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Abstract

We present LayerSkip, an end-to-end solution
to speed-up inference of large language mod-
els (LLMs). First, during training we apply
layer dropout, with low dropout rates for ear-
lier layers and higher dropout rates for later
layers, and an early exit loss where all trans-
former layers share the same exit. Second, dur-
ing inference, we show that this training recipe
increases the accuracy of early exit at earlier
layers, without adding any auxiliary layers or
modules to the model. Third, we present a
novel self-speculative decoding solution where
we exit at early layers and verify and correct
with remaining layers of the model. Our pro-
posed self-speculative decoding approach has
less memory footprint than other speculative
decoding approaches and benefits from shared
compute and activations of the draft and ver-
ification stages. We run experiments on dif-
ferent Llama model sizes on different types
of training: pretraining from scratch, contin-
ual pretraining, finetuning on specific data do-
main, and finetuning on specific task. We
implement our inference solution and show
speedups of up to 2.16× on summarization for
CNN/DM documents, 1.82× on coding, and
2.0× on TOPv2 semantic parsing task. We
open source code at https://github.com/
facebookresearch/LayerSkip.

1 Introduction

Large Language Models (LLMs) have been de-
ployed to many applications, yet their high com-
pute and memory requirements lead to high fi-
nancial and energy costs when deployed to GPU
servers Samsi et al. (2023). Acceleration solutions
do exist to deploy to commodity GPUs on lap-
tops but they suffer from significant drop in accu-
racy Zhu et al. (2023). Accelerating LLMs further
to mobile or edge devices is still an active research
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Figure 1: Overview of our end-to-end solution, Layer-
Skip, showing its 3 components.

area Çöplü et al. (2023); Liu et al. (2024). While a
large portion of LLM acceleration approaches re-
duce number of non-zero weights Xia et al. (2023)
(a.k.a. sparsity), number of bits per weight Xiao
et al. (2023) (a.k.a. quantization), number of heads
per layer Shim et al. (2021) (a.k.a. head pruning),
a smaller portion of approaches focus on reduc-
ing number of layers Fan et al. (2020); Elbayad
et al. (2020). In this paper, we explore reducing the
number of layers required for each token by exit-
ing early during inference. Unlike quantization or
sparsity, acceleration by reducing number of layers
does not require specialized hardware or software
kernels.

Moreover, a popular research trend in LLM ac-
celeration is speculative decoding Leviathan et al.
(2023); Chen et al. (2023) that has no drop in ac-
curacy, where a large model, referred to as the
main model, is accompanied with a faster model,
referred to as the draft model. The advantage of
speculative decoding is that it leads to faster infer-
ence compared to the main model, but requires a
larger memory footprint and complexity in imple-
mentation to maintain key-value (KV) cache in two
different models. In addition to exiting early, this
paper also proposes combining exiting early with
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speculative decoding to propose a self-speculative
decoding approach that does not require an addi-
tional model or auxiliary layers.

The contribution of this paper is an end-to-end
solution:

• a training recipe that combines layer dropout
and early exit loss, that leads to,

• inference that is more robust to exiting at ear-
lier layers of the model, essentially creating
different sized sub-models within the same
model, and

• a self-speculative decoding solution that de-
codes with earlier layers and verifies and cor-
rects with later layers.

The solution achieves speedups between 1.34×
and 2.16× depending on the task. We provide an
overview of the solution in Figure 1.

2 Motivation

2.1 Exiting Earlier in LLMs

To motivate our approach, we investigate, with an
example prompt, what happens in each layer in a
LLM. In Figure 2a, we provide the first prompt
from the HumanEval coding dataset Chen et al.
(2021) to a pretrained Llama1 7B model Touvron
et al. (2023a). The prompt consists of a Python
function header and a docstring, and the model au-
tocompletes it by defining the function body. When
generating each token, we probe each transformer
layer in the LLM by projecting its output embed-
dings on the language model (LM) head (that con-
sists of the model’s final layer normalization and
linear layer), applying softmax, and then obtain-
ing the index of the output element with highest
value. The resulting index corresponds to the pre-
dicted token at this layer. This operation is referred
to in some literature as the unembedding opera-
tion Phuong and Hutter (2022); Cancedda (2024),
as it converts an embedding to an index. Unembed-
ding at each layer is equivalent to early-exit at that
layer, i.e., it is equivalent to skipping the remaining
transformer layers to the model’s LM head.

The token predictions across layers in Figure 2b
illustrate the evolution of embeddings from an in-
put token fed to the model to the predicted next
token by the model. When analyzing the token
prediction in each layer in Figure 2b, we make a
few observations. First, token predictions in earlier
layers appear to be irrelevant as they correspond to
the previous token projected on the model’s embed-
ding layer’s weights, which are different from the

weights of the LM head. In later layers, token pre-
dictions converge to the final prediction. Second,
we do not always need all the layers to predict the
correct token. In fact, most of the time, the final
token prediction is predicted fewer layers before
the end. We also notice that intermediate layers are
sometimes hesitant and “change their minds”, e.g.,
for Token 05, the model was predicting “range” as
early as Layer 07, but changed its mind between
Layer 22 and Layer 26, before settling again on
“range”.

Similar analysis was done in Geva et al. (2022)
on a GPT2 model Radford et al. (2019) as it devel-
oped predictors to estimate when prediction satu-
rates to exit early. For the particular example we
present in Figure 2, we find, on average, a token
requires 23.45 layers out of the model’s 32 lay-
ers. Hence, even if we have a perfect predictor
that has zero compute overhead, we can only save
up to 26% of computation. Therefore, there is a
need to make LLM models require fewer layers to
predict each token, and spend less compute being
hesitant or “changing its mind”. By default, deep
learning models are not motivated to predict their
final output early and instead spread their compute
across all layers Voita et al. (2019, 2023). We see
in Figure 2b, that tokens we would consider easy or
straightforward to predict, e.g., Token 02 that starts
a for-loop, required all 32 layers to predict “for”.
We would like our model to be less reliant on later
layers and only use later layers for harder tokens.
We would like our models to be more reliant on ear-
lier layers than later layers. To do that, we propose
skipping layers during training, which we refer to
as layer dropout. However, we use higher dropout
rates for later layers and lower dropout rates for
earlier layers, to make the model less reliant on
later layers.

Moreover, LM heads in LLMs are trained to
unembed embeddings from the last transformer
layer. They were not trained to unembed from
earlier layers. Therefore, our solution also adds a
loss function during training to make LM heads
better “understand” embeddings of earlier layers.
While most papers that explored early exit Schus-
ter et al. (2022); Elbayad et al. (2020) trained a
dedicated LM head for each transformer layer, and
some have introduced additional modules for each
early exit Zhang et al. (2019), we chose to have
a shared LM head for all transformer layers in
the model. This makes training faster, require
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Prompt: from typing import List
def has_close_elements(numbers: List[float], threshold:
float) -> bool:

"""
Check if in given list of numbers, are any two

numbers closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0,

2.0], 0.3)
True
"""

Generation: for i in range(len(numbers)):\n
for j in range(i+1, len(numbers)):\n

if abs(numbers[i] - numbers[j]) < threshold:\n
return True\n

return False\n

(a)

Token 01 Token 02 Token 03 Token 04 Token 05 Token 06 Token 07 Token 08 Token 09 Token 10 Token 11 Token 12 Token 13 Token 14 Token 15 Token 16 Token 17

Layer 00 ... // eground externs EV Anleitung this зня ** hips academ ... // eground unction EV Anleitung

Layer 01 and // instance Pod response atel self View self AS timing everybody // sure osh hib ous

Layer 02 Dark # ego Pod pse ula ** tern self AT __ SO // instance osh isti ula

Layer 03 << // ego tak ula s łu self Helper Hem Rein // _, tak ula

Layer 04 dorf // ego range town pract Nar zero paces Hem `.` // isu input iter ula

Layer 05 Pay if instance Sold range widet etra Hem paces fib ioned if isu fish range ula

Layer 06 (...) if isu iter iska ̂ тика Trace SR fib ioned if za Gree iter iri

Layer 07 hoff if _, range ("@ ̂ тика , piel Kn ioned if pat Gree range ("@

Layer 08 \n if instance range ("@ len тика ulp paces AT ioned if pat range ("@

Layer 09 Cow return loop range stag self of this cope ori ioned if wards forg range (

Layer 10 return return i range stag len ect Maz smallest Cop ioned if i Sn range till

Layer 11 return return i range val self <= this ut ida ioned if i enda range iras

Layer 12 return return i 話 range stag len kir din plit cep ioned if i pent range iras

Layer 13 return return i range stag len <= self plit oss ioned if i oth range iras

Layer 14 return return i range len len <= self plit lag ioned if i next range (

Layer 15 return return i range len len <= len list { ioned if i unction range (

Layer 16   # i range len len ovo self paces � ioned if i ura range (

Layer 17 return # i range len len <= self paces \n ioned if ii ura range (

Layer 18   # pair ota range len len len numbers plit \n irm if i i range (

Layer 19   # i ota range len len len numbers plit for   if i i range (

Layer 20   # i ota range len len len numbers plit for ioned if i i range (

Layer 21   distance i ota range len len <= numbers plit for ioned for i i range (

Layer 22   return i _ numbers (): len ( numbers plit for irm if i in range (

Layer 23   return i _ range ( len ( numbers ): for irm if i in range (

Layer 24   return number in numbers ( len ( numbers [: for irm for j in range (

Layer 25   return i in range ( len ( numbers ): for       for j in range (

Layer 26   return i in numbers ( len ): numbers )): \n       for j in range (

Layer 27   return i in range ( len ): numbers )): \n       for j in range (

Layer 28   return i in range ( len ( numbers )): \n       for j in range (

Layer 29   return i in range ( len ( numbers )): \n       for j in range (

Layer 30   return i in range ( len ( numbers )): \n for j in range (

Layer 31   for i in range ( len ( numbers )): \n       for j in range (

(b)

Figure 2: (a) A prompt from the HumanEval dataset Chen et al. (2021) and corresponding text generated by Llama1
7B. The color of each generated token corresponds to the earliest layer in the model that predicted it. (b) Token
prediction at each layer in Llama1 7B.
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Figure 3: We propose using layer dropout and early exit
loss during training to create a model that is equivalent
to an ensemble of models of various depths.

less memory consumption for both training and
inference, and eases deployment and maintenance.
Hence, as shown in Figure 3, we train a deep learn-
ing model that is equivalent to an ensemble of mod-
els of various depths, capable of skipping from
different transfomer layers to the LM head.

2.2 Correcting if we Exit Too Early

Regardless if we use heuristics or predictors (as
Schuster et al. (2022); Geva et al. (2022)) to exit
early, or if we modify the training procedure to
make models predict early (as Elbayad et al. (2020);
Zhang et al. (2019) and this paper as well), it is
likely that exiting early during inference will lead
to a reduction in accuracy. It will be ideal if there
is a way to verify if an early prediction is accurate,
and correct it by executing remaining layers. Some
approaches like Zhang et al. (2019) proposed a con-
fidence heuristic to decide after executing an early

exit if the remaining layers are needed. Here, we
leverage speculative decoding techniques to verify
the early exit prediction and correct it. Specula-
tive decoding benefits from the fact that verifying
the prediction of a group of tokens is faster than
generating each token auto-regressively. Hence,
we present a self-speculative decoding approach
where we use early exit to generate each token
auto-regressively, and use the remaining layers to
verify a group of tokens in parallel, and correct
them.

3 Related Work

Dropout Dropout was first introduced by Sri-
vastava et al. (2014) and involved stochastically
replacing a portion of output elements of fully-
connected layers with zeros during training. We
refer to this variant of dropout as unstructured
dropout. It presented a regularization effect for
training, with the purpose of reducing over-fitting.
Unstructured dropout was commonly used in con-
volutional neural networks (CNNs) before batch
normalization Ioffe and Szegedy (2015) replaced
it as a means to improve generalization. However,
the introduction of transformers brought it back to
light as Vaswani et al. (2017) used a dropout rate of
0.1. However, dropout faded again when pretrain-
ing dataset sizes increased, e.g., large scale models
like Llama Touvron et al. (2023a) and GPT3 Brown
et al. (2020) do not mention dropout in their papers.

Layer Dropout Skipping layers stochastically
during training is referred to in literature with differ-
ent terms such as stochastic depth or layer dropout.
It was first explored in ResNets by Huang et al.
(2016) and is used to train ConvNext Liu et al.
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(2022).In language models, LayerDrop Fan et al.
(2020) applied dropout to every other transformer
layer, which increased its robustness to pruning
layers at inference time. Zhang and He (2020) in-
creased the pretraining speed of BERT by applying
a dropout rate that progressively increased every
iteration as well as every layer. To the best of our
knowledge, layer dropout for training decoder-only
models, or scaling language models to large model
sizes or large datasets has not been explored. More-
over, our paper is the first to propose using layer
dropout to improve early exit inference.

Early Exit Exiting early in deep learning has
first been explored in CNNs Panda et al. (2016);
Teerapittayanon et al. (2017). They added branch
modules at different exit points in a deep learning
network and introduced additional loss functions
during training to improve the accuracies of those
early exits.

In language models Elbayad et al. (2020) added
a dedicated LM head for each decoder layer in an
encoder-decoder translation model.CALM Schus-
ter et al. (2022) built upon that and started with
a model pretrained with early exit losses, and fo-
cused on finding optimal criteria to decide which
layer to exit at during inference. Din et al. (2023)
started with pretrained models and finetuned auxil-
iary fully-connected layers to map the embeddings
outputted by earlier layers to later layers. In our
proposed solution, we do not introduce any addi-
tional modules or linear layers for early exit, and
instead used a shared exit for all layers.

Speculative Decoding Speculative decod-
ing Leviathan et al. (2023); Chen et al. (2023)
is a popular acceleration technique for language
models. It is based on the fact that auto-regressive
decoding of decoder models are slow as they
generate one token a time, while measuring the
likelihood of a group of generated tokens in
parallel is faster. It uses a fast, less accurate model,
referred to as the draft model, to generate multiple
tokens auto-regressively, and a large, slower,
more accurate main model, to verify the tokens in
parallel, and correct them when needed. The draft
model could have the same or different architecture
as the main model, or could be a compressed
version of the model. Zhang et al. (2023) recently
proposed a self-speculative decoding approach
where the draft model is the same as the main
model, but with a group of intermediate attention

and feed forward network (FFN) layers skipped.
The advantage of our proposed solution compared
to Zhang et al. (2023) is that verification and
correction stages can reuse the activation and KV
cache from the draft stage as both stages execute
the same early layers in the same order, while
Zhang et al. (2023) can not reuse them as it skips
intermediate layers. Hooper et al. (2024) used
shared transformer layer groups and a shared LM
head to exit each token at a different layer and
execute different layer groups in a pipeline fashion.

4 Proposed Solution

Our approach has three different stages:
1. Training using Layer Dropout & Early Exit

Loss
2. Inference using Early Exit
3. Verification and Correction using Speculative

Decoding
We explain each stage in the following sub-

sections.

4.1 Training using Layer Dropout & Early
Exit Loss

We denote the input tokens to a transformer model
as X and its output as Y , with an embedding layer
that maps the token indices to token embeddings,
x0, and a transformer model with L transformer
layers, where transformer layer l evolves embed-
dings outputted from its previous layer, xl+1 =
xl + fl(xl), and a final LM head that maps the
embedding outputs of the last layer, xL to logits,
eL = g(xL). We denote the cross entropy loss
function that is usually used to train language mod-
els as JCE(eL, Y ).

4.1.1 Layer Dropout
The first modification we apply to common train-
ing recipes, is to apply layer dropout. Hence the
transformer layer operation at layer l and training
iteration t changes to:

xl+1,t = xl,t +M(pl,t)fl(xl,t) (1)

where pl,t is the dropout rate of layer l at iteration
t, M(p) is a Bernoulli function that returns 0 with
probability p and returns 1 with probability 1− p.
We apply the dropout operation on each sample
separately within a batch. We remove the dropped
samples from a batch, apply the transformer oper-
ation fl on the remaining samples, and then con-
catenate the output with the dropped samples. To
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ensure higher speedup during training, we seed the
random number generator for each GPU with the
same seed, so that each transformer layer at each
iteration will drop the same number of samples.

The dropout rate can be different at each layer l
and training iteration t, pl,t:

pl,t = S(t)D(l)pmax (2)

where pmax is a hyperparameter that sets the max-
imum dropout rate in the model during training,
D(l) is a per-layer scaling function, and S(t) is a
per-time step scaling function. We found that the
best per-layer scaling is to increase dropout rate
exponentially across layers from 0.0 in layer 0, to
1.0 in last layer, L− 1:

D(l) = e
lln2
L−1 − 1 (3)

For scaling across time, S(t), we found that if we
start with a pre-trained model and perform contin-
ual pre-training or finetuning, it is best to not scale
across time and hence set S(t) = 1. However, for
pretraining from scratch, we found that an expo-
nential curriculum, Sexp(t), lead to best accuracies
for T training steps:

Sexp(t) = e
tln2
T−1 − 1 (4)

4.1.2 Early Exit Loss
To boost prediction accuracy of lower layers, we
need to ensure that the model’s LM head, g, is ca-
pable of unembedding outputs of different layers.
Hence, during training, we augment layer dropout
with early exit loss at each layer. During train-
ing we supervise the model directly to connect the
early exit layers to the LM head, this enables us
to directly supervise the lower layers for the lan-
guage modeling task. The total loss of the model
at iteration t is:

J(X,Y, t) =
l=L−1∑

l=0

ẽ(t, l)JCE(g(xl+1), Y ) (5)

Where ẽ(t, l) is a normalized per-layer loss scale,
whose sum across all layers is equal to 1:

ẽ(t, l) =
C(t, l)e(l)

∑i=L−1
i=0 C(t, i)e(i)

(6)

C(t, l) is a binary curriculum function that deter-
mines if we enable early exit of layer l at iteration
t. We build upon Elbayad et al. (2020) and set a

scale that increases across layers, such as the scale
at one layer is proportional to the sum of the scales
of all previous layers:

e(l) =

{
escale

∑i=l
i=0 i, if 0 ≤ l < L− 1

L− 1 + escale
∑i=L−2

i=0 i, if l = L− 1

This way, we penalize later layers with quadrat-
ically higher weight, as predicting in later layers
is easier. 0 ≤ escale ≤ 1 is a hyperparameter that
controls the scale of early exit loss.

Note that we do not add additional LM heads as
proposed in other early exit papers Elbayad et al.
(2020); Schuster et al. (2022), as we essentially use
the same LM head for all layers.

Early Exit Loss Curriculum We find that
adding early exit loss of all layers at all iterations
during training slows down training and reduces
accuracy of the last layer. To overcome this, we in-
troduce a curriculum, C(t, l). We have explored 2
different curricula. First, we explored a rotational
early exit curriculum, Crot,R, where we enable early
exit at every R layers, and perform circular rotation
at each iteration. This way, early exit at each layer
is enabled once every R iterations. Hence, at each
training iteration, only ⌈L/R⌉ unembedding oper-
ations are applied. Second, we explored a gradual
early exit curriculum, Cgrad, where we gradually
enable early exit loss from layers L− 1 to 0, one
layer at a time every T/2L iterations.

4.2 Inference using Early Exit

When generating each token during autoregressive
decoding, we run the first E transformer layers in
a model, and skip to the model’s LM head, i.e.,
the model’s final output becomes g(xE). We ex-
plore with different values of E and provide the
accuracies in the Results section.

4.3 Inference using Self-Speculative Decoding

With layer dropout and early exit loss in training,
we show it is possible to speedup autoregressive
generation by exiting early, but this comes at an
accuracy cost compared to using the full model.
Speculative decoding Leviathan et al. (2023); Chen
et al. (2023) is able to leverage a faster yet less
accurate model to speedup generation without ac-
curacy cost. However, this requires storing and
training 2 models.

We introduce a novel self-speculative decoding
algorithm built on top of early exit, enabling us to
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Figure 4: Comparison between autoregressive decoding,
speculative decoding, and our proposed self-speculative
decoding.

reduce memory through the use of a single model
and latency of traditional speculative decoding
through re-using hidden states in draft and verify
steps. As shown in Figure 4, our self-speculation
algorithm consists of 2 key steps (1) Self-Drafting,
using the early exit to draft tokens from the same
model (2) Self-Verification, using the remaining
layers to validate the prediction. To enable re-use
in (1) and (2), we develop a novel Cache Reuse
technique that unifies the KV cache and storing
the exit query. We provide a high level description
of the algorithm in sections §4.3.1 and 4.3.2 and
provide pseudo code in A.6.

4.3.1 Self-Drafting
The first step in speculative decoding is to define a
set of draft tokens D0...d−1. In our algorithm, we
compute the first d draft tokens through early exit.
We refer to d as the number of speculations. We
leverage a subset of the LLM and conduct auto-
regressive inference exiting at layer E.

Our training recipe enabled us to train the model
once to get an ensemble of different candidate draft
models at each layer depth. We can evaluate exiting
at different layers and observe a trade off between
latency and accuracy.

4.3.2 Self-Verification
The next step in speculative decoding is verification.
Verification leverages the full LLM to predict the
next token for each draft token in a single forward

pass. We then assess to see where the draft tokens
and verified tokens agree. All the draft tokens up
till the disagreement point are added to the output
along with the next verified token and the process
continues from the draft stage.

In our self-speculative decoding algorithm, the
self-verification stage critically only requires com-
puting the remaining layers of the model that were
not used in the draft stage. For a model with L
layers, the number of verification layers is L− E.
In order to re-use the first E layers from the draft
stage we employ some modifications to the KV
cache as we show in the subsequent subsection.

4.3.3 Reusing the Cache
In autoregressive transformers, KV cache is a criti-
cal component of efficient generation, allowing us
to avoid recomputing prior KV pairs in each layer.

As our draft stage uses the first E layers of the
model and the verification stage uses the remaining
L − E layers, we are able to re-use a significant
amount of compute between the 2 stages:

• Single KV Cache As draft and verification
stages operate on the same model using the
same order of layers, the first E layers are
shared in both steps. Hence, in the draft stage,
the KV cache in the first E layers are already
computed, so we are able to effectively main-
tain a single KV cache for the draft and verify
steps, reducing memory and latency.

• Exit Query Cache: To further reduce com-
putation of the first E layers, we introduce an
exit query cache that saves the query vector
of exit layer E − 1 for verification to directly
continue from layer E to last layer L. Criti-
cally note that we need to save only the query
for the exit layer. We term the union of the
KV cache and the exit query as KVQ cache.

5 Experiments

We would like to evaluate our training recipe on dif-
ferent types of training, whether pretraining from
scratch or finetuning. To verify our approach, we
run different types of training experiments:

• Continual Pretraining: start with a pre-
trained model and continue pretraining on
52B tokens from a corpus of diverse data con-
taining natural language text and code. We ex-
periment using pretrained Llama2 7B (32 lay-
ers), with pmax = 0.1, escale = 0.2, Crot,R=8,
and Llama2 13B (40 layers), with pmax = 0.1,
escale = 0.1, Crot,R=39.
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• Pretraining from Scratch: start with ran-
domly initialized model and pretrain on 26B
tokens from a corpus of diverse data contain-
ing natural language text and code. We ex-
periment with Llama2 1.5B (a custom small
Llama-like model with 24 layers) (see A.3.1
for architecture details) with pmax = 0.1,
escale = 0.2, Crot,R=23 and Llama2 7B (32
layers) with pmax = 0.2, escale = 0.2,
Crot,R=31. Following Srivastava et al. (2014)
we use higher learning rates when layer
dropout is greater than 0.0.

• Finetuning on Code Data: see §A.2 for de-
tails and §A.4 for results.

• Finetuning on Task-Specific Dataset: see
§A.2 for details and §A.4 for results.

We try different variants of LayerSkip: layer
dropout only (LD), early exit loss only (EE), and
both layer dropout and early exit loss (LD+EE).
We provide more details about training hyperpa-
rameters in Appendix A.3.

6 Results

6.1 Early Exit Inference Results

After training each model configuration, we evalu-
ate accuracy of exiting early at different layers.

Continual Pretraining In Figure 5, we present
our results for Llama2 7B and 13B on a diverse set
of evaluation tasks (see § A.3.2 for task details) and
compare with the baseline model from Touvron
et al. (2023b). In Table A4 we zoom in and show
the specific values of accuracies for the last layer
and middle layer of each model. In Figure A1 we
show sample text generations for exiting at earlier
layers for both models with and without continual
pretraining with LayerSkip. Overall, for earlier
layers, LayerSkip is clearly better than the baseline.
For last layer accuracy, LayerSkip has minimal
drop in accuracy compared to baseline.

Pretraining from Scratch In Figure A2, we
present our results for Llama2 1.5B and 7B pre-
trained from scratch on 26B tokens using Lay-
erSkip on a diverse set of evaluation tasks (see
§ A.3.2 for task details) and compare with the same
models pretrained on the same number of tokens
from scratch without LayerSkip. In Figure A3 we
show sample text generations for exiting at earlier
layers. Results show that introducing our proposed
training recipe leads to higher accuracy than the
baseline on earlier layers. On the last layer, we

do see a slight drop in accuracy in some down-
stream tasks, while in other tasks we see LayerSkip
leading to higher accuracy.

6.2 Self-Speculative Decoding Results

We evaluate the self-speculative decoding algo-
rithm introduced in §4.3 on different trained mod-
els. We report quality metrics, EM (exact match)
and ROUGE-2 Ganesan (2018), token acceptance
rate for the self speculation algorithm (how of-
ten verification accepts each of the draft tokens),
throughput measured as tokens per second aver-
aged over the sampled dataset, and speed up com-
pared to autoregressive decoding. For our early
exit and our self-speculative decoding experiments,
we denote layer we exit at as E. We compare
with Draft & Verify Zhang et al. (2023) on com-
mon models and tasks evaluated in both papers.
All experiments were performed with greedy de-
coding and generated a maximum of 512 tokens
for each sample. Following Zhang et al. (2023),
speedup is calculated as acceleration of average
inference time per token compared to “Autoregres-
sive” baseline. “Autoregressive” experiments use
baseline models that were pretrained or finetuned
without LayerSkip, while “Early Exit” and “Self
Speculative” experiments use our models trained
or finetuned with LayerSkip. Our implementation
leverages HuggingFace Wolf et al. (2020).

Continual Pretraining In Table 1, we evaluate
the continual pre-training of Llama2 7B and 13B
with and without LayerSkip on various tasks: CN-
N/DM Nallapati et al. (2016), XSUM Narayan et al.
(2018) abstractive summarization tasks, and Hu-
manEval Chen et al. (2021) coding task. The exper-
iments were performed on NVIDIA H100 GPUs.
The number of speculations, i.e., the number of to-
kens generated in the draft stage, is denoted d. We
obtain speedups between 1.34× and 2.16× depend-
ing on model or task. In general, we observe higher
speedups for the smaller 7B compared to the larger
13B model. Comparing with Draft & Verify, we are
significantly faster on CNN/DM (1.81× vs. 1.5×)
and slightly slower on XSUM (1.34× vs. 1.48×).

Pretraining from Scratch Experiments were
performed on H100 GPUs and results presented
in Table 2. We found an opposite trend to continual
pretraining: bigger model has a bigger speedup,
reaching 2.16× speedup.
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Figure 5: Early exit evaluation of continual pretraining

7 Ablation Studies

Many ablation studies are in the Appendix, but we
summarize some here.

Scaling with Pretraining Tokens Figure A5,
shows that without LayerSkip pretraining increases
perplexity of earlier layers by orders of magnitude.

KV Cache in Self-Speculation Table A7 shows
that our proposed re-use of KV cache consistently
saves us 9-20 ms per token depending on the task.

Selecting Parameters for Self Speculation Self
speculation relies on 2 core parameters (1) early
exit layer and (2) number of speculations. There
exists a tradeoff where selecting too low of an exit
point and too many tokens are rejected, too high

and the latency cost of the exit layer reduces the
benefits of speculation. We find that these parame-
ters are task dependent. Figure 6 shows how range
of decoding parameters varies for different tasks.

8 Conclusion

We show that combining layer dropout & early exit
loss with curriculum, improves accuracy of early
exit during inference, and developed a novel self-
speculative decoding solution that led upto 1.86×
speedup. We hope this encourages researchers to
adopt the proposed recipe in pretraining and fine-
tuning. In the future, we can increase accuracy
of earlier layers to obtain better speedups for self-
speculative decoding, e.g., by combining with dy-
namic conditions (like Schuster et al. (2022)).
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Llama2 7B Llama2 13B

Generation E d ROUGE-2
Token
Acc.

Tokens
per Sec. Speedup E d ROUGE-2

Token
Acc.

Tokens
per Sec. Speedup

CNN-DM
One-Shot Abstractive Summarization

Autoregressive - - 0.079 - 62.7 1.00× - - 0.098 - 37.2 1.00×
Early Exit 8 - 0.012 - 232.4 - 15 - 0.016 - 105.5 -
Self Speculative 8 12 0.078 68.9% 127.9 1.86× 15 12 0.098 74.5% 70.2 1.81×
Draft and Verify n/a n/a n/a n/a n/a n/a - - 0.107 n/a n/a 1.56×
XSUM
Abstractive Summarization

Autoregressive - - 0.073 - 63.4 1.00× - - 0.124 - 43.8 1.00×
Early Exit 8 - 0.002 - 228.0 - 15 - 0.009 - 110.6 -
Self Speculative 8 12 0.073 54.6% 104.7 1.54× 15 4 0.124 67.7% 60.5 1.34×
Draft and Verify n/a n/a n/a n/a n/a n/a - - 0.126 n/a n/a 1.48×
HumanEval
Coding

Autoregressive - - 0.041 - 62.9 1.00× - - 0.055 - 48.9 1.00×
Early Exit 8 - 0.003 - 225.4 - 15 - 0.0005 - 244.3 -
Self Speculative 8 6 0.042 67.1% 122.8 1.83× 7 4 0.055 57.0% 84.2 1.66×

Table 1: Generation results for Llama2 continually pretrained with and without LayerSkip.

Llama2 1.5B - 26B Tokens Llama2 7B - 26B Tokens

Generation E ROUGE-2
Token
Acc.

Tokens
per Sec. Speedup E ROUGE-2

Token
Acc.

Tokens
per Sec. Speedup

CNN-DM
One-Shot Abstractive Summarization

Autoregressive - 0.063 - 91.6 1.00× - 0.060 - 64.5 1.00×
Self Speculative 8 0.063 77.4% 167.4 1.76× 8 0.067 77.8% 145.6 2.16×

Table 2: Generation results for Llama2 pretrained from scratch on 26B tokens with and without LayerSkip.
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Figure 6: Self Speculation Decoding Parameters Sweep.
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9 Limitations

• Our self-speculative decoding solution re-
quires finetuning a model or pretraining it with
our recipe, while the self-speculative decoding
approach propoposed in Zhang et al. (2023)
does not require changing a model’s weights.

• The introduced hyperparameters, pmax for
layer dropout, escale and R for early exit, re-
quires tuning in order to avoid a drop in last
layer accuracy.

• When pretraining with layer dropout from
scratch, increasing the learning rate is required
to maintain accuracy, and tuning learning rate
to get optimal accuracy could be tricky and
time consuming.
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A Appendix

A.1 LayerSkip Hyperparameters

The hyperparameters of LayerSkip training recipe:
• Layer Dropout:

– pmax: maximum dropout rate of last
layer of the model,

– S(t): layer dropout curriculum. We use
either no curriculum S(t) = 1 for fine-
tuning or continual pretraining, or an ex-
ponential curriculum, S(t) = Sexp(t)
for pretraining from scratch,

• Early Exit Loss:

– escale: scalar scale of loss of earlier lay-
ers,

– C(t, l): early exit loss curriculum, ei-
ther rotational, Crot,R(t, l), or gradual,
Cgrad(t, l)

* R: is a dilation across layers for rota-
tional early exit loss curriculum

The hyperparameters of LayerSkip self-
speculative decoding inference:

• E: layer to exit at during draft stage,
• d: number of speculations, i.e., number of

tokens generated during the draft stage autore-
gressively, that are then verified in parallel
during the verification stage by the remaining
layers.

A.2 Additional Experiments

In addition to pretraining from scratch and contin-
ual pretraining, we evaluate LayerSkip on finetun-
ing on specific domain data in further experiments:

• Finetuning on Code Data: start with pre-
trained Llama1 7B model Touvron et al.
(2023a) and finetune on 5.2B tokens of CodeL-
lama Rozière et al. (2023) data mix. We use
pmax = 0.1, escale = 1.0, Crot,R=16.

• Finetuning on Task-Specific Dataset: start
with a pretrained Llama 1.5B (24 layers) and
finetune on TOPv2 Chen et al. (2020), a multi-
domain task-oriented compositional semantic
parsing dataset. We post processed the dataset
into a JSON format to be more aligned with
code pre-training. We report our results on
the TOPv2 evaluation set. We use pmax = 0.2,
escale = 1.0, Cgrad.

A.3 Experiment Details
We provide details of training configuration and
hyperparameters for each of our experiments in
Table A1.

When pretraining from scratch, layer dropout
leads to higher accuracy when trained on higher
learning rate Srivastava et al. (2014). Therefore,
we show learning rates of each experiment with
and without layer dropout separately in Table A2.

A.3.1 Model Architectures
We provide details of architectures of different mod-
els in Table A3.

A.3.2 Evaluation Tasks
We have evaluated our language models on a wide
range of tasks. For the sake of discussions in § 6.1,
we categorize the tasks into:

• “Classification” Tasks: where model re-
sponds with one out of pre-defined answers,
e.g., multiple-choice questions, or questions
whose answers are either “True” or “False”:

– Common Sense Reasoning Tasks
* BoolQ Clark et al. (2019)

* PIQA (Physical Interaction Question
Answering) Bisk et al. (2020)

* SIQA (Social Interaction Question
Answering) Sap et al. (2019)

* HellaSwag Zellers et al. (2019)

* Winogrande 1.1 Sakaguchi et al.
(2019)

* ARC (Abstraction and Reasoning
Corpus) Clark et al. (2018)
· ARC Challenge
· ARC Easy

* OBQA (Open Book Question An-
swers) Mihaylov et al. (2018)

* COPA (Choice Of Plausible Alterna-
tives) Roemmele et al. (2011)

– RACE (ReAding Comprehension
dataset from Examinations) Lai et al.
(2017)

* RACE Middle

* RACE High
– MMLU (Massive Multitask Language

Understanding) Hendrycks et al. (2021a)
• “Generation” Tasks: where model responds

with an open-ended sequence of tokens and
we evaluate either exact match of the tokens
with a reference answer, or, in case of code,
build or execute.
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Experiment Model
Batch
Size Steps GPUs

Continual Pretraining Llama2 7B 4 50× 103 64 A100 80 GB
Llama2 13B 4 50× 103 64 A100 80 GB

Pretraining from Scratch Llama 1.5B 4 50× 103 32 A100 30 GB
Llama2 7B 4 50× 103 32 A100 30 GB

Finetuning on Code Data Llama1 7B 4 10× 103 32 A100 80 GB
Finetuning on Task-Specific Dataset Llama 1.5B 32 5.8× 103 8 A100 80 GB

Table A1: Training Hyperparameters and Configuration of Experiments

Experiment Model Dropout Initial Learning Rate

Continual Pretraining Llama2 7B ✓ 3× 10−5

Llama2 13B ✓ 2× 10−5

Pretraining from Scratch Llama 1.5B 4× 10−4

Llama 1.5B ✓ 8× 10−4

Llama2 7B 3× 10−4

Llama2 7B ✓ 8× 10−4

Finetuning on Code Data Llama1 7B 1× 10−4

Llama1 7B ✓ 1× 10−4

Finetuning on Task-Specific Dataset Llama 1.5B 1× 10−4

Llama 1.5B ✓ 1× 10−4

Table A2: Learning Rates of Experiments

Model Dim Heads Layers Context

Llama 1.5B 2048 16 24 4096
Llama1 7B
Touvron et al. (2023a) 4096 16 32 2048
Llama2 7B
Touvron et al. (2023a) 4096 16 32 4096
Llama2 13B
Touvron et al. (2023b) 5120 40 40 4096

Table A3: Model Architectures

– Question Answering

* NQ (Natural Ques-
tions) Kwiatkowski et al. (2019)

* TQA (Textbook Question Answer-
ing) Kembhavi et al. (2017)

– Mathematics

* MATH Hendrycks et al. (2021b)

* GSM8K Cobbe et al. (2021)

– Code Generation

* HumanEval Chen et al. (2021)

* MBPP (Mostly Basic Python Prob-
lems Dataset) Austin et al. (2021)

We also evaluate perplexity on held out test sets
on the following datasets:

• The Stack, a coding dataset Kocetkov et al.
(2022)

• Books Gao et al. (2020)
• Wikipedia

A.4 Additional Results

A.4.1 Early Exit Results

Continual Pretraining Table A4 zooms into the
accuracies of middle and last layers of Llama2 7B
and Llama2 13B continual pretraining experiments
that are shown in Figure 5. It is noteworthy that
some “classification” tasks, i.e., multiple choice
question or true/false question tasks, maintain rela-
tively decent accuracy on earlier layers on the base-
line model, while open-ended “generation” tasks
drop drastically. Surprisingly, MMLU Hendrycks
et al. (2021a) which is considered a challenging
task, only drops from 55.2% to 49.2% on Llama2
13B baseline from the last to the middle layer. This
could be because classification tasks are evaluated
on generating one token only while generation
tasks are evaluated on the accuracy of many tokens,
and an error in one token may have a compound-
ing effect when generating later tokens. Moreover,
classification tasks evaluate a token out of 4 or 2
possible outcomes, while generation tasks evalu-
ate each token out of thousands of possible entries
in the LLM’s dictionary. We observe LayerSkip’s
significant importance on generation tasks, e.g.,
NaturalQuestions Kwiatkowski et al. (2019) drops
from 25.1% to 0% when exiting in middle layers of
Llama2 7B, but jump to 4% when using LayerSkip.

Figure A1 shows sample generations exiting at
different layers for Llama2 7B and Llama2 13B
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Llama2 7B Llama2 13B
Last Layer Middle Layer Last Layer Middle Layer
(Layer 32) (Layer 16) (Layer 40) (Layer 20)

Baseline LayerSkip Baseline LayerSkip Baseline LayerSkip Baseline LayerSkip

Eval Perplexity ↓

Wikipedia 4.32 4.3 1900 8.12 3.97 3.98 507 10.5
Selected Books 1.60 1.06 4390 6.53 1.40 1.40 1170 11.9
The Stack 2.15 2.14 968 2.99 2.05 2.06 65.8 3.71

Common Sense Reasoning Tasks ↑
(Multiple Choice Questions / True False Questions)

BoolQ 77.4 77.8 62.2 75.7 81.6 82.0 62.2 69.7
PIQA 78.0 77.9 57.9 69.5 79.3 78.5 62.8 67.8
SIQA 44.7 44.2 37.8 42.0 46.7 46.3 40.7 44.7
HellaSwag 57.0 56.6 31.5 43.8 60.1 60.3 35.6 46.8
WinoGrande 69.8 71.4 58.6 65.2 72.3 72.5 59.4 68.1
ARC-e 76.5 76.5 38.6 57.5 79.4 79.2 48.8 61.1
ARC-c 43.8 43.6 26.8 30.6 48.3 47.3 31.9 35.6
OBQA 33.4 33.4 19.6 25.4 34.4 35.4 23.8 25.4
COPA 90 88 68 79 91 93 73 82

Reading Comprehension ↑
(Multiple Choice Questions)

RACE Middle 58.2 57.4 34.0 51.1 62.0 60.7 40.9 55.1
RACE High 42.9 42.2 28.0 37.6 44.9 44.5 31.8 39.3

MMLU ↑
(Multiple Choice Questions)

MMLU 46.0 43.1 38.9 40.2 55.2 53.7 49.2 52.9

Question Answering ↑
(Open Ended Answers)

NaturalQuestions 25.1 23.2 0.0554 4.07 31.5 31.8 0.609 4.43
TriviaQA 58.5 56.8 0.619 11.8 66.2 66.3 4.36 11.4

Mathematics ↑
(Open Ended Answers)

GSM8K 14.3 12.2 0 2.05 29.3 27.4 0.0758 1.74
MATH 3.22 3.16 0 0.96 5.06 5.16 0 0.46

Code Generation ↑
(Open Ended Answers)

HumanEval 13.4 15.9 0 4.88 18.9 18.3 0 3.05
MBPP 21.0 22.4 0 7.20 26.4 29.0 0 3.40

Table A4: Evaluation of continual pretraining of Llama2 7B and Llama2 13B.

with and without continual pretraining with Layer-
Skip.

Pretraining from Scratch Figure A3 shows
sample generations exiting at different layers for
Llama2 7B pretrained with and without LayerSkip.

Finetuning on Code Data In Figure A4a, we
present our results on 2 coding tasks and compare
accuracy to Llama1 7B finetuned on the same num-
ber of code tokens without LayerSkip. For earlier
layers, LayerSkip is clearly better than the baseline,
with layer dropout combined with early exit loss
showing a big improvement on one of the 2 tasks.

For last layer accuracy, LayerSkip with both layer
dropout and early exit loss has almost the same ac-
curacy as baseline. Note that since this experiment
finetuned on specific domain data, we were able to
increase escale to 1.0 (as opposed to escale = 0.1
or 0.2 in the previous two configurations).

Finetuning on Task-Specific Dataset In Fig-
ure A4b, we compare results of fine-tuning our
Llama 1.5B model on TOPv2 training set with
and without LayerSkip. In semantic parsing, cor-
rectness requires an exact match (EM) between
generated sequence and annotated parse. We find
when removing layers from the baseline model,
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Baseline LayerSkip-LD+EE
The capital of Egypt is Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian Egyptian 
Egyptian Egyptian Egyptian Egyptian Egyptian

The capital of Egypt is a big city with a large number of tourist attractions. Growing to 
be one of the most famous cities in the world, it attracts more than 10 million people a 
year. At the heart of the city is a complex of ancient monuments, buildings, and 
wonders. The Egyptian capital is a wonderful city where the history of Egypt is spread 
out like a palette of colors.
The most famous of all Egyptian monuments is the Pyramid of Giza, which is located 
at the end of the Giza boulder. It is the only one of three great pyramids that survived 
the centuries. It is the oldest of the three pyramids and the only one that has three 
tiers.
Many tourists visit Egypt to see the pyramids of Giza. They are not the only 
attractions in the city, however. The oldest of the three great pyramids of Giza, which 
is the oldest of the three great pyramids, has three tiers. Many tourists visit the 
pyramids of Giza to see the pyramids of Giza. They are not the only attractions in the 
city, however.
The oldest of the three great pyramids of

from typing import List
def add_two_lists(A: List[float], B: List[float]) -> List:
hw genuineershipomy twitch channelрдчиngdompairing桥� 
bridgebridge bridge bridge bridge bridge bridge bridge bridge 
bridge bridge bridgebridge bridge bridge bridge bridgebridge 
bridge bridge bridge bridge bridgebridge bridge bridgebridge 
bridge bridgebridgebridge bridge bridge bridgebridge bridge 
bridge bridge bridgebridge bridge bridgebridgebridge bridge 
bridgebridge bridge bridge bridge bridgebridgebridge bridge 
bridgebridge bridgebridge bridgebridge bridge bridge 
bridgebridge bridgebridge bridgebridge bridge bridge bridge 
bridge bridge bridgebridgebridge bridgebridge bridge 
bridgebridge bridge bridgebridge bridge bridge 
bridgebridgebridge bridgebridge bridge bridgebridgebridge 
bridge bridge bridge bridgebridgebridge bridgebridge bridge 
bridge bridgebridgebridge bridgebridgebridge bridgebridge 
bridge bridgebridgebridge Bridge bridge bridgebridge bridge 
bridge bridge bridge bridge bridge bridge bridge 
bridgebridgebridgebridge bridgebridge bridgebridge bridge 
bridgebridgebridge bridge bridge bridgebridge bridgebridge 
bridgebridge Bridgebridge bridge bridge bridgebridge 
bridgebridge bridgebridge bridgebridge bridgebridge 
bridgebridgebridgebridge bridge bridgebridge Bridge

from typing import List
def add_two_lists(A: List[float], B: List[float]) -> List:
    A_sorted = sorted(A)
    B_sorted = sorted(B)
    new_list = []
    for A_item, B_item in zip(A_sorted, B_sorted):
        new_list.append(A_item + B_item)
    return new_list

def main():
    listA = [1, 2, 3, 4, 5, 6]
    listB = [7, 8, 9, 10, 11, 12]
    listC = add_two_lists(listA, listB)
    print(listC)

if __name__ == "__main__":
    main()

(a) Llama2 7B (that has 32 layers) exiting at layer 20.
Baseline LayerSkip-LD+EE

The capital of New York State is Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb 
Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb 
Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb Alb 
Alb

The capital of New York State is Albany. It is also the capital of Albany County. It was 
founded on Albany Albany River. The city is situated at the Albany Albany River and 
is surrounded by Albany Albany River, the Albany Albany River and the Albany 
Albany River. It is also surrounded by Albany Albany State Forest and Albany Albany 
State Park. The city has 24 neighborhoods, and the population is about 45,000. There 
are many clubs, clubs and clubs. There are many clubs, clubs and clubs. There are 
many clubs, clubs and clubs.

def bubble_sort(list_a):
konnichiya gentlemen ladies gentlemen ladies welcome welcome 
welcome welcome welcome welcome welcome welcome welcome welcome 
welcome welcome welcome welcome welcome welcome welcome welcome 
welcome welcome welcome welcome welcome welcome welcome welcome

def bubble_sort(list_a):
    i = len(list_a)
    for i-1:
        for i-1:
            if list_a[i] > list_a[i-1]:
                swap = list_a[i]
                list_a[i] = list_a[i-1]
                list_a[i-1] = swap
                i = i - 1
    return list_a

(b) Llama2 13B (that has 40 layers) exiting at layer 24.

Figure A1: Early exit text generation examples for models continually pretrained with LayerSkip. Blue: The prompt
fed into the model. Red: incorrect phrases or words generated by the model (whether factually or grammatically
wrong, or hallucinations). With self-speculative decoding, we fix those incorrect phrases by verifying with remaining
layers.

the model is not able to generate any complete or
accurate. However, with LayerSkip, early exit in-
ference improves to 77% at layer 12. We notice a
regression in the final layer reducing accuracy by
3%. Again, as this configuration finetuned data on
a specific task, we were able to set escale = 1.0.

A.4.2 Self-Speculative Decoding Results
Finetuning on Code Data In Table A5, we eval-
uate our code-finetuned Llama1 7B on HumanEval
using 12 speculations, and exit at layer 6 for self
speculation & early exit. The experiments were
performed on NVIDIA A100 GPUs. We show
speedup of upto 1.82× with no accuracy drop.

Finetuning on Task-Specific Dataset In Ta-
ble A6 we show results for Llama 1.5B finetuned on
TOPv2’s training dataset and evaluated on TOPv2
test set. The experiments were performed on

NVIDIA H100 GPUs. We present the EM (ex-
act match) on the fully TOPv2 test set, further
we sample 1000 samples for latency experiments
where we leverage 8 speculations, and generate the
next 80 tokens with greedy decoding. With self-
speculation, the model was able to achieve high
token acceptance rate, (E = 6: 76.0%, E = 12:
97.2%, E = 18: 98.9%) reaching 2.0× speedup.

Generation E ROUGE-2
Token
Acc.

Tokens
per Sec. Speedup

Autoregressive - 0.0513 - 34 1.0×
Early Exit 6 0.0035 - 170 -
Self Speculative 6 0.0513 45% 62 1.82×

Table A5: Generation results on HumanEval for Llama
7B finetuned on code
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Figure A2: Early exit evaluation of pretraining from scratch on 26B tokens.
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The capital of Egypt is Egypt City, which is located on the banks of river Egypt. This 
city is situated on the banks of River Egypt, which is one of the largest rivers in the 
world. The city has a population of 1.3 million people and it is also known as the 
second largest city in Egypt after the capital city of Egypt, Cairo.
The city was built on the banks of River Egypt in 1958. The city is known for its 
historical monuments and for its museums and museums. The city also has a lot of 
facilities for tourism. It has several hotels and resorts which are popular among 
tourists. The city also has a lot of clubs and bars which are popular among tourists. 
The city also has many shopping centres which are popular among tourists. The city 
also has a lot of shopping centres which are popular among tourists. The city also has 
a lot of shopping centres which are popular among tourists. The city also has a lot of 
shopping centres which are popular among tourists. The city also has a lot of 
shopping centres which are popular among tourists. The city also has a lot of 
shopping centres which are popular among tourists. The city

LayerSkip-EE LayerSkip-LD+EE

The capital of Egypt is a country which has a lot to offer to visitors from all over the 
world. You can visit the monuments of the Egyptian History, the Pyramids of Giza, the 
Cairo Opera House, the Sphinx, the Giza Plateau, the Aswan Dam, the Valley of the 
Kings, the Coptic Museum, the Tomb of Tutankhamun, the Medinet Habu, the Giza 
plateau, the Valley of the Kings, the ancient city of Luxor, the Giza Pyramids and the 
Hanging Churches.
Cairo is also the center of Arabic culture and the Middle East, and the best way to see 
it is by seeing the Cairo Opera House, the Cairo International Museum, the Egyptian 
Museum, the Egyptian national library, the Alexandria Library, the Egyptian National 
Museum, the Cairo bazaar, the Cairo University, the Khan El-Khalili square, and the 
Cairo Pyramids and Sphinx.
All these sites are only some of the sites you can see in Egypt. For more information 
on what to do and where to go, please visit our Egypt Travel Blog.

The capital of Egypt is Cairo, located in the northeast of the country. It is a 
cosmopolitan city, where you can find modern international hotels, traditional inns, 
and a large number of museums.
The most important sightseeing attractions include the Mohamed Ali Mosque, the Al 
Kut (Bahari) Mosque, the Said Sadan Mosque, the Abdel Kader Mosque, the Al 
Mansur Mosque, the El-Hakim Mosque, the El-Qahira Mosque, the Al Khalidi 
Mosque, the Giza Pyramids, the Dar El-Arqam Mosque, the El Sayed Mosque, the 
Abu Salim Mosque, the El Karnak Temple, the Al Hakim Mosque, the Cairo Opera 
House, the El Karnak Catacombs, the El-Mahareb Mosque, the Abdel Moneim El-
Khozami Mosque, the El-Qasr Mosque, and the Al Fatah Mosque.
The oldest historical monuments in Cairo include the Al Kahira Mosque, the Al-Kahira 
Fort, the Al-Azhar Mosque

(a) Llama2 7B (that has 32 layers) pretrained from scratch on 26B tokens only, exiting at layer
24.

Figure A3: Early exit text generation examples for models pretrained from scratch on 26B tokens with and without
LayerSkip. Blue: The prompt fed into the model. Red: incorrect phrases or words generated by the model (whether
factually or grammatically wrong, or hallucinations). With self-speculative decoding, we fix those incorrect phrases
by verifying with remaining layers.

A.5 Ablation Studies

KV Cache in Self-Speculation In §4.3.3 we in-
troduced the re-use of KV cache as a method for

improving model generation speed. We measure its
effect in Table A7. We follow the same inference
setup as described in §6.2. We find that the use of

12639



32241684
Layer

0

10

Pa
ss

@
1

HumanEval

32241684
Layer

0
10
20

Pa
ss

@
1

MBPP

Baseline LayerSkip-LD LayerSkip-EE LayerSkip-LD+EE

(a) Finetuning Llama1 7B on code.

2418126
Layer

0

50

Ac
c

TOPv2

Baseline LayerSkip-LD LayerSkip-EE LayerSkip-LD+EE

(b) Finetuning Llama1 1.5B on TOPv2 training set.

Figure A4: Early exit evaluation of finetuning on domain-specific or task-specific data.

Generation E EM
Token
Acc.

Time per
Token (ms) Speedup

Autoregressive - 85.9% - 36 1.00×
Early Exit 18 83.3% - 28 -
Early Exit 12 79.4% - 19 -
Early Exit 6 62.9% - 10 -

Self Speculative 18 82.9% 98.9% 29 1.24×
Self Speculative 12 82.9% 97.6% 22 1.64×
Self Speculative 6 82.9% 76.0% 18 2.0×

Table A6: Generation results on TOPv2 task for Llama
1.5B finetuned on TOPv2 training data.

Generation TOPv2 ms/t CNN/DM ms/t

Self Speculation(E = 18) 134 166
w.o KVQ Reuse 143 182

Self Speculation(E = 12) 104 165
w.o KVQ Reuse 110 185

Table A7: Ablation on re-use of the KV cache and exit
query cache. Results are presented on CPU inference.

KV cache is able to consistently save us 9-20 ms
per token depending on the task.

Optimized Implementation The self-
speculative decoding performance results
were based on HuggingFace Wolf et al. (2020)
in eager mode. We have developed another
implementation on gpt-fast Team (2024) that
optimizes performance using torch.compile().
We provide a prompt “Hello, my name is” to our
continually pretrained Llama2 7B and measure the
average tokens per second running a 1000 times on
a single NVIDIA A100 GPU. We also compare
with regular speculative decoding where the draft
model is 4-bit quantized model. We use the
optimal number of speculations and early exit layer
based on a sweep for both our self-speculative and
speculative decoding solutions. The results are
presented in Table A8. We can see that:

• Our proposed self-speculative decoding solu-
tion consumes the same memory (total mem-
ory for weights, activations, and KV-cache)

as the baseline auto-regressive solution, and
less than the standard speculative decoding
solution that requires 2 models, as we re-use
the earlier subset of layers of the model as the
draft stage.

• Our proposed self-speculative decoding solu-
tion is faster than the standard one. This does
not necessarily mean self-speculation is faster
than speculation. More experiments on differ-
ent sized draft models are required to evaluate
that.

CPU Inference Experiments We conduct our
task specific fine-tuning on Llama 1.5B to measure
decoding performance on CPU as well, showing a
near 2× speed up on CPU as well, presented in Ta-
ble A9. We conduct our experiments using the first
100 samples from the TOPv2 test set, leveraging
7 speculations, generating the next 50 tokens with
greedy decoding.

Scaling with Pretraining Tokens In order to un-
derstand how the accuracy of last and middle layers
change across time when pretraining from scratch,
we ran 3 training experiments with different num-
ber of tokens on Llama 1.5B and show the results
in Figure A5. Each experiment trained for 50,000
steps, per device batch size of 4, context window of
4096, but changed the number of GPUs to 32, 64,
128. We plotted the perplexity of a held out split of
The Stack dataset on the last layer (layer 24) and
the middle layer (layer 12). As expected, perplexity
on last layer decreases as we train on more tokens.
However, surprisingly, we discover that perplexity
on middle layer increases drastically by default in
training, unless we apply early exit loss. Layer
dropout reduces the increase as well. This could
open the door to more research on the dynamics of
transformers and the evolution of embeddings in
earlier layers to understand why embeddings across
layers are close to each other early on in training
but diverge drastically as training progresses. This
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Generation Temperature Draft d Total Memory (GB) Tokens per Second Speedup

Autoregressive - - - 13.90 108.52 1×
Speculative 0.0 Llama2 7B Int4 5 18.26 125.06 1.15×
Self-Speculative 0.0 E = 5 3 13.90 150.07 1.38×
Speculative 0.6 Llama2 7B Int4 5 19.30 122.05 1.12×
Self-Speculative 0.6 E = 4 3 13.90 133.98 1.23×

Table A8: Decoding performance evaluation on PyTorch gpt-fast of Llama2 7B continually pretrained with
LayerSkip.

Generation EM Acceptance
Time per

Token (ms)

Autoregressive 85.39 - 165

Early Exit
E = 18 82.0 - 124
E = 12 77.2 - 84
E = 6 29.8 - 44

Self Speculation
E = 18 82.9 99 134
E = 12 82.9 97 104
E = 6 82.9 76 87

Table A9: Generation results on CPU for TOPv2 task for
small Llama-like finetuned on TOPv2 training data.

could also present a motivation for our training
recipe that has minimal drop in last layer accuracy
while significantly improves accuracy of earlier
layers.
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Figure A5: Perplexity on The Stack Kocetkov et al.
(2022) test set when pretraining Llama 1.5B from
scratch with different number of tokens.

Layer Dropout Configurations In Figure A6
we show that our layer dropout configuration leads
to lower loss compared to a constant layer dropout
across all layers with the same average value.
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Figure A6: Training loss using different layer dropout
configurations. “Const” refers to equal dropout on all
layers equal to 0.0889, and “Exp” refers to dropout
exponentially increasing from 0 at the first layer to 0.2
at the last layer. Both configurations have equivalent
average dropout across all layers.

A.6 Self Speculation Pseudo Code

Below we share pseudo code for implementing self
speculation
def self_speculate(

model ,
input ,
num_speculations ,

):
"""
Input Arguments:

model: Decoder LLM with L layers , supports 2 main
functions:

* forward_early: computes inference with
the first E layers of the transformer ,
saves KV states and the exit layer query cache (kvq)

* forward_remainder: computes verification
with the last L-E layers reusing the kvq cache

input: the input prompt sequence for the model

num_speculations: the number of speculations from the
draft forward pass

"""
# output contains the generations
# kvq_cache is the kv cache for generation
# with the addition of the exit layers query
# cache to speed up verification
output , kvq_cache = []

# continue with speculative generation
# until the maximum sequence length is hit
while len(output) < max_tokens:

# produce `num_speculation ` draft tokens
# using the first N layers of the model
draft_tokens = []

12641



draft_input = input

# conduct num_speculations drafts
# to produce the draft sequence
for i in range(num_speculations):

draft_token = model.forward_e(
draft_input , kvq_cache

)
draft_tokens.append(draft_token)
draft_input = draft_token

# verify each of the predictions with the
# full model inference using a single
# forward passs
verified_tokens = model.forward_remainder(

input + draft_tokens , kvq_cache
)

# find the number of accepted tokens
# by comparing the matches between the draft
# and verified tokens
matched_tokens = match(

draft_tokens , verified_tokens)

output.extend(matched_tokens)
# the last matched token doesn't have a cache
# and needs to be added
input = matched_tokens [-1]

# the kvq_cache needs to be updated to remove
# the last token
kvq_cache = crop(

kvq_cache , output_len -1)
return output
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