0.1410.0010.14 0.2710.0210.29
ToolAlpaca 04110.111041 0.5410.1310.55 0.5110.1210.52 0.4610.1310.46 0.4710.1310.49 0.1810.0210.20 0.3210.0410.34
Weighted Avg. 0.4710.2110.46 0.4210.0910.43 0.4910.231049 04110.161040 0.4410.1710.46 0.1810.0910.18 0.3710.1410.38

Table 4: Evaluation Results on Out-of-Distribution (OOD) dataset. Each scores are shown in the following format:
API-F1 | Parameter-F1 | LCS-F1, except the ToolLLM datasets, which are API-only, so they do not have the
Parameter-F1 score. All models are prompted with 3-shot examples. The weighted average scores are calculated

using the number of test samples in Table 1.

training.

5.6 Out-Of-Distribution Evaluation

To check the generalizability of the different API
models, we measure the performance of all models
on five out-of-distribution test sets; ToolLLM, API
Bank, ToolBench, our SeqToolQA, and ToolAl-
paca. Some test sets have subcategories, such as
ToolLLM has G1, G2, and G3; API-Bank has L1
and L2; and ToolBench has HS and B for Home
Search and Booking, respectively. In our test-suite,
ToolLLM is the API-only test-set that does not
have any parameters. In this experiment, we use
the 5 models (i.e., FLAN-T5-XXL, StarCoder-15B,
Falcon-40B, MPT-30B, and LLLaMA2-7B) that are
fine-tuned with our combined data. In addition to
these models, we have also evaluated ToolLLaMA -
2-7B from ToolLLM (Qin et al., 2023) and Lynx-
7B from API-Bank (Li et al., 2023b). In this ex-
periment, we compare the performance with 3-shot
in-context learning examples for all the models.
Table 4 showcases our OOD evaluation results.
Our models that are fine-tuned with API-BLEND
data perform better than other Tool/API augmented
models. This is because our models achieve bet-
ter generalizability as they have seen diverse sets
of API data from different domains in the fine-
tuning process. Falcon-40B and StarCoder-15B
are showing better performance on our API-only
test-set ToolLLM (we did not evaluate FLAN-T5-
XXL on ToolLLM due to max sequence limit),
whereas FLAN-TS5-XXL and MPT-30B are doing
well on API-Bank and ToolAlpaca. Even though
ToolLLaMA-2-7B and Lynx-7B are from Tool-
LLM and API-Bank respectively, still they are per-
forming poorly. In their papers, they used differ-
ent metrics, e.g., pass rate to determine how many
times the model reached an answer, and win rate

which uses ChatGPT as a judge. In both the Tool-
Bench datasets, Falcon-40B is outperforming the
others. On SeqToolQA, even though the models
have scored some points in API detection, how-
ever, all the models performed poorly on detecting
the parameter names and values, which leads to a
low Parameter-F1 score. This is because the pa-
rameter values in SeqToolQA contain codes, SQL,
math functions, etc., which models have not seen
in any training data, and these special slot values
are not trivial to generate by seeing only a few ICL
examples.

5.7 Qualitative Studies

We also performed extensive studies on the outputs
generated by the models in our experiments. In this
section, we are going to discuss our findings on
the failed cases along with some common mistakes
demonstrated by the models. We found, in most
of the cases, that parameters names and values are
the obvious reason for not doing well on slot de-
tection in both in and out-of-distribution test sets.
We provide samples for each case for better under-
standing. We would like to mention that most of
the provided examples contain “gold_output” and
“predicted_output” and we have shown only the er-
ror part (sub-string) from the original outputs for
brevity.

5.7.1 Unnormalized Slot-Values

In an ideal scenario, the parameter values should
be extracted exactly from the query by the models
while generating the texts. However, sometimes,
the model extracts the sub-part of it or represents it
in a different form after extracting it. In a human
evaluation, we would consider the generated text
matches the gold, although while doing it program-
matically it’s showing a mismatch and we have

12866

not found a good way to normalize the parameter
values. The following examples capture some of
the unnormalized parameter value mismatches. In
the first example, the month and the day in the
predicted output are repeated. The predicted out-
put on the second one contains only the city name,
whereas the gold contains the city and the state. In
the final example, even if the intent and slot values
are correct, they have used different parameter for-
mats to represent it. We plan to investigate further
these issues, but we keep it for future work.

SeqSGD
{ "gold"”: "March 3rd, this Sunday”,
"predicted”: "March 3rd, the 3rd”

{ "gold”: "NYC, New York",

"predicted”: "NYC"
¥
ToolBench
{ "gold”: "Date(3, 9, 2023)",
"predicted”: "Date(year=2023, month=3, day=9)"

5.7.2 Semantically similar slot-names in API
Specification

In our instructions, we provide the possible list of
APIs and parameters to be used by the model while
answering the queries. We extract these APIs and
parameters from the original dataset’s API specifi-
cations, if any. However, we found in some cases
the parameter names are semantically very similar
across the datasets. Here are some examples from
the SeqSGD dataset: (1) leaving_date and depar-
ture_date; (2) leaving_time and departure_time;
(3) origin, from_city, and from_location; and (4)
destination, to_city, and to_location. Now, it often
happens that the parameter values are correct in
the generated text but the parameter names do not
exactly match with the gold, even if they are very
close. Following are some examples of such cases.

SeqSGD

{ "gold": "destination_airport = ATL",
"predicted”: "destination = ATL"

3

{ "gold": "show_type = imax",
"predicted”: "theater_name = imax"

}

SeqATIS

{ "gold"”: "cuisine = souvlaki”,
"predicted”: "served_dish = souvlaki”

}

6 Conclusion

This paper presents API-BLEND, a large cor-
pora for training and evaluation of tool-augmented
LLMs, curated from real-world datasets of different
domains such as dialog, semantic parsing, digital
assistants, etc. API-BLEND consists of 10 datasets

(5 in-distribution and 5 out-of-distribution) com-
prising over 190k instances (including train, de-
velopment, and test). We have demonstrated that
the models fine-tuned with API-BLEND general-
ize better than the other tool-augmented LLMs on
OOD experiments. Our findings not only substanti-
ate the importance of API-BLEND in training and
benchmarking tool-augmented LLMs but also high-
light the necessity of generalizability to improve
the API usage capability of LLMs.

7 Limitations and Risks

A limitation of our benchmark, API-BLEND, is
that it does not deal with environment interactions
for an API agent. In future work, it will be inter-
esting to explore this setting of an embodied agent,
where the API calls effect changes in the grounded
environment. Further, our benchmark is focused on
English API commands, and in the future, it will be
interesting to develop a multilingual API-BLEND.
Also, in a real-world scenario, for a query, multiple
correct solutions with different sequences of APIs
are possible, however, the API-Blend dataset does
not have such cases. For the multiple correct solu-
tions, we can evaluate the predicted solution using
one of the following approaches: (i) if the ground
truth consists of all the alternate API sequences,
then we can use our existing metrics by comparing
the predicted sequence with each alternate ground
truth; (ii) if the APIs are executable, then we can
use accuracy-based metrics over the final model
response, and (iii) otherwise we can leverage an
LLM evaluator (as a judge) to calculate the win/-
pass rate (Qin et al., 2023). We do not perceive any
risks associated with our work.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Mérouane Debbah, Etienne Goffinet, Daniel Hess-
low, Julien Launay, Quentin Malartic, et al. 2023.
The falcon series of open language models. arXiv
preprint arXiv:2311.16867.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

12867

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational
Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Nicholas Farn and Richard Shin. 2023. Tooltalk: Eval-
uating tool-usage in a conversational setting. arXiv
preprint arXiv:2311.10775.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764—10799. PMLR.

Himanshu Gupta, Kevin Scaria, Ujjwala Anan-
theswaran, Shreyas Verma, Mihir Parmar,
Saurabh Arjun Sawant, Swaroop Mishra, and
Chitta Baral. 2023. Targen: Targeted data gener-
ation with large language models. arXiv preprint
arXiv:2310.17876.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting
Hu. 2023. Toolkengpt: Augmenting frozen lan-
guage models with massive tools via tool embeddings.
arXiv preprint arXiv:2305.11554.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. arXiv preprint arXiv:2304.09102.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27,1990.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhengiang Gong, et al. 2023. Metatool bench-
mark for large language models: Deciding whether
to use tools and which to use. arXiv preprint
arXiv:2310.03128.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2022.
Internet-augmented dialogue generation. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8460-8478.

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2020. Mlqa: Eval-
uating cross-lingual extractive question answering.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 7315—
7330.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023a. Api-
bank: A benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023b. Api-
bank: A benchmark for tool-augmented llms.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023c. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. 2023.
Recent advances in natural language processing via
large pre-trained language models: A survey. ACM
Computing Surveys, 56(2):1-40.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

12868

http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://aclanthology.org/H90-1021
https://aclanthology.org/H90-1021
http://arxiv.org/abs/2304.08244
http://arxiv.org/abs/2304.08244
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168

Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Libo Qin, Xiao Xu, Wanxiang Che, and Ting Liu. 2020.
Agif: An adaptive graph-interactive framework for
joint multiple intent detection and slot filling. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1807-1816.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language

models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8689-8696.

Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif
Ekbal, and Pushpak Bhattacharyya. 2022. Scienceqa:
A novel resource for question answering on scholarly

articles. International Journal on Digital Libraries,
23(3):289-301.

Scarton Scarton, Mikel L Forcada, Miquel Espla-Gomis,
and Lucia Specia. 2019. Estimating post-editing ef-
fort: a study on human judgements, task-based and
reference-based metrics of mt quality. In Proceed-
ings of the 16th International Conference on Spoken
Language Translation.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
ArXiv, abs/2302.04761.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. In In-
ternational Conference on Learning Representations.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023a. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023b. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

MN Team et al. 2023. Introducing mpt-7b: a new stan-
dard for open-source, commercially usable 1lms.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation
and fine-tuned chat models, 2023. URL https://arxiv.
org/abs/2307.09288.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023a.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023b. On the
tool manipulation capability of open-source large
language models. arXiv preprint arXiv:2305.16504.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023. Mm-
react: Prompting chatgpt for multimodal reasoning
and action. arXiv preprint arXiv:2303.11381.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz.
2021. Multiwoz 2.4: A multi-domain task-oriented
dialogue dataset with essential annotation corrections

to improve state tracking evaluation. arXiv preprint
arXiv:2104.00773.

Yu Yu, Shahram Khadivi, and Jia Xu. 2022. Can data
diversity enhance learning generalization? In Pro-
ceedings of the 29th international conference on com-
putational linguistics, pages 4933-4945.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted

12869

https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301
http://arxiv.org/abs/2306.05301

gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328-11339. PMLR.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and
Chao Zhang. 2023. Toolqa: A dataset for llm ques-
tion answering with external tools. arXiv preprint
arXiv:2306.13304.

12870

