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Abstract

Multimodal large language models (MLLMs) have
proven effective in a wide range of tasks that re-
quire complex reasoning and linguistic compre-
hension. However, due to a lack of high-quality
multimodal resources in languages other than En-
glish, success of MLLMs remains relatively limited
to English-based settings. This poses significant
challenges in developing comparable models for
other languages, even those with large speaker pop-
ulations, such as Arabic. To alleviate this chal-
lenge, we introduce a comprehensive family of
Arabic MLLMs, dubbed Peacock, with strong vi-
sion and language capabilities. Through compre-
hensive qualitative and quantitative analysis, we
demonstrate the solid performance of our models
on various visual reasoning tasks and further show
their emerging dialectal potential. Additionally, we
introduce Henna, a new benchmark specifically de-
signed for assessing MLLMs on aspects related to
Arabic culture, setting the first stone for culturally-
aware Arabic MLLMs. The GitHub repository
for the Peacock project is available at https:
//github.com/UBC-NLP/peacock.

1 Introduction

Empowered by progress in large language models
(LLMs) and foundation models of other modalities,
multimodal large language models (MLLMs) now
have a remarkable understanding (Alayrac et al.,
2022; Li et al., 2023e; Dai et al., 2023; Liu et al.,
2023b,a; Zhu et al., 2023). For example, they can
handle various complex reasoning tasks spanning
from visual question answering to understanding
sarcastic comics (Achiam et al., 2023; Yang et al.,
2023). These capabilities, however, are mostly
seen in models serving the English language. This
leaves behind the majority of the world’s languages,
furthering an already acute technological divide.
We alleviate this challenge for Arabic, a diverse

InstrucBlip-AraLLaMA
InstrucBlip-AceGPT
LLaVA-AralLLaMA
LLaVA-AceGPT
mBLIP-mTO

ual Reasoning

Instance Attributes

Instance Iden
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Figure 1: Comparison between the performance of Pea-
cock and mBlip models on SEED-Benchmark dimen-
sions.

collection of languages and dialects with a native
population of more than 400 million speakers.

More concretely, we draw inspiration from En-
glish counterparts (Dai et al., 2023; Liu et al.,
2023b) to present a robust family of Arabic
MLLMs with powerful vision and language ca-
pabilities. Our models adopt the approach of in-
tegrating an image encoder with an Arabic text
decoder. In our experimental setup, we explore two
popular directions for aligning the vision and the
language components: one involves employing a
fully connected layer as a projection head on top
of the vision encoder (Liu et al., 2023b), while the
other utilizes a Q-former transformer (Dai et al.,
2023). All models are trained in two stages, a pre-
training stage and an instruction fine-tuning stage.
For the first stage, we curate high-quality pretrain-
ing data from publicly available English datasets.
We translate these datasets into Arabic and apply a
carefully designed pipeline to ensure the quality of
our training data. Similarly, we curate and translate
an instruction fine-tuning dataset which is essential
for achieving reasoning and conversational capabil-
ities.

12753

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12753-12776

August 11-16, 2024 ©2024 Association for Computational Linguistics


https://github.com/UBC-NLP/peacock
https://github.com/UBC-NLP/peacock

We showcase the performance of our models
across different tasks such as visual question an-
swering (VQA) and visual reasoning. Our mod-
els perform much better than a multilingual base-
line mBlip (Geigle et al., 2023) on different tasks
and datasets, and we set the first comprehensive
Arabic vision-language benchmark to facilitate fu-
ture work in this area. Finally, we demonstrate the
promising capabilities of our Peacock models in
interacting in dialectal Arabic by conducting a case
study on the Egyptian dialect. When fine-tuned on
a small set of Egyptian dialect data, our models
exhibit an interesting level of proficiency in their
dialectal responses when prompted in the same di-
alect. We hope this acts as a spark for future works
in dialectal Arabic vision language models.

To summarize, our contributions in this paper
are as follows: (1) We introduce a suite of Arabic
MLLMs, dubbed Peacock, capable of instruction
following and visual reasoning, in addition to their
intriguing dialectal affinity. For developing Pea-
cock, we use existing vision and language models.
We also offer a new language model, AralLLaMA,
based on LLaMA2-7B (Touvron et al., 2023). (2)
We introduce a diverse collection of Arabic trans-
lated datasets carefully curated for the training and
evaluation of Arabic MLLMs. (3) We adapt the
popular LLaVA (Liu et al., 2023b) benchmark and
SEED-Bench (Li et al., 2023d) for Arabic MLLMs
evaluation. (4) We present Henna, a benchmark
designed to measure model capabilities in interpret-
ing images related to Arabic culture.

The rest of this paper is organized as follows:
In Section 2, we provide an overview of related
work. Section 3 introduces Peacock, our family
of MLLMs. In Section 4, we describe our evalua-
tion strategies and benchmarks. In Section 5, we
present our experiments, human evaluation, and a
comprehensive analysis of our models. We con-
clude in Section 6.

2 Related Work

2.1 Multimodal Large Language Models

Progress in MLLMs is largely dependent on ad-
vances in LLMs. Refer to Appendix A.2 for more
details on LLM-related works. The common trend
in recent MLLMs involves integrating an LLM as
their text decoder alongside a vision encoder for
image understanding. Several approaches were
proposed for aligning the vision encoder with the
text decoder. Flamingo (Alayrac et al., 2022) and

Otter (Li et al., 2023c), for example, blend a vi-
sion encoder with a resampler and a cross-gated
attention layer, reducing the computational load
in vision-text cross-attention, and enhancing in-
struction optimization. While BLIP-2 (Li et al.,
2023e) and InstructBLIP (Dai et al., 2023), com-
bine a vision encoder with a Q-former and a
linear layer, streamlining the cross-modality pro-
jection and utilizing learnable query vectors for
feature extraction. LLaVA (Liu et al., 2023b,a),
on the other hand, pairs a vision encoder with
multilayer perceptron (MLP), retaining all visual
tokens for comprehensive visual information pro-
cessing. Finally, the simplest form, illustrated by
models such as Fuyu (Bavishi et al., 2023) and Ot-
terHD (Li et al., 2023a), relies solely on a linear
layer, operating as basic decoder-only transformers
without specialized vision encoders. This diversity
in design showcases the innovative approaches in
integrating vision and language in MLLMs.

2.2 Visual Instruction Tuning

Following the success of instruction tuning in
LLMs, recent works in MLLMs transitioned to
visual instruction tuning. MULTIINSTRUCT (Xu
et al., 2022) pioneered this transition by creating a
multi-modal instruction tuning benchmark dataset
that transforms 62 different multi-modal tasks into
a unified sequence-to-sequence format. Building
on this, LLaVA (Liu et al., 2023b) leveraged GPT-
4’s adeptness in understanding multimodal tex-
tual representations to reformulate image-text pairs
into an instruction-following format. Similarly,
MIMIC-IT (Li et al., 2023b) focused on generat-
ing instruction-response pairs using multi-modal in-
context information and a variety of visual scenes.
Most recently, M3IT (Li et al., 2023f) converted tra-
ditional vision-language tasks into a unified vision-
to-text framework through manual instruction writ-
ing and dataset pre-processing. This includes tasks
such as captioning, visual question answering, vi-
sual conditioned generation, reasoning, and classi-
fication. In their comprehensive survey, Yin et al.
(2023) provide an extensive overview of MLLMs,
including an evaluation of their performance and ca-
pabilities. This paper serves as a valuable resource
for researchers interested in the field of MLLMs.

2.3 Arabic MLLMs

The majority of research in Arabic MLLMs fo-
cuses mainly on image captioning (ElJundi et al.,
2020; Attai and Elnagar, 2020; Afyouni et al., 2021;
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Figure 2: Peacock InstructBLIP architecture: Inte-
grates instruction-specific visual features using Q-
Former and a frozen pretrained image encoder.
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Emami et al., 2022; Eddin Za’ter and Talafha, 2022;
Elbedwehy and Medhat, 2023; Mohamed et al.,
2023). Other areas, VQA for example, remain
largely unexplored. This is primarily due to scarcity
of publicly available datasets in these areas. As far
as we know, the only significant work in Arabic
VQA is by Kamel et al. (2023) and explores closed-
form VQA without attempting generative VQA.
We also know of no native Arabic datasets for ei-
ther image captioning or VQA, with two excep-
tions: AraCOCO (Mohamed et al., 2023) for im-
age captioning, which is mainly used for evaluation,
and AVQA (Kamel et al., 2023) for VQA, which
was automatically generated from MSCOCO for
Arabic VQA. In many works, translations of either
MSCOCO or Flickr8k are utilized (ElJundi et al.,
2020; Afyouni et al., 2021; Mohamed et al., 2023).

3 Peacock

3.1 Architectures

The Peacock family is designed based on the vi-
sion components of two architectures, that of In-
structBlip (Dai et al., 2023) and LLaVA1.5 (Liu
et al., 2023a). For language, our models are in-
tegrated with one of two powerful Arabic LLMs,
AceGPT (Huang et al., 2023)! and a new model
based on LLaMA2-7B, dubbed AralL.LaMA, that
we further pretrain on a large Arabic dataset and
fine-tune using diverse instructions. Our motivation
behind introducing AralLLaMA is to create a model
with strong knowledge of the Arabic language and

'In all our experiments, we use the AceGPT-7B-chat. We
also limit ourselves to LLMs with 7B parameters due to com-
putational constraints.

Instruction

—— & e

Vision Encoder \ l
[TTTT]
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Input image

Output text

Figure 3: Peacock LLaVA architecture: Combines a
pretrained frozen vision encoder with trained Arabic
LLMs via an MLP bridge.

culture. More information about Aral.LLaMA and
how it compares to AceGPT is in Appendix A.4.
InstructBlip-Based Peacock. Here, our models
consist of four key components: (1) A vision en-
coder based on the ViT (ViT/G-14) model (Doso-
vitskiy et al., 2020), operating at a resolution of
224 %224 and employing a patch size of 14. (2) A
Querying Transformer (Q-former) (Li et al., 2023e),
designed to link the pretrained vision encoder with
the LLM, using the BERT base model (Devlin et al.,
2018) as its foundation. (3) A linear layer projec-
tor, tasked with aligning the output of the Q-former
with the LLM embedding space. (4) An LLM,
incorporating one of the two forenamed models,
AceGPT or AralLLaMA, both of which are deriva-
tives of the LLaMA?2 architecture enhanced for
Arabic. Figure 2 illustrates this architecture.
LLaVA-Based Peacock. For this setting, models
are structured around three primary components:
(1) A vision encoder employing the CLIP-Large
model (Radford et al., 2021), capable of processing
images at a resolution of 336x336 and a patch size
of 14, converting these images into 576 tokens. (2)
A two-layer MLP projector that aligns the output of
the visual and language modalities. (3) And either
AceGPT or AraLLaMA. The architecture is shown
in Figure 3

3.2 Pretraining

Our models are trained in two stages, a pretraining
stage and an instruction fine-tuning stage. The pre-
training stage aims to train the alignment module,
which projects the visual and textual features into a
common embedding space. The models are trained
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using our carefully curated text-image pairs dataset.
In the case of InstructBlip-based models, only the
projection layer, which is the alignment module,
is trainable. In contrast, the Q-former, vision en-
coder and language model parameters are frozen.
Meanwhile, for the LLaVA-based models, only the
MLP connector is the trainable part, with the CLIP
encoder and LLM being frozen.

3.3 Visual Instruction Fine-tuning

After the pretraining stage, the model will only be
capable of generating simple captions and descrip-
tions of an image. To give the models the ability
to function on tasks requiring visual reasoning and
engage in an intelligible visual conversation, we
further fine-tune them using instruction datasets.
To keep computational costs manageable, we em-
ploy the parameter-efficient fine-tuning technique
LoRA (Hu et al., 2021). Similar to the previous
stage, in addition to the LoORA parameters, only the
linear layer is trainable in the case of InstructBlip
models, while for LLaVA models, we fine-tune the
MLP and apply LoRA to the LLM, following the
LLaVA 1.5 training scheme (Liu et al., 2023a). We
provide in Table A.7 the number of parameters for
the main components of each model in Appendix
AS.

4 Datasets and Benchmarks

4.1 Translation and Filtering Pipeline

A significant challenge for Arabic MLLMs is lack
of available resources, which is due to the diffi-
culty of retrieving relevant Arabic image-text pairs
from the internet at scale and absence of suitable
image-text relevance filtering methods similar to
that of CLIP (Radford et al., 2021)?. To address
this resource gap, we introduce a careful translate-
and-filter pipeline for converting publicly available
image-text datasets into Arabic without losing data
quality. To this end, we adopt the latest version
of Google translate API (Google Cloud). We fol-
low Mohamed et al. (2023) in further assuring high
quality of acquired translations using a multilingual
sentence embedding model LaBSE (Feng et al.,
2020). We calculate the similarity of embeddings
between the original and translated sentences (ques-
tions and answers), retaining translations that meet
a minimum similarity threshold of 80% or greater

2CLIP was used in filtering many English web scraped
large-scale datasets (Ordonez et al., 2011; Sharma et al., 2018;
Changpinyo et al., 2021).

for both the question and the answer. Figure 4
demonstrates the filtering pipeline. We provide de-
tails about our datasets and translation method in
Appendix A.3, and sample translations illustrating
variations in quality ranging from good to moderate
to poor in Figure A.9 (also in Appendix A.3).

LaBSE Model

Arabic Sampl Embedding

Cosine
@~

Threshold fiter  Filtered Data

_Original English Sample_— | Embedding

Raw Data LaBSE Model

Figure 4: Our data filtering pipeline. After translat-
ing the data through Google Cloud API, we obtain the
embeddings of both the original and translated sam-
ples using the multilingual sentence embedding model
LaBSE. For each sample, we calculate the cosine simi-
larity between the two extracted embeddings and reject
samples under an 80% threshold.

4.2 Pretraining Data

Aligning with recent work showing that the qual-
ity of LLMs pretraining data is more important
than quantity (Gunasekar et al., 2023; Lee et al.,
2023), we curate a high-quality text-image pairs
dataset collected from publicly available sources.
Specifically, we utilize LCS-558K (Liu et al.,
2023b) and COCO (Lin et al., 2014) as our pre-
training data. LCS-558K encompasses 558k text-
image pairs carefully curated from three datasets:
LAION (Schuhmann et al., 2021), Conceptual Cap-
tions (Sharma et al., 2018), and SBU (Ordonez
etal., 2011). COCO is a high-quality dataset com-
prising 118k images, covering 80 different objects,
with five captions per image, all human-annotated.
As stated in Section 4.1, all the datasets are trans-
lated into Arabic using Google API and further
filtered based on their semantic similarity with the
original English text.

4.3 Instruction Fine-tuning Data

For the second training stage, we curate an-
other dataset that follows the instructions tuning
paradigm as in Liu et al. (2023b). Concretely, the
model is asked to respond to a specific instruction
or question for each image in the dataset. The
first dataset we include is the multi-modal instruc-
tions dataset by Liu et al. (2023b). It comprises
150k samples covering conversations, detailed im-
age descriptions, and complex reasoning instruc-
tions and responses. This dataset was created us-
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ing GPT-4 (Achiam et al., 2023), and the images
were taken from the COCO dataset. Additionally,
we incorporate the VQAV2 dataset (Goyal et al.,
2017) after transforming it to the same instructions
and responses format. To incorporate further di-
verse instructions, we utilize 60k multi-choice ques-
tions extracted from LLaVA1.5 mixed instruction
dataset (Liu et al., 2023a). This exposes the model
to different scenarios, giving it better generaliza-
tion capabilities. Similar to the pretraining stage,
all the datasets are translated using Google API and
filtered following our data-cleaning pipeline.

4.4 Evaluation Benchmarks

SEED-Bench. SEED-Bench (Li et al., 2023d) con-
sists of 19K multiple-choice questions, each metic-
ulously annotated by humans. These questions
cover 12 evaluation dimensions, addressing the
comprehension of both image and video modalities.
This study exclusively focuses on the image-only
subset of SEED-Bench comprising 14K multiple-
choice questions. SEED-Bench is translated via
our translation and filtering pipeline as described
in Section 4.1.

LLaVA-Bench. The LLaVA-Bench (Liu et al.,
2023b) comprises 30 images, which the authors
randomly select from the COCO-Val-2014 dataset.
For each image, three questions are generated, re-
sulting in 90 instances. These questions fall into
three categories: conversational, detailed descrip-
tion, and complex reasoning. This benchmark eval-
uates the model’s performance across conversation,
description, and reasoning, using GPT-4 scoring.
Henna Benchmark. As Arabic culture may be un-
derrepresented in current English MLLMs datasets,
we develop Henna, a new benchmark for testing
purposes only. Henna comprises attractions, food,
events, and other Arabic-relevant objects, consist-
ing of 1,132 samples that have been manually cu-
rated and reviewed to ensure quality and relevance.
More details about how we create Henna and how
we use it for evaluation are in Section 5.2.4.

5 Experiments

5.1 Implementation Details

In the first training stage, we use the 916k image-
text pairs described in Section 4.2 to train Peacock
models. The pretraining phase spans three epochs
with a batch size of 32 and a learning rate of le-3.
As previously described, all model parameters are
kept frozen except for the projection layer in the

case of InstructBlip-based models and the MLP
connector for LLaVA-based models. During the
second training phase, we utilize the instructions
dataset introduced in Section 4.3. The models are
further fine-tuned for three epochs with a batch size
of eight and a learning rate of 2e-5. As mentioned
before, only the introduced LoRA parameters are
trainable, with the addition of the projection layer
in the case of InstructBlip-based models and MLP
connector for LLaVA-based models.

For the training objective, we follow the lan-
guage modeling approach where the model predicts
the next text token given previously predicted text
tokens and the visual features. Concretely, our goal
is to maximize the probability of the next token or,
for mathematical convenience, minimize the nega-
tive log-likelihood. The loss is calculated only on
the response generated by the model. The instruc-
tions and visual tokens are skipped during these
calculations.

5.2 Results and Discussion

We evaluate our suite of models on a range of typ-
ical vision-language tasks and benchmarks. In
addition, we show our models’ performance on
our novel Arabic cultural dataset, Henna. Since
this is the first work on Arabic MLLMs, we adapt
popular benchmarks in the literature to our case.
Mainly, these are a VQA-tasks benchmark, LLaVA-
Bench (Liu et al., 2023b), and SEED-Bench (Li
et al., 2023d). We also evaluate the performance
on Henna benchmark and conduct a case study fo-
cusing on the Egyptian dialect. This establishes the
first comprehensive benchmark for future works in
Arabic MLLMs. We further compare our models
with the multilingual mBlip model (Geigle et al.,
2023) as a baseline for completeness. The mBlip
model is trained on 96 languages, including Arabic.

5.2.1 General VQA

In general VQA tasks, the challenge involves an-
swering textual questions about images, requiring
learning and integrating visual and textual infor-
mation. This demonstrates a deep understanding
of the interconnectedness between the two modal-
ities. To evaluate performance in general VQA,
our validation process includes three datasets:
VQAV2 (Goyal et al., 2017), OKVQA (Marino
et al., 2019), and GQA (Hudson and Manning,
2019). Notably, evaluation of English VQA tasks
is typically performed through online platforms
by submitting results. However, this option is un-
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Model Architecture LLM VQAv2 OKVQA GQA
All  Filtered ‘ All  Filtered ‘ All  Filtered
Baseline mBli mTO0-XL-5B 38.55 50.8 8.59 18.18 35.95 50.45
p BLOOMZ-7B | 41.00 55.7 11.87 23.30 38.55 54.85
InstructBli AralLLaMA 44.55 56.15 20.97 29.77 42.60 58.05
u P AceGPT 39.00 51.20 10.69 16.82 37.00 57.60
LLaVA AralLLaMA 40.85 52.45 14.79 25.57 33.45 49.75
AceGPT 41.45 56.65 15.14 26.36 33.27 52.20

Table 1: The zero-shot performance of our Peacock models against mBlip on the dev set of different VQA datasets.
Models are evaluated on the exact match with the open-generation metric, where an answer is considered correct if
it matches any ground truth answers. The baseline is mBlip with different LLMs (mT0-XL-5B and BLOOMZ-7B).

available for Arabic-translated data because these
platforms only support English and the original
datasets. Since the test sets do not contain ground-
truth labels, we evaluate held-out validation sets.
We follow Geigle et al. (2023) in using “exact
match accuracy with open generation" to evalu-
ate our models’ output. The metric considers an
answer correct if it matches any of the ground-truth
answers. Table 1 shows model accuracy on these
datasets under the zero-shot setting for both the
filtered and unfiltered(All) versions of the datasets.

It is evident from Table 1 that the top-performing
Peacock model, InstructBlip with AralLLaMA
LLM, significantly outperforms the best version of
mBlip, which integrates the BLOOMZ-7B LLM,
by an average margin of 4.5 points. A compara-
tive analysis of all models also reveals significant
performance improvements when only the filtered
high-quality data is included. This enhancement is
consistently observed across all models and tasks,
highlighting the crucial role of data quality in the
effectiveness of these models.

Furthermore, we observe that the choice of the
underlying LLM is has a significant impact on
performance. This is the case if we compare in-
tegrating AralLLaMA to AceGPT in our overall
MLLMs. Specifically, the InstructBlip model in-
tegrated with AraLLaMA demonstrates superior
performance across all tasks and datasets when us-
ing either filtered or unfiltered(All) data in training.
This performance disparity is likely attributable to
the inherent differences in how these LLMs han-
dle Arabic, with AraLLaMA being more effective
due to its extensive training and its ability to align
with visual information. In addition, it is worth
noting that the performance of Peacock models
varies considerably depending on the task, with
a general trend of models performing better on

Architecture LLM ‘Conv DD CR Avg
mBlip BLOOMZ-7B | 5526 47.89 5543 52.90
InstructBlip  ATALLAMA | 8456 80.00 82.11 8227
NSIUCBIUP - AceGPT 7328 6140 72.67 69.13

AraLLaMA | 75.62 6501 7233 71.07
LLaVA AceGPT 7781 68.85 7389 73.61

Table 2: Performance of Peacock models and mBlip on
LLaVA-Bench scored by GPT-4. Conv: Conversation.
DD: Details Description. CR: Complex Reasoning.

the VQAV?2 task than on OKVQA and GQA. Such
variations can be attributed to each task’s inherent
complexities and specific requirements, including
the sophistication of the presented questions and
the nature of the required visual understanding.

5.2.2 LLaVA-Bench

For evaluation using LLaVA-Bench, we follow the
method of Liu et al. (2023b). Table 2 displays our
models’ successful performance across the three
metrics of the LLaVA-Bench. Despite the limited
data and resources, this suggests a burgeoning ca-
pability for multi-modal comprehension in Arabic.
Under the same training conditions, the integra-
tion of InstructBlip with AralLLaMA notably excels
within the Peacock suite. It achieves an average
score of 82.27 on the GPT-4 scale, a significant
9.4 margin over the LLaVA model combined with
AceGPT. As shown in Table 2, all Peacock models
surpass the mBlip-BLOOMZ-7B baseline in the
three metrics of the LLaVA-Bench.

5.2.3 SEED-Bench

For our third benchmark, we adapt the SEED-
Bench for Arabic and use it to evaluate our models.
Table 3 and Figure 1 present an evaluation of Pea-
cock models across a broad spectrum of visual
understanding dimensions within SEED-Bench,
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Architecture LLM ‘ 1A 1 IN IL IC SU SR VR

Architecture LLM \Helpfulness Relevance Accuracy Level of Details

mBlip mT0-XL-5B ‘ 42.04 4276 59.79 4335 4209 59.37 3820 60.42

AraLLaMA | 4991 55.33 58.76 43.25 4585 6552 3820 6888
AceGPT 49.16 5543 567 4346 4569 66.72 3699 71.60
AraLLaMA | 41.98 48.66 46.39 38.75 39.72 59.34 36.83 64.95
AceGPT 31.10 38.61 4330 35.89 2550 4557 3120 51.06

InstructBlip

LLaVA

Table 3: Evaluation of mBlip and Peacock models on
SEED-Bench across various attributes: Instance At-
tributes (IA), Instance Identity (II), Instance Interaction
(IN), Instance Location (IL), Instances Counting (IC),
Scene Understanding (SU), Spatial Relation (SR), and
Visual Reasoning (VR).

where a diverse range of performance efficiencies is
observed. LLaVA-AralLLaMA emerges as a partic-
ularly robust model, excelling in visual reasoning
and scene understanding with accuracy scores of
68.88% and 65.52%, respectively. However, it dis-
plays weaknesses in spatial relations and instance
location. Mirroring this trend, LLaVA-AceGPT
showcases strengths in scene understanding and
visual reasoning (66.72% and 71.6%, respectively),
but marginally underperforms in instance inter-
action and spatial relations compared to LLaVA-
AralLLaMA. In contrast, InstructBlip-AralLLaMA,
while proficient in scene understanding and Visual
Reasoning (59.34% and 64.95%), falls short in
Instance Attributes and Counting, resulting in a
lower overall accuracy of 46.43%. InstructBlip-
AceGPT, the model with the most modest perfor-
mance, achieves its best results in visual reason-
ing and instance interaction (51.06% and 43.3%),
but struggles significantly with instance counting
and scene understanding. In contrast to mBlip,
which outperforms Peacock models only in one
dimension (instance interaction) and achieves the
same score in the spatial relation dimension as
InstructBlip-AraLLaMA.

This comparative analysis underscores the su-
periority of LLaVA-based models in the Peacock
family on SEED-Bench, especially those with Ar-
alLLaMA, over InstructBlip models in most tasks.
This could be attributed to the capability of Ar-
alLLaMA in understanding and ability of align in-
formation coming from the vision encoder on the
one hand and the input questions about the input
image, on the other hand. Meanwhile, the Instruct-
Blip models, particularly those with AceGPT LLM,
reveal limitations in broader visual understanding
tasks. The marked variation in performance be-
tween AralLLaMA and AceGPT within the same
model base highlights the significant impact of lan-
guage model selection on visual task performance,

mBlip mT0-XL-5B 34.11 39.15 35.11 20.74
InstructBlip AraLLaMA 62.34 68.97 49.68 49.83

Table 4: Evaluation of InstructBlip-AraLLaMA against
mBlip-mt0-x1 models on Henna, using GPT-4.

offering valuable insights into the inherent abilities
(and limitations) in contemporary MLLMs.

5.2.4 Henna Benchmark

Henna was developed to establish a standard for
evaluating Arabic MLLMs on elements particu-
larly related to Arabic culture, such as food, cus-
toms, and landmarks. The dataset was created by
prompting GPT-4V (OpenAl, 2023) to generate
descriptions of images based on questions, while
providing it with relevant Wikipedia context. Im-
ages were carefully selected to represent the culture
of 11 Arab countries.

To achieve this, we selected images from
Wikipedia and corresponding articles to create the
context for GPT-4V during the generation process.
The images represent a range of countries, includ-
ing Algeria, Egypt, Iraq, Jordan, Morocco, Pales-
tine, Saudi Arabia, Syria, Tunisia, the United Arab
Emirates, and Yemen. We identified ten top attrac-
tions from each country within categories such as
traditional food and cuisine, local customs, histor-
ical monuments and sites, common activities and
lifestyles, and architectural styles and notable build-
ings. Figure A.10 demonstrates selected examples
from the dataset’s images.

For each attraction, we used GPT-4V to gener-
ate ten questions. Each image was accompanied
by its Wikipedia article to provide comprehensive
context. This approach yielded a minimum of ten
images per country, resulting in a total of 1,132
question-answer pairs across all countries. An ex-
ample of the dataset generation process is illus-
trated in Figure 5, and Figure A.11 demonstrates
four randomly selected images with a generated
pair of a question and their answers. Moreover,
Figure A.13 shows examples of questions and an-
swers generated by the Henna pipeline from the
image depicted in Figure A.12. These questions
and answers were translated into English to provide
a qualitative assessment of the dataset’s quality.

The evaluation process utilizes GPT-4 to as-
sess each model’s responses based on four criteria:
Helpfulness, Relevance, Accuracy, and Level of De-
tails. Bach criterion is rated on a scale from one to
ten, with higher scores indicating better responses.
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Figure 5: Dataset Generation Example using GPT-4V. This figure demonstrates the process of generating a question-
answer dataset for an attraction in Yemen as an example. For each site, an image and its corresponding Wikipedia
article were used to provide GPT-4V with rich contextual information. The model then generated ten contextually

relevant questions and answers per image.

The evaluation process involves GPT-4 reviewing a
question and its correct answer in Arabic, followed
by the model’s response, which is then rated ac-
cording to the aforementioned criteria. The results
are formatted as a JSON object with keys corre-
sponding to each criterion. Figure A.17 illustrates
examples where GPT-4’s evaluations varied in qual-
ity, showing high, medium, and low evaluations for
different models’ responses. An example of the
prompt used in the evaluation is shown in Figure
A.18.

The leading model from the Peacock suite was
evaluated against the multilingual model mBlip
following our benchmark. The data presented in
Table 4 demonstrates the superiority of the In-
structBlip model paired with AralLLaMA, setting a
benchmark for future models in terms of their abil-
ity to comprehend and recognize aspects of Arabic
culture. Figure 6 shows an example response from
Peacock along with a response from GPT-4V, illus-
trating the practical application of these findings.

This structured evaluation method, where GPT-4
serves both as the subject and the evaluator, facili-
tates a quantitative analysis of the model’s perfor-
mance in understanding and responding to visual
questions in Arabic.

5.2.5 Qualitative Analysis

In our qualitative analysis of Peacock models, we
select two random samples from each question type
previously described in Section 5.2.2, totaling six
samples. Figure A.23 displays the answers by all
Peacock models to these six questions, accompa-
nied by their corresponding images.

For the conversion type questions, one direct
question involves asking about the color of an ele-
phant. While InstructBlip integrated with AceGPT
fails to provide the correct answer, all other models
succeed. In the second conversion example, the
LLaVA-based models are unable to answer a ques-
tion about counting donuts. In the detail type ques-
tions, all models provide answers that are closely
related to the details of the objects in the images,
albeit with some hallucinations. For the complex
type questions, all models provide subjective an-
swers, which, despite offering slightly different
conclusions about the image, can still be consid-
ered correct. In summary, InstructBlip integrated
with AraLLaMA, provides accurate and more help-
ful answers for most of the three types of questions.

5.2.6 Case Study with Egyptian Dialect

Attention to dialectal Arabic in the NLP research
community is not sufficient to date, with complete
absence when it comes to MLLMs. Addressing
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Figure 6: Examples of responses from Peacock and
GPT-4V regarding an image related to Yemeni culture.

this gap, we conduct the first study on the capa-
bilities of MLLMs in generating dialectal Arabic,
focusing the study on the Egyptian dialect. Out of
the box, our fine-tuned models were able to under-
stand questions posed in the Egyptian dialect but
responds in MSA. Following this observation, we
transform a subset of 1k random samples from our
instruction tuning dataset into Egyptian dialect by a
professional Egyptian translator. This small dataset
is then used to further fine-tune our InstructBlip
based Peacock models following the previously
mentioned experimental setup. Surprisingly, as
seen in Figure 7, our Peacock models are capa-
ble of generating solid answers in Egyptian dialect
when instructed on this small sample, while keep-
ing their MSA fluency intact. This could be due to
the fact that our LLMs have seen dialectal Egyptian
Arabic during their pretraining.

To provide a measurable evaluation, we further
transform 20 samples from our instruction tuning
evaluation set into Egyptian dialect. Using these
samples, we appoint four native Egyptian speakers
to anonymously score the responses of our models
against GPT-4. The evaluation was based on two
criteria: the accuracy of the model’s response to
the question (rated on a scale from 1 to 10) and
the authenticity of the Egyptian dialect (rated on a
scale of 1 to 10).

To ensure transparency, the answers from models
were anonymized before being presented to the
annotators. As shown in Figure 8, Peacock models
exhibited greater closeness to the Egyptian dialect
compared to GPT-4V, even when the latter was
specifically instructed to respond in the Egyptian
dialect. On the other hand, our dialectal models lag
slightly in the accuracy of the answers, which we
assume can be alleviated by providing sufficient
training data, a task we leave for future work. More
details and examples on the case study are provided
in Appendix A.8.

Question in
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Figure 7: Both Peacock and GPT-4V accurately respond
to a question in the Egyptian dialect. While GPT-4V
provides a slightly more detailed answer, it does so in
MSA. In contrast, Peacock’s response is in the same
Egyptian dialect as the question.

Metric

e Accuracy

Authenticity

Score

1B-AraLLaMA 1B-AceGPT GPT4V DI GPT4V

Model

Figure 8: Human evaluation results on the accuracy and
authenticity of model responses to questions about im-
ages in Egyptian dialect. "IB-AraLLaMA " denotes our
InstructBlip-AraLLaMA model, and "IB-AceGPT"

refers to our InstructBlip-AceGPT model. "GPT-4V
DI" is the GPT-4V model explicitly instructed to re-
spond in the Egyptian dialect."GPT-4V" represents the
GPT-4V model, which is given a question in the Egyp-
tian dialect, similar to how Peacock models are in-
structed.

6 Conclusion

In this work, we present the family of Peacock
models. Peacock demonstrates significant advance-
ments in Arabic MLLMs, showcasing remarkable
abilities in interpreting visual data in Arabic lan-
guage. These models bridge the gap in multimodal
understanding capabilities for Arabic and Egyptian
dialects by introducing a suite of models, with var-
ious reasoning skills, accompanied by a diverse
collection of datasets and benchmarks carefully
prepared. This includes our Henna benchmark,
designed to assess MLLM tasks focused on the
Arabic culture. The development of Peacock sets
strong baselines and a new benchmark for future
work in Arabic MLLMs, highlighting the impor-
tance of high-quality data processing and the se-
lection of language models for multimodal task
performance.
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7 Limitations

We identify a number of limitations for our work,
as follows:

* Peacock models have demonstrated remark-
able abilities in interpreting visual data in Ara-
bic. However, these models can struggle with
object hallucination, where the generated de-
scriptions or answers may include references
to objects that do not exist in the input image,
along with unnecessary details.

Additionally, translation errors can signifi-
cantly impact the model’s performance and
propagate through the training data. We have
identified several such errors in the model’s
responses. For example, the English word ’sit-
ting’ typically indicates the location of an ob-
ject. However, the Google API often mistrans-
lates it to suggest that the object is lying down,
as seen in the translation of *The train is sit-

ting at the station” to daxl! 3 b Uadll,
where _.J\> inaccurately implies that the train

is lying down.

Moreover, the Peacock model’s capabilities
are further limited in recognizing text within
images. This limitation stems from the fact
that our training datasets do not include image-
text pairs.

8 Ethics Statement

Energy Efficiency. Our Peacock models, like
many large MLLMs, require significant pretraining
time and are not energy-efficient. We acknowledge
this critical issue and support continued research
towards developing energy-efficient models.
Data. Our pretraining datasets are translated from
publicly available English data, encompassing di-
verse genres, communities and varieties. Our Pea-
cock models demonstrate potential in applications
involving several Arabic varieties, serving broad
populations.

Human Annotation. Three authors of this paper,
all Arabic native speakers with PhD degrees and
extensive NLP experience, conducted the human
annotation. They are full-time employees of our
research group, with data annotation as part of their
job duties. No IRB review was necessary as the
project used publicly available data without requir-
ing access to any private accounts.

Applications. While Peacock, like many MLLMs,

can be misused, it also holds promise for bene-
ficial applications in education, health, and more.
Responsible deployment and use are crucial to max-
imizing its positive impact. It would also help keep
Arabic varieties in use in written form in the digital
age.

Al Usage. ChatGPT was used to corect grammar
in some early stages of the paper writing by some
of the authors. This utilization was strictly for
the purpose of enhancing the linguistic precision.
Our research team independently carried out the
fundamental research, analysis, development, and
paper writing.
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Appendices

We provide an addition organized as follows:
* Image Attribution A.1.
» Large Language Models A.2.
* Translation and Filtering A.3.
* AraLLaMA A 4.
* Models Parameters A.5.
* Henna Generation Pipeline Examples A.6.
* Qualitative Analysis Examples A.7.

* Case Study with Egyptian Dialect Details and
Examples A.8.

A.1 Image Attribution

All figures presented in this document are sourced
from the COCO dataset and Wikipedia (Wikipedia
contributors, 2024), unless otherwise specified.

A.2 Large Language Models

The field of LLMs has seen significant growth due
to increased data availability and computational
capabilities. Initial models such as BERT (Devlin
et al., 2018) and TS5 (Raffel et al., 2020), along
with decoder-focused models like GPT (Radford
et al., 2019), utilized the Transformer architecture
(Vaswani et al., 2017) to achieve remarkable results
in various NLP tasks. The advent of GPT3 (Brown
et al., 2020) marked a shift towards decoder-only
structures, emphasizing auto-regressive decoding
for prediction generation. Following models, in-
cluding PalLM (Anil et al., 2023), expanded the
scope of parameters and dataset sizes. Meanwhile,
models like InstructGPT (Ouyang et al., 2022), mis-
tral (Jiang et al., 2023), ChatGPT (ChatGPT, 2024)
integrated fine-tuning and reinforcement learning
to enhance conversational abilities (Ouyang et al.,
2022). More recently, Direct Preference Optimiza-
tion (DPO) technique has been developed to fine-
tune language models (LMs) to align with human
preferences (Rafailov et al., 2023). The advance-
ments in LLMs were not limited to the English lan-
guage only, recent works in Arabic LLMs showed
promising performance. (Nagoudi et al., 2022)
presented Jasmine, a strong Arabic text decoder
capable of performing Arabic text generation and
classification tasks. While (Huang et al., 2023;
Sengupta et al., 2023) followed (ChatGPT, 2024)
instructions fine-tuning and introduced language
decoders based on LLaMA?2 (Touvron et al., 2023)

capable of following instructions and holding a
coherent conversation in Arabic. These advance-
ments, coupled with contributions from the open-
source community, have established new standards
and created new opportunities for research in the
NLP field.

A.3 Translation and Filtering

Dataset Type < All - Filtered

‘ Train  Dev Test ‘ Train  Dev Test
COC02017 Captioning 590k 25k - 527k 22k -
LLaVA Pretrain (LCS) | Captioning 558k - - 389k - -
LLaVA instruct 150k Instructions 271k = — 204k = =
VQAv2 VQA 440k 214k - 351k 172k -
OKVQA VQA 9k 4k - 7Tk 3k -
GQA VQA 938k 132k - 638k 89k -
SEED-Bench Benchmark - - 14k - - 7Tk
LLaVA-Bench Benchmark - - 90 - - 90
Henna-Bench Benchmark - - - - - 1k

Table A.5: Breakdown of our publicly released pretrain-
ing and instruction finetuning Arabic datasets. Only the
filtered datasets highlighted in green and cyan are
used for pretraining and instruction finetuning, respec-
tively.

English Arabic Translation Similarity
A sidewalk that has a microwave
sitting on it
A elephant reaching out with some
thing with its nose.

C99)S0 U p0) 0.305786

aasly sesain 0y 2oy Jud. 0.493334

A man standing in front of a clock. aclull plol wasy J=. 0.966210

Figure A.9: Three examples illustrating the variations in
translation quality from English to Arabic, ranging from
good to moderate to poor, as indicated by the similarity
scores.

In the literature, ElJundi et al. (2020) found
that Google translates API translations to be sub-
optimal, while Mohamed et al. (2023) showed that
No Language Left Behind (NLLB) project (Costa-
jussa et al., 2022) performs better than the free
Google translate API integrated into Google Sheets.
However, our investigation reveals that the lat-
est Google Translate API has superior perfor-
mance and provides higher-quality translations
than NLLB. This observation aligns with the re-
cent findings of Kadaoui et al. (2023).

To evaluate the effectiveness of filtering in our
study, we randomly selected a subset of 250 sam-
ples from the VQAv2 dataset and performed human
annotations to assess the accuracy of question-and-
answer (Q&A) translations in both filtered and un-
filtered (All) segments. The analysis revealed that
out of the 250 samples in the unfiltered segment,
35 were incorrectly translated. In contrast, within
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the filtered segment, which comprised 207 sam-
ples after the application of a filtering mechanism,
only 7 were incorrectly translated. The filter ef-
fectively removed 43 samples, of which 31 were
inaccurately translated, indicating that the majority
of removed items were indeed problematic, while
12 were accurately translated.

Recall
88.57%

Precision

72.09%

F1 Score Accuracy

79.49% 93.52%

Table A.6: Performance metrics for the filtering process

To quantify the effectiveness of the filtering pro-
cess, we calculated several metrics as shown in
Table A.6. These results, presented in Table A.6,
demonstrate that the filtering approach substan-
tially enhances the quality of the dataset by effec-
tively identifying and removing incorrectly trans-
lated Q&A pairs.

Table A.5 presents the statistics of the translated
data before and after the filtering process. As the
table indicates, the reduction ratio due to filtering
is approximately 20%

A4 Aral.LaMA

Pretraining Data. Aral.LaMA, is an autoregres-
sive pretrained language model based on LLaMA2-
7B. We further train it on a large and diverse Arabic
dataset, including all categories of Arabic, namely
Classical Arabic (CA), Dialectal Arabic (DA), and
MSA. This data is aggregated from various sources:
AraNews,, (Nagoudi et al., 2020), El-Khair (EI-
Khair, 2016), Gigaword,3 OSCAR (Suarez et al.,
2019), OSIAN (Zeroual et al., 2019), Wikipedia
Arabic, and Hindawi Books.* We also derived Ara-
bicWeb22 (A) and (B) from the open source Arabic
text 2022.°

Training Strategy. LLLaMA-2’s original vocabu-
lary wasn’t specifically optimized for Arabic and
had a limited selection of Arabic words (it includes
only 28 Arabic alphabet), leading to inadequate
comprehension of Arabic language data. The initial
step to address this involved expanding LLaMA-
2’s vocabulary. Expanding the vocabulary signifi-
cantly enhanced the efficiency of encoding string
sequences and enriched these sequences with more
meaningful information, which was especially ben-
eficial for document-level understanding and en-

>LDC Catalog Link
4OpenITI corpus (v1.6) (Nigst et al., 2020).
3 ArabicText-2022 data

coding (Li et al., 2023g). However, the limited
amount of data available for continual pre-training
meant that a substantial increase in vocabulary
could introduce words or phrases that lack practical
significance, posing a challenge in learning them
effectively from the pre-training dataset and neg-
atively affecting the model’s performance. More-
over, a larger vocabulary size would increase the
number of embedding-related parameters, which
could impact training efficiency. Therefore, after
conducting numerous experiments and considering
the balance between training quality and efficiency,
we increased the vocabulary size from the original
32,000 words in LLaMA-2 to 60,000 for the Arabic
version. With the expanded vocabulary, the next
step involved initializing the embeddings for the
new vocabulary based on the original LLaMA-2
(7B) model. To ensure a smooth transition of capa-
bilities from the original LLaMA-2 to the Arabic
LLaMA-2 while keeping the English proficiency
unaffected in the initial phase, we used a mean ini-
tialization method for the new embeddings, utiliz-
ing the weights from the original LLaMA-2. This
approach not only preserved the English language
capabilities but also facilitated the effective transfer
of these capabilities to the Arabic language model,
enabling LLaMA-2 to function efficiently in both
English and Arabic. Moreover, 30 GB of English
and Arabic data, was utilized during pre-training.
Instruction Fine-tuning. To enhance capabilities
of our AraLLaMA we instruct-tuning it on three
datasets: Alpaca-GPT4, Evol-instruct, ShareGPT
extracted from MultilingualSIFT datasets (Chen
et al., 2023).

A.5 Models Parameters

Model LLM

InstructBlip  AraLLaMA

InstructBlip ~ AceGPT
LLaVA AraLLaMA
LLaVA AceGPT

Vision Encoder Q-Former Projection Layer(s) LLM Total

986M # 186M ## 3IM /<
986M # 186M ## MV
304M & — 2IM v
304M & — 2IM vV

6.968B <> 8.142B
6.738B < 7.913B
6.967B < 7.292B
6.738B <> 7.063B

Table A.7: Number of parameters for the main compo-
nents of the models. sdenotes frozen parameters during
the pretraining and finetuning stages, v'indicates train-
able parameters trained from scratch in the pretraining
stage, and <*represents LoRA finetuning parameters in
the instruction finetuning stage.

In Table A.7, we provide details of the num-
ber of parameters for the main components of the
Peacock models, including the distinction between
trainable and non-trainable parameters for both the
pertaining and instruction finetuning stages. These
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distinctions are vital for understanding the model’s
structure and optimization strategy.

A.6 Henna Generation Pipeline Examples

This appendix section includes Figures A.10, A.11,
A.13, A.17, and A.18 described in Section 5.2.4.

A.7 Qualitative Analysis Example

In this section, we provide an example of qualita-
tive analysis as described in Section 5.2.5, illus-
trated in Figure A.23.

A.8 Case Study with Egyptian Dialect Details
and Examples

Figure A.24 displays three randomly selected
examples of question-answer pairs translated
from MSA into the Egyptian dialect.  Fig-
ure A.25 presents four examples—three from
Henna and one from LLaVA-Bench—along
with the correct MSA answers and responses
from two models: InstructBlip-AraLLaMA and

InstructBlip-AceGPT , demonstrating the Pea-
cock model’s proficiency in responding in the Egyp-
tian dialect. In Figure A.26, we highlight the su-
periority of Peacock over GPT-4 when posed with
questions in the Egyptian dialect, where GPT-4 re-
sponds in MSA while Peacock provides answers
in the Egyptian dialect. Conversely, when both
models are queried in MSA, they reply in MSA.
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Common activities and lifestyle

Architectural styles and
notable buildings

Historical monuments and
sites

Traditional food and cuisine

Local customs and practices

Figure A.10: This collection of images showcases a curated subset selected from Henna dataset, representing
11 Arab countries, and capturing the essence of traditional food, local customs, historical monuments, everyday
activities, and distinctive architecture that characterize the diverse and rich heritage of each region.
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Figure A.11: Demonstration of four randomly selected images, each accompanied by question and answer pairs

generated by GPT-4.
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Figure A.12: Sample image from Henna for the Giza Pyramids in Egypt.

Question

English Translated

Question

Answer

English Translated
Answer

253 sall Aol aladl) ga L
55 el 8

What is the historical

landmark in the
picture?

e s 3 grall (B 3sa sall Al aladl)
5l el jal

The historical landmark in the picture is the

Giza Pyramid Complex.

Slaan a8 sall 138 0y o

Where exactly is this

site located?

SN 5l 35l A b sl o o

s

This site is located on the Giza Plateau in

Greater Cairo, Egypt.

et o Sl AY) a L
) small B lehs )

Which pyramids can be
seen in the picture?

& e p s g i b5 S el Ay (e

Bogall A

The Great Pyramid, the Pyramid of Khafre,
and the Pyramid of Menkaure can be seen

in the picture.

o3 eliy (o) a3l L
seilal jaY)

What was the primary
purpose of building

these pyramids?

S IS el a1 38 iy (pa (asl] )

sl

The primary purpose of building these
pyramids was as royal tombs.

(8 83sm sl el Y1 sae <
5 guall

How many pyramids
are there in the picture?

Bosmall (53 s ga el jal 233 Gllia

There are three pyramids visible in the
picture.

o3 iy S5 jlmall o Le
scilal_ja )

Which civilization built

these pyramids?

o iy Al o Aall Ay jeadll 5 sl
el Y

The ancient Egyptian civilization built these

pyramids.

sl 5l Qi a5 oSa da
55 el 020 b

Can the Sphinx statue
be seen in this picture?

Boseall ol 3 el ¥ Jsed) sl Jlias oY

No, the Sphinx statue does not appear in
this picture.

ey o3 Al Ata 3l 5 il Lo
Sl el oY) o2a

What time period were
these pyramids built in?

AShaall il 1 5] 2ge (8 el jaY1 034 oLy o3

Bl J8 2500 5 2600 (oo O sl

These pyramids were built during the
Fourth Dynasty of the Old Kingdom,
between 2600 and 2500 BC.

Aasi ya Al jualic dllia Ja
(88353 5e el 2 YL
) guall

present in the picture?

Are there other
elements associated
with the pyramids

ealic el Vg b cilal aY) jeli sy gl oY
Allaall il e B L A a5 58

No, the picture only shows the pyramids
and does not show other related elements
such as tombs or the workers' village.

el ISl aliay 53 Lo
Fapsil 4y joad 5 jlmall (sl

What does the
pyramidal shape
represent for the
ancient Egyptian

civilization?

OIS Cum g a5 Ains Tpaal 4l OIS e sgll S
el Y il 5 g b sy 4l Sl

The pyramidal shape had religious and

symbolic importance, as it was believed to

help the deceased's soul ascend to the
heavens.

Figure A.13: Ten questions and answers generated using the image from A.12 with Henna generation pipeline. All
questions and answers have been translated into English to demonstrate the quality of the generated data.
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Qestion @‘{ 58,90l (58 8,0l llgs> o olsil oSl agy Jo

Ry — ‘ Sllgs> ol Lol i 8,00l (56 yplay V V.

Peacock {a,n ke S AaMe s 9 ] )l o8 Auipn Sl sl bl vy U V.

Evaluator @ { "helpfulness": 10, "relevance": 10, "accuracy": 10, "level_of_details": 9 }
GPT4
B Olga> JSoir sle 9 sl 8 puzall Sllgadl pazy Jis S) 8590l (88 ey a1 Y
mBlip
Evaluator @ { "helpfulness": 8, "relevance": 10, "accuracy": 6, "level_of_detail": 4 } }
GPT4

Figure A.14: High-scoring evaluations: The answer from InstructBlip-AralLLaMA is accurate, earning a perfect
score from GPT-4. mBlip’s response is also rated as reasonable.

Qestion @—{ 96,90l (59 olall izl anio aclio (59 @orziunll slgoll Lo ]
289 (@nall gl Uyall Jio 8,5 83lo oo Esian Wl 9am Bygall (xd Se>g0ll dnizdl LAsio
Correct Answer a1l Byl oo rpkas oS al kb UsSs.
@ ol wlogleoll o 330 W «2ls gog «WaRally izl o Egian Hmisll Gario Ol 9w
Peacock 8. Janioll o 0 dortienoll @il 83lod] o oSow V eBlowll.
Evaluator @ { "helpfulness": 6, "relevance": 7, "accuracy": 5, "level_of_details": 6 } }
GPT4
mBlip Lo Gl (sle wglll @Slsg (sudd
Evaluator @ { "helpfulness": 5, "relevance": 7, "accuracy": 3, "level_of_detail": 2 } }
GPT4

Figure A.15: Moderate-scoring evaluations: Here, InstructBlip-AraLLaMA’s response, while accurate, doesn’t
match the gold standard, resulting in a moderate GPT-4 score. mBlip’s scoring reflects a proper evaluation.

Qestion @‘{ 56,90l o sabll 58 pexlll (o g3 ST Aba>Mo (Sou Jo ]
a9 slas spky sl Ol s Bygall o sl (38 gz 9> @la>Me oy V Y
Correct Answer Las,
P ‘ Hlazdl o acgiie dcgoo | ey oo ((gudall (59 pxll (o dhd s (s
eacoc alaldl (58 839>g0ll.
Evaluator @ { "helpfulness": 1, "relevance": 1, "accuracy": 1, "level_of_detail": 1 } }
GPT4
_ oo g9l 13 aclus ol Jpolasl pass Jis ) 8,80l (sle s wgS, o (Soy V
mBlip I5aioly 83 ST wgSy plakll.
Evaluator @ { "helpfulness": 5, "relevance": 4, "accuracy": 5, "level_of_detail": 1 } }
GPT4

Figure A.16: Low-scoring evaluations: InstructBlip-AraLLaMA’s response is incorrect, leading to a low GPT-4
score. Conversely, mBlip is awarded a moderate score, indicating a more accurate response.

Figure A.17: Henna evaluation samples showing GPT-4’s scoring range for responses from different models.

Sub-figures illustrate the spectrum of scoring from high to low, based on the accuracy and relevance of the model-
generated answers to the benchmark questions.
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E Given the following question in Arabic: {question}, and the correct

. answer in Arabic: {correct_answer}, please rate the following aspects of
E the model's response: helpfulness, relevance, accuracy, and level of

'+ detail.

Rate and score each aspect on a scale of 1 to 10, where a higher score
: indicates better overall quality of the model's response.

. The model's response is enclosed within triple backticks.

Format your feedback as a JSON object, using 'helpfulness', 'relevance’,
© 'accuracy', and 'level_of_details' as keys.

If the information is not available, use "unknown" as the value.

Model response: "{model_response}

Figure A.18: The prompt used to guide GPT-4 to evaluate Henna.

12773



a-H 6,90l (58 Juall 0g) 9 Lo

aliz Jalse cans 0ol 138 055, 0 oS wslay)l 0l digall 199 s990ll Juall | e
Gilyo laic a9l So,kall of ayissll io.

A —{ Ggarall (58 839>gall Glsall sac oS

Low «ligs 81159 «as0ll sl o ghd S Jlia . Sesiall (2d clgs ghs gyl Wl @
sypall (28 s> &l lpicsao Jau.

£z 2 Saoriall 9l yolic puiy cliSar Jo )
Syl ladl lgo s1ac lsms hload] gss) lSa ab Aagio 8l 8r9all splal

£l ale 8w ol @uoly, &ylaw 0955 38 Lpil ]yt Low 13,391 Lol Axdgin
Qi (58 0S5 Ul Joizoll a8 issall £l 4> (8 835750 6ylead] O Lol8L
sliall o ally el Ssds oSlol o8 Sl US) pi o duoriges L.

yey { Saossall 8ygall yolic Jo> Jpatill diSoy Jo j

&

clsgaw Aol (ale soliall 030 gog i abdlos.

‘ 85 10liolds wliil byl oo Ay wSsls oy iyeme b 6,5all 58 Arss

2 { 390l 018 ¢p0 @l,3)l (o Jg> asliiiwl Say I5ko ]

oY1 gl ULl io e dis o8 3550 @815l ol glisil oSov by9ll oas
Gogo 0sS5 18 Aaniall O (sJ] iUl 3959 pusin B ool 1295 > Erisall
2855 5 pdlusis pbsall Jall iVl 395 izl azy csle s wllsl Gaslio
SVl gl DM 0 @81,5U cliall.

7=y
55

8‘{ S il 1ig) aloiall awbiall o Lo j

| I 580 Jog 38 dilo o535 Sl paseidl ol 98 assidll i elyg cannall ugS.J.\S‘L @
L oiud[clp&:wlayswﬁ.w)&w>|MUI,¢Q&W]5]JMJI(A

| Jedll s I @I o el winiay oo (Ll Gl S 0l 58 ity Sl

N J

Figure A.19: InstructBlip-AraLLaMA Examples.
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Figure A.21: LLaVA-AraLLaMA Examples.

Figure A.22: LLaVA-AceGPT Examples.

Figure A.23: Selected examples from the LLaVA benchmark include two from the conversational type, two from
the detail type, and two from the complex question type. The top-left responses are from InstructBlip-AraLLaMA,
the top-right responses from InstructBlip-AceGPT, the bottom-left responses from LLaVA-AralLLaMA, and the

bottom-right responses from LLaVA-AceGPT.
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Question in MSA Question in Egyptian Dialect Answer in MSA Answer in Egyptian Dialect

) 8,0l (8 ashazall ool ol L] pis | JMs oo dnbriioll g JSiis Joc ai
8 ashisioll elgoVl pho sl il o | o8 ashaiiall oVl b i Ul al | Lol csleginall moaill i W o | ol xwo; Joliy xdlyegiall gmill aids

8,9l S8 y0.all il sle Olyleaad] &> baails cslly cosin; idy o8 anlio Lpi| e olasll &S, baly
arall €500 e i sl aulio. ol lg> Lo yinw
o)l S5, I3Lo Sal gV 05 Ul £l 5008 Vg awg wl—v‘l—:w J=ll 5355 | 989 smad 0)9-&9_??9.' u‘ws oY J=bll
Sany18 6,00l 01a Ja 40,18 (55 6,0l P ogl

Figure A.24: Three examples of question-answer pairs translated from MSA to the Egyptian dialect.

Question in @—{ Tl v Byl e B el vl elelbed] ]
Egyptian Dialect
Correct Answer in MSA o ol @b 0gS5 Ol Sy elian @alog Jlseg pblab il i Jus.

Peacock @ { Jlzog pblabg a5 (s; 8,9all (59 43l Wll> aguis (b @Sl aloYl. J

Peacock lgaw sSy o JST sab Boii uSae S5l sle b Ol (58 @Sl i

Question in @‘{ 98,90l (59 auiawgoll @88l oo Gliw (89
Egyptian Dialect

5 D9 il (58 dudwgall dcgocall Goud sl 3929 @a>Mo Sy e

Correct Answer in MSA aal; Ulgl LuuMo.

B Joliwd @V 8,90l 28 (Ul ol 890l (28 dxiwgell 48,a)l o Slivw 5 o

Peacock o Sl
Peacock @ i wgoll 88,00l o Wliw (a3 ol
Question in G800l (59 0 (siawgoll Rouww j9p0> 5

Egyptian Dialect
Correct Answer in MSA | 2rall (sle (sugally oudjlell sle b 555 8,90l .8,9.0)l (58 j9p0> play V (V.

rescoss BB { 58,5 (58 xtamgall dsees Al i 138 sl 9l (28 0l s9pacs isin Y
'eacocl a

Qudpigo.
Peacock @ IpaolsIl M 50 (risrwgol) g s9p0> (89 cogil.
Queston n @{ Syl obso o sall go alistul Sas bl al
Egyptian Dialect

ol aumb azo ooVl ke 98 @1l Gbge Ul sle IVl oSas 8,90l on
0l o>9s Lo @l elyias il 822 onr anolis @Slyall o .6, elyias oloLuso
il Bl Jio @8], sligll ;3lan oo i)l dgis ULl due aghioll.

; oL,1 5l LBLWI (S5 osaub (rbgo (s 83990 L3l O] guiiwss oSow 8,90l (o0
Peacock @

Correct Answer in MSA

w2ub UlSo (8 L] &us,8 peay dualzdl (88 ;2 599 UlaSy .a>giaoll duiisll
Ayl (o8 Byyii.

Peacock @ 8ymiad] (sle 01c Ll L of i (8 A>lginy I3l Ol i oSos.

Figure A.25: Comparative responses from InstructBlip-AraLLaMA and InstructBlip-AceGPT models alongside
the correct MSA answers for four selected examples, three from Henna and the last one from LLaVA-Bench,
demonstrating the models’ proficiency in Egyptian dialect.
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Question in N\ o
Egyptian Dialect S3
So,90)l (53 Vlg> (53 30 a2
28
J P
c
P K @ : S35
Eacoc Slilga> ST auntiog ko, ali (sl waly pased lpad 8,0a)l 8,90l (56 Olgy> iasso V| B S
Apinall (58 &yo &l Olga> ol o0
@ 20 858 By cod imn S ol iy By9al pall o Ol 1294V Y | I8
il pd Lislbisio oo o wpall waiy a5l paseids Jlid ol 9ag ily=all. =
GPT4
S —
Question in @ So,9all 28 Vlgp> 229y o g
MSA )
<
‘aalhio (59 sy pased 98 8ygall syl 148,31 8 0.0l (88 Ulga> =g V Y g
Peacock @ g0,
lomo JSLdg Lgai go [asS Uyo (e ek 8)0.0)l 8,00l (58 wllse> 195 V <
I a0l o a6 duanl 15 S, 15 gdsall 138 Ol U] s Lo yeall 56 Wgxio | | 2
GPT4 Syzall JSapll pxsd Loliso csasy los o Jawll (88 iy ok i

Figure A.26: A demonstration of Peacock model’s advantage over GPT-4V in responding to queries in the Egyptian
dialect, with the former responding in the dialect and the latter in MSA. A secondary example shows both models
replying in MSA when queried in MSA.
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