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Abstract

Multistep instructions, such as recipes and how-
to guides, greatly benefit from visual aids, such
as a series of images that accompany the in-
struction steps. While Large Language Models
(LLMs) have become adept at generating coher-
ent textual steps, Large Vision and Language
Models (LVLMs) are less capable of generat-
ing accompanying image sequences. The most
challenging aspect is that each generated image
needs to adhere to the relevant textual step in-
struction, as well as be visually consistent with
earlier images in the sequence. To address this
problem, we propose an approach for gener-
ating consistent image sequences, which inte-
grates a Latent Diffusion Model (LDM) with
an LLM to transform the sequence into a cap-
tion to maintain the semantic coherence of the
sequence. In addition, to maintain the visual co-
herence of the image sequence, we introduce a
copy mechanism to initialise reverse diffusion
processes with a latent vector iteration from
a previously generated image from a relevant
step. Both strategies will condition the reverse
diffusion process on the sequence of instruction
steps and tie the contents of the current image
to previous instruction steps and corresponding
images. Experiments show that the proposed
approach is preferred by humans in 46.6% of
the cases against 26.6% for the second best
method. In addition, automatic metrics showed
that the proposed method maintains semantic
coherence and visual consistency across the
sequence of visual illustrations.1

1 Introduction

When humans undertake a task with numerous in-
tricate steps, merely reading a step description is
limiting, leaving the user to imagine and infer some
of the more nuanced details (Choi et al., 2022).
Complementing the textual step instructions with

1https://novasearch.github.io/
generating-coherent-sequences/

Figure 1: The properties of the elements in illustrations
should remain coherent throughout the whole sequence.

images enhances the user experience by better com-
municating and representing the text semantics and
ideas (Serafini, 2014).

Although prompt-based image generation has ad-
vanced significantly (Betker et al., 2023; Rombach
et al., 2022; Saharia et al., 2022), state-of-the-art
(SOTA) models such as Latent Diffusion Models
(LDMs) (Rombach et al., 2022) still struggle when
generating image sequences to accompany textual
instruction steps (Lu et al., 2023). The challenge
lies in effectively combining two key aspects: (a)
accurately portraying the actions outlined in the
step instructions, and (b) ensuring coherence be-
tween successive images to avoid confusing the
user. Existing storytelling approaches (Feng et al.,
2023; Pan et al., 2022; Rahman et al., 2023) operate
mostly on linear storytelling and use synthetic car-
toon datasets with explicit sequence information,
i.e., the textual prompts describe the images appro-
priately and have no implicit co-references. These
aspects limit the applicability of existing methods
to real-world scenarios (Figure 1), where there is
a lack of informative prompts accompanying im-
ages, and dependencies between prompts are not
necessarily linear.

In this paper, we explore the generation of image
sequences within two domains: recipe instructions,
and Do It Yourself (DIY) guides, both showing in-
creasing online consumption (Bausch et al., 2021;
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Brimble, 2020; Sarpong et al., 2020; Quader, 2022).
In these domains, accuracy and coherence are of
utmost importance to ensure that the result of all
manual actions is correct, and that the user is cor-
rectly guided to the target output, Figure 1. These
domains contain (i) complex sequential manual
tasks of detailed actions, (ii) coherence require-
ments for the images accompanying the sequence
step descriptions, and (iii) a non-linear sequential
structure, where steps may be related to earlier
steps–not necessarily the previous step.

To tackle these challenges, we propose to extend
Latent Diffusion Models (Rombach et al., 2022),
with an LLM decoder to semantically condition
the reverse diffusion process in the sequence of
steps and a copy mechanism to select the best
LDM initialisation. The image generation process
is conditioned on the current step and the previous
steps, to increase semantic coherence. In addition,
our method initializes the reverse diffusion pro-
cess with a latent vector iteration copied from a
previous generation process to ensure the visual
coherence of the generated image. Through this
dual attendance to past textual and visual items in
the sequence, we aim to achieve semantic coher-
ence, which pertains to the presence and persis-
tence of objects in consecutive images, and visual
coherence, which aims to ensure the consistency
of backgrounds and visual object properties across
successive images.

Extensive automatic and manual evaluations con-
firmed that our model outperforms strong baselines
in terms of the overall quality of the generated
sequence of illustrations in the cooking and DIY
domains.

2 Related Work

Methods to generate sequences of images, con-
ditioned on textual input, have been explored in
the story visualization and story continuation tasks.
Story Visualization aims at generating a coherent
sequence of images, based on a multi-sentence
paragraph or a series of captions forming a nar-
rative (Li et al., 2019; Pan et al., 2022; Maharana
et al., 2022). Story Continuation is a variant of
Story Visualization, in which the generated se-
quence is initiated by a source image. In both tasks,
generating every image independently of other im-
ages in the sequence leads to low visual coher-
ence. In contrast, editing the previous image like
in (Cong et al., 2022; Fu et al., 2020) will lead to

insuficiently diverse images.

Several works addressed these tasks. Pan
et al. (2022) proposed AR-LDM, a method to
tackle Story Visualization and Continuation us-
ing a history-aware autoregressive latent diffusion
model (Rombach et al., 2022), which encodes the
history of caption-image pairs into a multimodal
representation that guides the LDM denoising pro-
cess. Despite the intuitive idea, the computational
complexity of the conditioning network makes this
approach too costly. Additionally, AR-LDM still
shows room for improvement in terms of coher-
ence. Feng et al. (2023) noted that AR-LDM con-
ditions the current generation on all historic frames
and captions equally, despite not all frames being
similarly related. To tackle this limitation, they pro-
posed ACM-VSG, a method that selectively adopts
historical text-image data for the generation of the
new image. The adaptive encoder automatically
finds the relevant historical text-image pairs via
CLIP similarity. A key difference between AR-
LDM and ACM-VSG is the computational cost:
while AR-LDM fine-tunes CLIP, BLIP, and the
LDM, ACM-VSG trains only the cross-attention
module, at a much lower cost. Rahman et al. (2022)
used the full history of U-net latent vectors from
all segments of the sequence, averaging these his-
toric latent vectors in a cross-attention layer that is
merged with the existing one in the LDM pipeline.
In this method, image generation is conditioned on
the text and on the entire set of latent vectors, with
limited awareness of the visual coherence between
segments.

The above approaches focus on two synthetic
cartoon datasets (Kim et al., 2017; Gupta et al.,
2018), with limited characters and scenes. Among
these, (Pan et al., 2022) shows limited performance
when applied to real-world sequences, and (Feng
et al., 2023; Rahman et al., 2023) do not evaluate
their solutions in a real-world scenario. Addition-
ally, these datasets have textual descriptions of the
associated images, which are rarely available for
real-world complex tasks – the focus of this paper.

Finally, it is relevant to note the conceptual rela-
tion to the visual storytelling problem (Huang et al.,
2016) to generate a text story from a sequence of
images (Wang et al., 2020; Hsu et al., 2021) and to
the extraction of news storylines (Marcelino et al.,
2019, 2021). While, conceptually similar, both
tasks can be seen as the inverse of the problem
addressed in the current paper.
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3 Illustrating Real-World Manual Tasks

We consider a set of manual tasks D, where each
task TS ∈ D is composed of a sequence of n step-
by-step instructions, TS = {(s1, v1), ..., (sn, vn)}.
A task step (si, vi), consists of a natural language
instruction si, and its corresponding visual instruc-
tion vi.

Given the sequence of steps {s1, . . . , sn},
our goal is to generate a sequence of images
{v1, . . . , vn}, in which vi visually represents step
si. A step si may be dependent on any number
of previous steps, in a non-linear sequential struc-
ture (Donatelli et al., 2021). To generate each im-
age accurately, the model needs to condition its
output not only on si but also on previous steps
{s1, . . . , si−1}; this way, context is preserved even
when steps are ambiguous or lack information, e.g.
“Add two eggs and mix”. In addition to previous
step instructions, we also need to condition on pre-
viously generated images, {v1, ..., vi−1}, to main-
tain the visual aspects that are only introduced in
the images, such as object properties and back-
ground artefacts not mentioned in the text.

4 Sequential Latent Diffusion Model

The latent diffusion model proposed by Rombach
et al. (2022) transforms the diffusion process into a
low-dimensional latent space through an encoder
z = E(v) and recovers the real image with a de-
coder v = D(z). The complete model is also con-
ditioned on an input y by augmenting the U-Net
backbone with a cross-attention layer to support
the encoded input τθ(y). The conditional LDM is
learned with the loss,

LLDM = EE(v),y,ϵ,t

[
∥ϵ−ϵθ(zt, t, τθ(y))∥22

]
, (1)

where ϵ ∼ N (0, 1), t is the denoising iteration, and
the conditioning encoder τθ(y) uses the entire set
of tokens in y to condition the U-Net denoising pro-
cess in the LDM backbone. Eq. 1 evidences how
the conditional LDM is designed to generate one
image v at a time. More relevant to our problem is
the fact that the latent vectors zt are independent
across different image generations, since the re-
verse diffusion process iterates from T to 1 starting
with a new random seed zT for every new image
generation.

4.1 Sequence Context Decoder
Generally, textual step descriptions describe what
the user should do at a specific step of their man-

Figure 2: Example captions generated by InstructBLIP.
In the "No Context" example, the model only receives
the image. In the "Current Step as Context" example,
the model receives the image plus the "Original Step".

ual task. These descriptions do not make accurate
captions of the accompanying step images as they
often contain information that is not visually rep-
resentable, such as temporal information, "Cook
for 10 minutes", or multiple actions, "Chop the
rosemary, dice the carrots, and peel the cucumber."
Additionally, it is also common for steps to not be
self-contained, as they depend on the previous step
descriptions for context.

To overcome this, for each step si, we use a
decoder-only model, φ, which we call Sequence
Context Decoder, to transform the step and its con-
text into a visual caption ci which describes the
contents of the image vi. To ensure the gener-
ated captions are contextually relevant, we adopt
a middle-ground approach and consider the target
step si and a context window of w steps. Formally,
we define the decoder

ci = φ(si, {si−1, . . . si−w}) (2)

to generate a contextual caption ci from its step
description si and context.

The decoder φ(·) is trained similarly to an image
caption generator, but instead of receiving images
as input, it receives the step and its context. By
training the model to output image captions for
the original images that we are trying to replicate,
the model learns to generate texts that are more
appropriate as image generation prompts. The ob-
jective now is learning how to generate better image
generation prompts, instead of training the image
generation module.

To train the decoder model φ(·), we generated
contextual captions for each image in dataset D
using InstructBLIP (Li et al., 2022). To achieve
richer and contextualized captions, we prompted
InstructBLIP with additional context, conditioning
the caption on the recipe steps, in addition to the
image. Figure 2 shows example captions generated
by the model, given a real data point in the dataset.
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Figure 3: The proposed method uses the sequence context decoder to maintain semantic coherence. The reverse
diffusion process uses a conditioning seed ziT that is copied from a previous step and iteration zjk. See Equation 3.

4.2 Sequence Conditioned Reverse Diffusion

To maintain visual coherence among images in
the sequence, we need to condition the current
generation on the previous images. Image-to-
image (Meng et al., 2022) generation follows this
principle, but new images are too strongly influ-
enced by previous ones and do not correctly inte-
grate the new aspects present in the step descrip-
tion.

Following the rationale of conditioning every
reverse diffusion process on previous processes,
we propose to leverage latent vector iterations from
early reverse diffusion processes. This leads us to
the final formulation of the proposed method,

LSLDM (si) = EE(vi),si,ϵ,t

[
∥ϵ− ϵθ(z

i
t, t,

τθ(ci = φ(si, {si−1, . . . , si−w})))∥22
]

(3)

where for each si a new reverse diffusion process
starts with a conditioning seed ziT copied from a
previous step sj with j < i and a latent vector
iteration k corresponding to the latent vector zjk,
as illustrated in Figure 3. Next, we describe the
details of how these two variables are determined.

4.2.1 Random and Fixed Seeds
To ground the generation, a straightforward method
is to set a fixed seed for every step i in the sequence,
ziT = cte. By fixing the initial seed, we aim to
improve the coherence between generated images.
The first two columns in Figure 5 demonstrate this
approach. We observed a greater homogeneity be-
tween generated images when using a fixed seed.
Hence, all step illustrations share the same ran-
dom seed, to achieve more coherent scenes and
backgrounds but without the capacity to select the
optimal starting seed.

4.2.2 Conditioned Initialisation
While using a fixed seed can improve the results,
we argue that a better solution is achieved by us-
ing latent vectors from previous reverse diffusion
processes. In particular, latent vectors that have al-
ready been semantically conditioned on past steps.
Figure 3 shows how the latent vector representa-
tions zit evolve with increasing iterations, until they
arrive at the final image vi = D(zi0) for step si.
These latent representations already contain mean-
ingful information about the image (Mao et al.,
2023), which could be leveraged to improve the
coherence of the following generations. To achieve
this, we need to carefully select which step to
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choose, to use as input seed for the next step image
generation.

A step si may be dependent on any previous
step j < i, {si−1, . . . , s1}. To select the optimal
initialization of the reverse diffusion process for
step si, we start by determining the most similar
step sj as the

argmax
j

sim(si, sj ∈ {si−1, . . . s1}) (4)

where sim(·) represents CLIP text similarity. If
this similarity score is above a predefined threshold
η, we use sj to extract the latent vector. If no step
sj has a similarity score above η, we generated
image vi with the shared random seed.

The reverse diffusion process progressively iter-
ates over the latent vectors towards the final image.
This means that conditioning the reverse diffusion
process on latent vector iterations from a later iter-
ation, i.e. a highly denoised latent vector, would
force the resulting image to be very close to the
previous one. To decide how strongly we want to
condition vi on the step sj , we select the kth latent
vector iteration as

k = n · (sim(si, sj)− η)/(1.0− η) (5)

where n is the maximum number of reverse diffu-
sion iterations that we consider.

This brings us to the target reverse iteration vec-
tor zjk which will be used as a starting seed ziT in
Eq 3 when calculating LSLDM (si). Figure 3 il-
lustrates the whole process: the proposed method
captures the visual aspects that should be in the im-
age, and the linked denoising latent vector provide
the seed to generate a step image.

5 Experimental Methodology

Dataset. We collected a dataset consisting of pub-
licly available manual tasks in the recipes domain
from AllRecipes. We also considered DIY manual
tasks from WikiHow, in an out-of-domain evalu-
ation. Each manual task has a title, a description,
a list of ingredients/resources, and a sequence of
step-by-step instructions, which may or may not be
illustrated. Since we want to illustrate the steps of
a task, we focus on manual tasks which are fully
illustrated, as we can use these images as ground-
truth for training and evaluating our methods. In
total, we used 1100 tasks, with an average of 5.06
steps per task, resulting in 5562 individual steps.

We found that recipes with long steps descrip-
tions or many steps, were difficult to tackle and
produced worse results. This pointed towards a re-
finement of the dataset, so that our approach could
better focus on the issue of coherence, instead of
tackling other problems.

When a step description is too long, it con-
tains too much information, often with multiple
actions, which is hard to represent in a single image.
Adding to this issue, the CLIP (Radford et al., 2021)
text encoder, used in the Stable Diffusion (Rom-
bach et al., 2022) model, truncates the input text
at 77 tokens. We filtered the recipes that had steps
that were too long. A second problem arises when
a recipe has too many steps, as it is difficult to
produce coherent illustrations over such a long se-
quence of steps. To mitigate this concern, we lim-
ited the number of steps in a recipe from 4 to 6
steps. In a final stage of refining the dataset, we re-
moved any steps that did not contain actions which
we could illustrate, such as steps merely saying

“Enjoy!”.

Contextual Caption Generation. As previously
described, we provide InstructBLIP (Li et al., 2022)
with additional context to produce contextualized
captions. We experimented with different context
lengths and decided to rule out experiments that
gave InstructBLIP the full context, i.e., all previous
step instructions, as this led to very long outputs
that often repeated irrelevant information from the
input context, instead of describing the image. We
addressed the issue of long input prompts, by using
a context window, as described in Section 4.1. This
allows us to give the model additional context while
mitigating possible errors in the generated training
caption. When generating the image captions used
to train the Sequence Context Decoder, we pro-
duced two sets of captions: long and short. The
prompt to InstructBLIP consists of the additional
context window followed by "Given the steps, give
a short description of the image. Do NOT make
assumptions, say only what you see in the image.".
We generate captions with a window of 2 steps–
short captions–and with a window of 3 steps–long
captions. Finally, we generate a long and a short
caption for every image, vi in the dataset.

Model Details. To train the sequence context de-
coder model, we fine-tuned an Alpaca-7B model
for 10 epochs on a single A100 40Gb GPU. We
used a cross-entropy loss and a cosine learning rate

12781

https://www.allrecipes.com/
https://www.wikihow.com/


scheduler, starting at 1e−5. The batch size was set
to 2, with a gradient accumulation step of 4. The
dataset had a total of 5562 step-caption pairs, from
which we used 80% for training and 180 exam-
ples for testing. We used a frozen Stable Diffusion
2.1 (Rombach et al., 2022) for image generation.

Human Annotations. To evaluate our models
we ran three annotation jobs, and, in all cases, an-
notators were allowed to provide feedback on the
generation errors. See Appendix D for details. In
the first job, annotators inspected 30 sequences of
images generated with different methods (withheld
from annotators) and selected the 3 best sequences,
out of a total of 5 sequences. Besides this selection,
we provided an additional No good sequence label,
for when no sequence of images was of good qual-
ity. The second job aimed at obtaining finer-grained
annotations for two methods that performed best.
Annotators compared the proposed method against
the second best method (latent 1) and were asked
to select the preferred one or to indicate a tie. After
these two initial human annotation jobs, we decided
to compare the proposed method to the real-world
image sequences and asked annotators to rate the
two sequences. This is by far the most challenging
setting where real-world image sequences have the
natural visual coherence that we wish to achieve.

Automatic Metrics. To assess image sequences
generated by the proposed method, we measured
the semantic correctness and the sequence coher-
ence with CLIPScore (Hessel et al., 2021) and with
the novel DreamSim metric (Fu et al., 2023), re-
spectively. DreamSim measures the similarity be-
tween two images in terms of their foreground ob-
jects and semantic content, while also being sensi-
tive to colour and layout. This is particularly well
suited to our task, as we wish to maintain visual
coherence across the entire sequence.

6 Results and Discussion

In this section, we start by comparing the proposed
method to latent diffusion models, SD2.1 (Rom-
bach et al., 2022), and non-LDM models, i.e.
aMUSEd (Patil et al., 2024) and DALL·E Mini
(Dayma et al., 2021), with automatic metrics. For
the ablation studies, we experimented with using
(1) a random seed for all steps of the sequence,
(2) a fixed seed for all steps of the sequence, (3)
a fixed latent vector iteration from the previous
step, represented by Latent k, where k is the fixed

Figure 4: Automatic evaluation of image sequence.
CLIP-Score (Hessel et al., 2021) measures the align-
ment between the step and the image. DreamSim (Fu
et al., 2023) measures similarity between visual illustra-
tions in the sequence.

iteration, and (4) the proposed method that selects
a latent vector iteration, zji from the previous de-
noising steps as a starting seed.

6.1 Automatic Evaluation

Figure 4 shows that the proposed method can im-
prove the coherence of image sequences (as mea-
sured by DreamSim), while maintaining the same
text-to-image generation capabilities (as measured
by CLIPScore). This result is particularly impor-
tant because it clearly shows that it is possible to
maintain key visual and semantic traits from spe-
cific iterations of the reverse-diffusion process – an
LDM property that we leverage in this paper.

6.2 Sequence Generation Results

Recipes Domain. To validate our initial hypothesis,
we start by analysing its performance in the recipes
domain. Our goal is to assess how conditioning the
reverse diffusion process of each step affects the
overall results. Table 1 provides the complete set
of results across all competing methods. It is clear
how using latent vector iterations and random seeds
supports the intuition behind our method: a manual
task is composed of continuous and independent
actions, which should be conditioned by latent vec-
tor iterations and by random seeds, respectively.
Building on this observation, we calibrated the η
parameter of the proposed method, using human
evaluation, as reported in annex in Table 2.

To compare the proposed method to the best per-
forming method (Latent T-1), we asked annotators
to select the best sequence out of two side-by-side
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Method Best (%) Second
Best (%)

Third
Best (%)

Random seed 17.70 41.20 13.00
Fixed seed 29.40 17.70 33.30
Latent T-1 33.30 17.70 37.04
Latent T-2 17.70 23.50 16.70
Img-to-Img 2.00 0.00 0.00

Table 1: Annotation results for the evaluation of the
various methods of maintaining visual coherence. An-
notators picked No Good Sequence in 18.99% of the se-
quences; we report the results for the remaining 81.01%.

η Best (%) Second
Best (%)

Third
Best (%)

0.70 19.20 12.80 14.90
0.65 12.80 14.90 25.50
0.60 19.20 23.40 21.30
0.55 14.90 23.40 21.30
0.50 34.04 25.53 17.02

Table 2: Annotation results for the sequences generated
with different threshold values, η. Annotators picked
No Good Sequence in 20.34% of the generations; we
show results for the remaining 79.66%.

Method Recipes DIY
(seen) (unseen)

Proposed method (wins) 46.67 30.00
Second best (wins) 26.67 23.33
Tie 10.00 16.67
No good sequence 16.67 30.00

Table 3: Annotation results of the comparison between
our proposed method and the winning method from
Table 1 (Latent T-1).

sequences (see Appendix D for details about the an-
notation instructions). Results reported in Table 3
show that in 46.7% of the cases, human annotators
preferred our method over the alternative and in
10.0% of the cases the two methods were equally
good. According to the annotations, the proposed
method was equal or better than the second best
baseline with an agreement of 70% across the full
set of tasks and annotators. This confirms our hy-
pothesis and supports the importance of selectively
conditioning the denoising process on the previ-
ously generated steps of the sequence.

DIY Domain. To assess the generalisation of the
proposed method, we evaluated its performance
in an unseen domain: DIY tasks. With the re-
sults of our human annotation study, we observed
that the transition from generating recipe images
to DIY tasks has shown promising results. Results
in Table 3 show that in 30.0% of the tasks, neither
method produced satisfactory results. For the tasks
that were correctly illustrated, we see that annota-
tors preferred our method in 30.0% of the tasks,
compared to 23.3% for the second-best approach.
Additionally, 16.7% of comparisons resulted in a
tie between the two methods. Although we see
limitations in this domain, the results show that our
approach is capable of generalizing to an unseen
domain, producing satisfactory image sequences.

Generated vs Ground-Truth Sequences. We
compared the quality of generated image sequences
against the ground-truth sequences and asked hu-
man annotators to rate each sequence in a 5 point
Likert scale. This is a particularly challenging set-
ting because the real image sequences are photos
taken by humans in a real-world setting, where
sequence coherence is naturally captured. Ta-
ble 4 shows that our method achieves over 60%
of the ground-truth score, with the ground-truth
sequences only 0.42 points below the maximum
score.

Method Average Rating

Proposed method 2.93 ± 1.14
Ground-truth 4.58 ± 0.79

Table 4: Human annotation results for the comparison
of the proposed method with ground-truth images.

Qualitative Analysis. To illustrate how different
conditioning methods affect the quality of gener-
ated sequences, we present several examples in
Figure 5 and in Appendix E.2. In Figure 5, we can
see that by using a fixed seed for all steps, we are
able to preserve the background and add objects
for each specific step. We can also see that the
image-to-image method conditions the generations
too strongly. Figure 5 also shows that our method
is capable of preserving and recall key visual arte-
facts from several steps back in the sequence. We
believe this is a distinctive and fundamental feature
of the proposed method.

In the DIY out-of-domain experiment, Figure 6
shows a strong generalization to tasks involving
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Figure 5: Examples of recipe illustrations with different methods for maintaining visual coherence.

Figure 6: Examples of DIY illustrations with different methods for maintaining visual coherence.

simple object utilisation, such as using a broom for
cleaning or a brush for painting. While fixed latent
vector iteration methods show some memorization
capability, the image-to-image generations are too
biased on previous generations, and random seeds
lead to very diverse generations. In this unseen
domain, the proposed method encounters consid-
erable challenges when tasked with more intricate
activities, like performing a car’s oil change with
its complex mechanical components, or engaging
in tasks that involve philosophical or introspective

elements, see Appendix E.2 for visual examples.
It is worth noting that these limitations are inher-
ited from the core image generation method, which
struggles to handle fine-details.

6.3 Sequence Conditioned Reverse Diffusion

To better understand the strength of our visual co-
herence hypothesis, we conducted an experiment
where all the images of the sequence are generated
from the latent vectors of a fixed iteration from the
previous task step. Specifically, we use the latent
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vector iteration k, with k ∈ {1, 2, 5, 10, 20, 49}, of
the previous task step as the starting point of the
current reverse diffusion process.

Our empirical analysis of these generations,
from which some examples can be seen in annex
in Figure 7, confirms our initial hypothesis show-
ing that using latent vector iterations from previous
steps provides a good result in many cases. Ad-
ditionally, this experiment evidences the strength
of latent vector iterations as conditioning signals
in a reverse diffusion process. This experiment
shows that later iterations add a very strong bias
to the generation emphasising the importance of
selecting the best conditioning seed from previous
reverse diffusion iterations and processes. An ex-
treme case of this phenomenon is observed in the
image-to-image method in Figure 5.

6.4 Sequence Context Decoder

We assessed the capacity of the sequence context
decoder of maintaining the semantic coherence by
manually annotating the decoder output for six set-
tings with different context lengths and caption
lengths, Table 5. We considered three context
lengths: the shortest one considers the current step,
while the longest, shows two steps and a caption.
For the captions, we used both short and long cap-
tions, as detailed in Section 5.

Table 5 shows the results for the different evalu-
ation settings. These results indicate that the model
attains the best semantic coherence with a context
window of 2 and with short captions. We observed
that captions generated with short contexts tend to
lack some information, while captions generated
with longer contexts introduced too much infor-
mation, which was often noisy. This is aligned
with a recent study (Liu et al., 2023) that highlights
the fact that current large language models do not
robustly make use of information in long input con-
texts. These results indicate that additional context
needs to be carefully considered and curated, as
the model is not able to filter out excess informa-
tion. In annex E.1 we provide more insight into the
performance of the decoder.

7 Conclusions

In this paper, we addressed the problem of illustrat-
ing complex manual tasks and proposed a frame-
work for generating a sequence of images that il-
lustrate the manual task. The framework is com-
posed of a novel sequence context decoder that

Sequence Context Captions Avg.
Rating

{sn} short 3.00
{sn} long 3.23

{sn, cn−1} short 3.68
{sn, cn−1} long 3.56

{sn, sn−1, cn−2} short 3.41
{sn, sn−1, cn−2} long 3.35

Table 5: Sequence Context Decoder results for different
context lengths, configurations and caption type.

preserves the semantic coherence of a sequence of
actions by transforming it into a visual caption. The
full sequence illustration framework is completed
by a sequence conditioned reverse diffusion pro-
cess that uses a latent vector iteration from a past
image generation process to maintain visual coher-
ence.

Automatic and human evaluations in the target
domain demonstrated the strong performance of
the framework in generating coherent sequences of
visual instructions of manual tasks. The proposed
method was preferred by humans in 46.6% of the
cases against 26.6% for the second best method. In
addition, automatic measures, also confirmed that
our method maintains visual and semantic coher-
ence while illustrating a complex manual task. The
generalization to unseen domains was successfully
validated in the DIY domain with positive results.

8 Risks and Limitations

While we conducted a thorough set of experiments
and validations, we acknowledge that more experi-
ments could shed more light in some aspects. First,
we did not experiment with larger LLMs to dis-
cover the impact of scaling. Second, we also did
not consider that steps may dependent on multiple
previous steps. Third, we did not consider contexts
larger than 3 steps. Finally, in terms of risks, we
acknowledge that our work could potentially be
used to generate false information.
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A Model training

We chose Alpaca-7B as our base model, as it is
an open-source instruction-tuned model, and there
are implementations using LoRA (Hu et al., 2022),
which reduces the computational cost during train-
ing. We encourage future work to study the im-
pacts of scaling the LLM. We experimented with
different hyperparameters, namely different learn-
ing rates, and learning rate schedulers, to find the
most suitable ones for our problem. We point out
that we are using the loss of the models as the
main criterion for future experiments, as we do not
have an automatic metric for evaluating model be-
haviour. The loss is not always indicative of the
model’s performance in the task at hand, as we
verified empirically.

Training Details

Base Model Alpaca-7B

Training Time ≈ 10h
Epochs 10
Loss Function Cross-Entropy
Weight Decay 0.01
Model Max Length 400

Batch Size 2
Gradient Accumulation Steps 4
Effective Batch Size 8

Learning Rate 1e−05

Learning Rate Scheduler Cosine

Optimizer AdamW
Adam β1 0.900
Adam β2 0.999
Adam ϵ 1e−08

LoRA
LoRA Rank 8
LoRA α 32
LoRA Dropout 0.1

Table 6: Training parameters for the best model.

Since the cosine scheduler has greater variability
between runs, due to different number of epochs
leading to different loss curves, we decided to run
further experiments with the next best-performing
model. We experimented with varying the weight
decay parameter but found that there were no sig-
nificant differences in the loss curves for the three
weight decay values.

For the aforementioned runs, we used β1 =

0.900 and β2 = 0.999 as the AdamW optimizer’s
hyperparameters. As a final test, we changed these
to the values proposed by Ouyang et al. (2022),
β1 = 0.900 and β2 = 0.950. We did not see any
improvement in the loss curve.

Based on these results, we fine-tuned our Alpaca-
7B models for 10 epochs on a single A100 40Gb
GPU. We used a cross-entropy loss, a cosine learn-
ing rate scheduler, starting at 1e−5. Our batch size
was 2, with a gradient accumulation step of 4, lead-
ing to an effective batch size of 8. The dataset
had a total of 5562 examples; we used 80% for
training and the remaining for evaluation. Figure 6
summarizes the training information for our best-
performing model.

B Fixed Latent Iteration Generation

As mentioned in Section 6.3, we conducted an em-
pirical analysis of generations using a fixed latent
vector iteration from the previous step. This analy-
sis helped us understand how different latent vector
iterations impact the generation of the following
image. An example from this analysis is shown in
Figure 7.

C Negative Prompts

We found problems which were not related to the
prompts or the concepts we were trying to generate,
but general problems in image generation, i.e., tiled
images, or deformed hands. In order to reduce
some of these common problems, present in Stable
Diffusion generations, we used negative prompts.
A negative prompt steers the generation away from
the concepts present in it. This string of text is
added to the end of the original prompt.

In the negative prompt, we included undesir-
able concepts such as human or hands, and also
included some additional concepts, following com-
mon practices. Our final negative prompt follows:
negative_prompts = ["hands", "human", "person",
"cropped", "deformed", "cut off", "malformed",
"out of frame", "split image", "tiling", "watermark",
"text"].

D Human Annotations

In this Section, we present examples of the annota-
tion tasks.

The human annotation pool consisted of 3 PhD
students and 5 MSc students. 25% of the annotators
were women and 85% were men.
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Figure 7: Maintaining visual coherence through the use of different memory latent vectors.

Figure 8: Annotation of the comparison between visual
coherence methods.

Figure 8 shows the annotation task to choose the
best visual coherence maintaining method. The
annotators saw 5 sequences: Random Seed, Fixed
Seed, Latent 1, Latent 2, and Image-to-Image. They
were then asked to pick the best, second best, and
third best sequences. They could also indicate that
there were no good sequences, by checking the
No good sequence checkbox. Additionally, they

Figure 9: Annotation of the comparison between differ-
ent heuristic thresholds.

could leave an observation, in the appropriate text
area. Figure 9 shows the annotation task to tune
the threshold of our method. The annotators had
to pick between 5 sequences, generated with dif-
ferent values of threshold: 0.50, 0.55, 0.60, 0.65,
0.70. They were asked to pick the best, second
best, and third best sequences. They could also
indicate that there were no good sequences, by
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Figure 10: Annotation of the comparison between our
method and the best visual coherence method.

checking the No good sequence checkbox. They
could also leave an observation, in the appropriate
text area. Figure 10 shows the annotation task to
choose between our method and the winning visual
coherence maintaining method. The annotators
saw 2 sequences, one generated with Latent 1 and
another with our method. They had to choose the
win sequence, or deem them equivalent. If there
was no good sequence, they could check the No
good sequence checkbox. They could also leave
an observation. Figure 11 shows the annotation
task to rate sequences generated with our method
and the ground-truth images, from a scale of 1 to
5. Additionally, the annotators could select that
there was no good sequence, or leave an observa-
tion. Figure 12 shows the annotation guidelines
for the task to rate sequences generated with our
method and the ground-truth images.

E Failure Analysis of Extra Examples

E.1 Sequence Context Decoder
We further analysed the errors of the best method
and present the results in Table 7. Hallucinations
occurred in 3.9% of the generations, and the LLM

Figure 11: Annotation of the comparison between our
method and the ground-truth images.

copied the input into the output in 7.2% of the cases.
Finally, it is interesting to see that the input was too
complex in 6.2% of the cases, i.e., describing more
actions than what is possible to depict in the image.

Error type %

Hallucinations 3.9%
Complex step with many actions 6.2%
Copied input 7.2%

Table 7: The contribution of each error type to the over-
all performance.

E.2 Qualitative Analysis
Table 8 shows some example generations from the
Sequence Context Decoder, each highlighting a
particular behaviour of the model. In Example 1,
we can see the model correctly identifying the in-
gredients from the context, captionn−2, going two
steps back, and integrating them in the final out-
put. It also recognizes the plate from stepn as the
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Figure 12: Annotation guidelines for the comparison
between our method and the ground-truth images.

object containing the ingredients. This shows the
potential in giving the model additional context to
generate richer prompts. In Example 2, we can
see that, despite being able to maintain the red
apples, the model makes no explicit reference to
their state, chopped up. This is still a limitation,
which may lead to a wrongful representation of
intact apples. In Example 3, we want to highlight
two main aspects of the generation: we can see the
model adding the bowl of soup from the context to
the prompt, maintaining semantic coherence. We
can also see that the model kept lime juice. This
is correct, from the point of view of the task at
hand, but shows the lack of understanding of what
can be perceived in an image. We reason that this
knowledge should come from the pretraining of the
model, and not from our fine-tuning to this task.
Example 4 shows an example of a depiction that is
mostly correct, but misses a step of the sequence.
The representation of the saucepan with black tea
in it is plausible, but stepn indicates the saucepan
should be removed from the heat. Finally, in Exam-
ple 5, we see a very long step, with various actions.
In this case, we consider it plausible for the model
to pick one of these actions. This is a better re-
sult than attempting to represent them all, which
would lead to an inadequate prompt. Despite this,
this specific generation lacks some context, as the
word vegetables is generic; it is important for the
generated prompts to be specific, containing the
ingredients mentioned in the context.

E.3 Challenges of Sequential Image Synthesis

To analyse the off-the-shelf behaviour of Stable
Diffusion in the task at hand, we devised a few gen-
eration baselines. It is important to understand how

the generation model used the text in the prompts,
and where, and how, it failed. To do this, we as-
sessed the performance of three image generation
baselines in our target problem: (i) the current step
instruction, (ii) the current step instruction plus the
previous step instruction, and (iii) the current step
instruction plus all previous step instructions. We
generated images based on: (i) the current step in-
struction, (ii) the current step instruction plus the
previous step instruction, and (iii) the current step
instruction plus all

Isolated errors. We found problems which ap-
peared consistently throughout different genera-
tions. These problems were not tied to the prompts
or the concepts we were trying to generate, but
downfalls of the image generation model. Among
such examples were tiled images, and deformed
objects, hands, and faces.

Representing Long Prompts. We found that long
prompts were detrimental to the generations. These
models are not prepared to represent many actions
or objects, with some context being lost in the gen-
eration. Furthermore, these models fail to illustrate
distant relationships in the texts, Figure 1.

Hence, training an LDM in this setting is not
realistic due to the limitations of existing models.
First, the amount of required data is not easily ob-
tained, second, current LDMs are not designed to
support long inputs, and third they do not support
the notion of sequential generation.
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Example 1: The Sequence Context Decoder was able to dereference the objects from
captionn−2 and create the correct caption for stepn.

Captionn−2 A wooden cutting board with ingredients for a salad including avocado, crab
meat, and grapes

Stepn−1 Dress all ingredients except the arugula with one fourth cup dressing, dress the
arugula separately with two tablespoon dressing.

Stepn Plate the arugula first. Combine the rest of the ingredients, and add on top.

Output A plate of salad with avocado, crab meat, and grapes on top.

Example 2: The state of objects is not always preserved in the generated caption.

Captionn−1 A purple plastic cup is sitting on a wooden table. Inside the cup, there is a
mixture of black pepper, olive oil, brown sugar, curry powder, salt, and white
vinegar. There are also some sultanas floating in the mixture. The cup is covered
with plastic wrap.

Stepn Get White Rice in a big bowl. Add in Celery and Scallion. In order to add a bit
of color and some sweetness, chop up Red Apple and dust that up. Toss them
together.

Output A bowl of white rice is being prepared with celery, scallions, and red apples

Example 3: Some objects are correctly added to the generated caption.

Captionn−1 In the image, there is a pot of soup on the stove with chicken and vegetables in
it. There is also a person’s hand reaching into the pot to add more ingredients
to the soup.

Stepn Serve with White Rice on the bottom and Lime Wedge on the side. Or with
tortillas for dipping into the soup.

Output In the image, there is a bowl of soup with a tortilla in it. The soup has chicken,
vegetables, and lime juice in it.

Example 4: Sequence of actions was not fully captured by the model.

Stepn−1 Bring Water to boil in a medium saucepan.

Stepn Once water has boiled, remove saucepan from heat and add the Black Tea.
Steep for 15 minutes.

Output a saucepan with black tea in it on a stove top

Example 5: When steps provide plenty of context, using a single step is sufficient.

Step n Halve fennel, remove stalk, and cut into fine strips. Finely dice onion. Peel
garlic. Clean zucchini and bell pepper and cut into bite-sized pieces. Combine
vegetables with rosemary, thyme, and some of the olive oil in a plastic bag.
Close, shake, and marinate for approx. 20 min.

Output A woman is cutting up vegetables on a cutting board with a knife and a peeler.

Table 8: Qualitative analysis of the Sequence Context Decoder results.
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Figure 13: Examples of recipe illustrations with different methods for maintaining visual coherence.

Figure 14: Examples of recipe illustrations with different methods for maintaining visual coherence.
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Figure 15: Examples of recipe illustrations with different methods for maintaining visual coherence.

Figure 16: Examples of recipe illustrations with different methods for maintaining visual coherence.
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Figure 17: Examples of recipe illustrations with different methods for maintaining visual coherence.

Figure 18: Examples of recipe illustrations with different methods for maintaining visual coherence.
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Figure 19: Examples of task illustrations with different methods for maintaining visual coherence.

Figure 20: Examples of task illustrations with different methods for maintaining visual coherence.
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Figure 21: Example of a task that is very challenging to illustrate. We can see how the generated images still capture
some of the more challenging elements of the steps, such as "Make a note of the longitude and latitude" in step 4,
with the images showing a pen.

Figure 22: Examples of task illustrations with different methods for maintaining visual coherence.
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