
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12562–12584
August 11-16, 2024 ©2024 Association for Computational Linguistics

LLM in a flash:
Efficient Large Language Model Inference with Limited Memory

Keivan Alizadeh, Iman Mirzadeh* , Dmitry Belenko* , S. Karen Khatamifard,
Minsik Cho, Carlo C Del Mundo, Mohammad Rastegari, Mehrdad Farajtabar

Apple †

Abstract

Large language models (LLMs) are central to
modern natural language processing, delivering
exceptional performance in various tasks. How-
ever, their substantial computational and mem-
ory requirements present challenges, especially
for devices with limited DRAM capacity. This
paper tackles the challenge of efficiently run-
ning LLMs that exceed the available DRAM
capacity by storing the model parameters in
flash memory, but bringing them on demand
to DRAM. Our method involves constructing
an inference cost model that takes into account
the characteristics of flash memory, guiding
us to optimize in two critical areas: reduc-
ing the volume of data transferred from flash
and reading data in larger, more contiguous
chunks. Within this hardware-informed frame-
work, we introduce two principal techniques.
First, “windowing” strategically reduces data
transfer by reusing previously activated neu-
rons, and second, “row-column bundling”, tai-
lored to the sequential data access strengths
of flash memory, increases the size of data
chunks read from flash memory. These meth-
ods collectively enable running models up to
twice the size of the available DRAM, with
up to 4x and 20x increase in inference speed
compared to naive loading approaches in CPU
and GPU, respectively. Our integration of spar-
sity awareness, context-adaptive loading, and
a hardware-oriented design paves the way for
effective inference of LLMs on devices with
limited memory.

1 Introduction

In recent years, large language models (LLMs)
have demonstrated strong performance across a
wide range of natural language tasks (Brown et al.,
2020; Chowdhery et al., 2022; Touvron et al.,
2023a; Jiang et al., 2023; Gemini Team, 2023).

* Major Contribution
† {kalizadehvahid, imirzadeh, d_belenko, skhatamifard,

minsik, cdelmundo, mrastegari, farajtabar}@apple.com

Naive

Llama 2-7B
(CPU)

Ours Naive

OPT-6.7B
(CPU)

Ours Naive

OPT-6.7B
(GPU)

Ours

100

450
700

1000

2250

3100

In
fe

re
nc

e
L

at
en

cy
(m

s)

Compute Load From Flash Memory Management

Figure 1: Average inference latency for a single token
when only half of the model’s memory is available: Our
method selectively loads parameters on demand for each
token generation step. The latency represents the time
required to repeatedly load parameters from flash mem-
ory, combined with the time needed for computations.

However, the unprecedented capabilities of these
models come with substantial computational and
memory requirements for inference. LLMs can
contain hundreds of billions or even trillions of pa-
rameters, which makes them challenging to load
and run efficiently, especially on personal devices.

Currently, the standard approach is to load the en-
tire model into DRAM (Dynamic Random Access
Memory) for inference (Rajbhandari et al., 2021;
Aminabadi et al., 2022). However, this severely
limits the maximum model size that can be run.
For example, a 7 billion parameter model requires
over 14GB of memory just to load the parameters
in half-precision floating point format, exceeding
the capabilities of most personal devices such as
smartphones. While it is possible to employ tech-
niques such as quantization to reduce the model
size, still, this cannot address the main limitation
of loading the entire model into DRAM.

To address this limitation, we propose to store
the model parameters in flash memory, which is

12562

DRAM

Flash Memory
~100 GB

~10 GB

CPUGPU

~ 1 GB/s

~
10

0
 G

B
/s

(a) Bandwidth in a unified memory architecture

4 8 16 32 64
Chunk Size (KB)

0

1000

2000

3000

4000

5000

6000

R
an

do
m

R
ea

d
T

hr
ou

gh
pu

t
(M

B
/s

)

Upper Bound (Sequential Read)
Threads

32

16

8

4

2

(b) Random read throughput of flash memory

Figure 2: (a) Flash memory offers significantly higher capacity but suffers from much lower bandwidth compared
to DRAM and CPU/GPU caches and registers. (b) The throughput for random reads in flash memory increases with
the size of sequential chunks and the number of threads.

at least an order of magnitude larger than DRAM.
Then, during inference, we directly load the re-
quired subset of parameters from the flash memory,
avoiding the need to fit the entire model in DRAM.
To this end, our work makes several contributions:

• First, we study the hardware characteristics of
storage systems (e.g., flash, DRAM). We show
that hardware constraints such as capacity and
bandwidth limitations can have significant con-
siderations when designing efficient algorithms
for serving LLMs from flash (Section 2).

• Motivated by our findings, we propose several
techniques that can help with (i) reducing the
required data transfer, (ii) increasing the transfer
throughput, and (iii) managing loaded parameters
efficiently in DRAM (Section 3).

• Finally, as partially demonstrated in Figure 1,
we show that our proposed techniques for opti-
mizing the cost model and selectively loading
parameters on demand allows us to run models
2x larger than the device’s DRAM capacity and
speed up inference up to 4x, 7x, and 20x com-
pared to naive implementation in CPU, Metal and
NVIDIA GPU backends, respectively (Section
4).

2 Flash Memory & LLM Inference

In this section, we explore the characteristics of
memory storage systems (e.g., flash, DRAM), and
their implications for large language model (LLM)
inference. We aim to understand the challenges and
hardware-specific considerations essential for algo-
rithm design, particularly in optimizing inference
when working with flash memory.

2.1 Bandwidth and Energy Constraints
While modern NAND flash memories offer high
bandwidth and low latency, they fall well short
of the performance levels of DRAM (Dynamic
Random-Access Memory), in terms of both latency
and throughput. Figure 2a illustrates these differ-
ences. A naive inference implementation that relies
on NAND flash memory might necessitate reload-
ing the entire model for each forward pass. This
process is not only time-consuming, often taking
seconds for even compressed models, but it also
consumes more energy than transferring data from
DRAM to the CPU or GPU’s internal memory.

Load times for the models can be a problem
even in the traditional DRAM-resident setup where
weights are not reloaded partially – the initial, full
load of the model still incurs a penalty, particu-
larly in situations requiring rapid response times
for the first token. Our approach, leveraging activa-
tion sparsity in LLMs, addresses these challenges
by enabling selective reading of model weights,
thereby reducing the response latency.

2.2 Read Throughput
Flash memory systems perform optimally with
large sequential reads. For instance, benchmarks
on an Apple MacBook M1 Max with 1TB flash
memory demonstrate speeds exceeding 6 GiB/s for
a 1GiB linear read of an uncached file. However,
this high bandwidth cannot be achieved for smaller,
random reads due to the inherent multi-phase na-
ture of these reads, encompassing the operating
system, drivers, interrupt handling, and the flash
controller, among others. Each phase introduces
latency, disproportionately affecting smaller reads.

To circumvent these limitations, we advocate
two primary strategies, which can be employed

12563

jointly. The first involves reading larger chunks of
data. For smaller blocks, a substantial part of the
overall read time is spent waiting for data transfer
to begin. This is often referred to as latency
to first byte. This latency reduces the overall
throughput of each read operation considerably
because the overall measured throughput has to
take into account not just the speed of transfer
once it begins, but the latency before it begins as
well, which penalizes small reads. This means
that if we coalesce the reads for rows and columns
of the FFN matrices, we can pay the latency cost
only once for any given row/column pair in both
matrices and higher throughput can be realized.
This principle is depicted in Figure 2b. Perhaps
a counterintuitive yet interesting observation is
that in some scenarios, it will be worthwhile to
read more than needed (but in larger chunks) and
then discard, rather than only reading strictly the
necessary parts but in smaller chunks. The second
strategy leverages parallelized reads, utilizing
the inherent parallelism within storage stacks
and flash controllers. Our results indicate that
throughputs appropriate for sparse LLM inference
are achievable on modern hardware using 32KiB
or larger random reads across multiple threads.

Motivated by the challenges described in this sec-
tion, in Section 3, we propose methods to optimize
data transfer volume and enhance read throughput
to significantly enhance inference speeds.

3 Load From Flash

This section addresses the challenge of conducting
inference on devices where the available DRAM
is substantially smaller than the size of the model.
This necessitates storing the full model weights in
flash memory. Our primary metric for evaluating
various flash loading strategies is latency, dissected
into three distinct components: the I/O cost of load-
ing from flash, the overhead of managing memory
with newly loaded data, and the compute cost for
inference operations.

Our proposed solutions for reducing latency un-
der memory constraints are categorized into areas:
1. Reducing Data Load: Aiming to decrease la-

tency associated with flash I/O operations by
loading less data1.

1It is notable that, by data we often refer to the weights of
the neural network. However, the techniques we have devel-
oped can be easily generalized to other data types transferred
and used for LLM inference, such as activations or KV cache,
as suggested by Sheng et al. (2023).

2. Optimizing Data Chunk Size: Enhancing flash
throughput by increasing the size of data chunks
loaded, thereby mitigating latency.

3. Efficient Management of Loaded Data:
Streamlining the management of data once it
is loaded into memory to minimize overhead.
It is important to note that our focus is not on

optimizing the compute, as it is orthogonal to the
core concerns of our work. Instead, we concentrate
on optimizing flash memory interactions and
memory management to achieve efficient inference
on memory-constrained devices. We will elaborate
on the implementation details of these strategies
in the experimental setup section.

3.1 Reducing Data Transfer
Our method leverages the inherent activation spar-
sity found in Feed-Forward Network (FFN) mod-
els, as documented in preceding research. The OPT
6.7B model, for instance, exhibits a notable 97%
sparsity within its FFN layer. Similarly, the Falcon
7B model has been adapted through fine-tuning,
which involves swapping their activation functions
to ReLU, resulting in 95% sparsity while being
similar in accuracy (Mirzadeh et al., 2023). Replac-
ing activations of Llama 2 model (Touvron et al.,
2023b) by FATReLU and finetuning can achieve
90% sparsity(Song et al., 2024). In light of this
information, our approach involves the iterative
transfer of only the essential, dynamic subset of the
weights from flash memory to DRAM for process-
ing during inference.

Selective Persistence Strategy. We opt to re-
tain the embeddings and matrices within the at-
tention mechanism of the transformer constantly
in DRAM. For the Feed-Forward Network (FFN)
portions, only the non-sparse segments are dynam-
ically loaded into DRAM as needed. Keeping at-
tention weights, which constitute approximately
one-third of the model’s size, in memory, allows
for more efficient computation and quicker access,
thereby enhancing inference performance without
the need for full model loading.

Anticipating ReLU Sparsity. The ReLU
activation function naturally induces over 90%
sparsity in the FFN’s intermediate outputs, which
reduces the memory footprint for subsequent
layers that utilize these sparse outputs. However,
the preceding layer, namely the up project, must
be fully present in memory.

To avoid loading the entire up projection ma-
trix, we follow Liu et al. (2023b), and employ a

12564

−4 −3 −2 −1 0 1 2

Output Magnitude (before ReLU)

C
ou

nt

False Negative

Up Projection

Predictor

(a) predictor vs relu

N

Low Rank
Predictor

M

M

N

MR

ReLU

sigmoid 
> 0.5

Up Projection 
(FC)

0
0

1

0
1

0

.

.

.

0

0

N= d model

M = dffn

(b) low rank predictor

Figure 3: (a) Preactivations of tokens in one sequence in OPT 6.7B. The blue graph shows the preactivation of
elements that the predictor detected as positive while the green graph is for up projection. As it can be seen most
of the False Positives are close to 0 and False Negatives constitute a small portion of the elements. (b) A small
low-rank predictor finds out which intermediate neurons are going to be activated.

Table 1: The low-rank predictor has a marginal impact
on zero-shot metrics as the predictor of each layer accu-
rately identifies sparsity.

Zero-Shot Task OPT 6.7B with Predictor

Arc Easy 66.1 66.2
Arc Challenge 30.6 30.6
HellaSwag 50.3 49.8

low-rank predictor to identify the elements zeroed
by ReLU (see Figure 3b). We used a balanced
loss over negative and positive samples of each
layer. In contrast to their work, our predictor needs
only the output of the current layer’s attention mod-
ule and not the previous layer’s FFN module. We
have observed that postponing the prediction to
the current layer is sufficient for hardware-aware
weight-loading algorithm design but leads to more
accurate outcomes due to deferred inputs. We used
10000 samples from the C4 training dataset to do
the training for 2 epochs. It took 4 hours on an
A100 GPU to train each predictor.

We thereby only load elements indicated by the
predictor, as shown in Figure 3a. Furthermore, as
demonstrated in Table 1, using predictors does not
adversely affect the model’s performance in 0-shot
tasks. For more details please refer to Appendix B.

The Sliding Window Technique. In our study,
we define an active neuron as one that yields a
positive output in our low-rank predictor model.
Our approach focuses on managing neuron data by
employing a Sliding Window Technique. This tech-
nique entails maintaining a DRAM cache of only
the weight rows that were predicted to be required
by the recent subset of input tokens. The key aspect

of this technique is the incremental loading of neu-
ron data that differs between the current input token
and its immediate predecessors. This strategy al-
lows for efficient memory utilization, as it frees up
memory resources previously allocated to cached
weights required by tokens that are no longer within
the sliding window (as depicted in Figure 4b).

From a mathematical standpoint, let sagg(k)
denote the cumulative use of neuron data across
a sequence of k input tokens. Our memory archi-
tecture is designed to store an average of sagg(k)
in DRAM. As we process each new token, the
incremental neuron data, which is mathematically
represented as sagg(k + 1) − sagg(k), is loaded
from flash memory into DRAM. This practice
is grounded in the observed trend of decreasing
aggregated neuron usage over time. Consequently,
larger values of k result in a lesser volume of data
being loaded for each new token (refer to Figure
4a), while smaller values of k can help conserve
DRAM that is used to store the cached weights. In
determining the size of the sliding window, the aim
is to maximize it within the constraints imposed
by the available memory capacity.

3.2 Increasing Transfer Throughput
To increase data throughput from flash memory, it
is crucial to read data in larger chunks, preferably
sized as the multiples of the block size of the un-
derlying storage pool. In this section, we detail the
strategy we have employed to augment the chunk
sizes for more efficient flash memory reads.

Bundling Columns and Rows. Note that in the
FFN layer, the usage of the ith column from the up
projection and the ith row from the down projection

12565

0 5 10 15 20 25 30

Window size (k)

0

10

20

30

40

50

P
er

ce
nt

ag
e

Aggregated Usage

Incremental Transfer

sagg(k)

sagg(k + 1)− sagg(k)

(a) aggregated neuron usage

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Neurons to be deleted New NeuronsNeurons from initial window

Active neurons in the initial window

Active neurons in the new window

Initial Window

Once Upon A Time There Was A Kid Who Had A Dream

Sliding Window

Once Upon A Time There Was A Kid Who Had A Dream

(b) sliding window

Figure 4: (a) Aggregated neuron usage of the tenth layer of Falcon 7B: the slope of aggregated neuron usage is
decreasing. Other layers exhibit the same pattern. (b) Rather than deleting neurons that were brought to DRAM we
keep the active neurons of past k tokens (we use k = 5): when the new token "Was" is being processed only a small
fraction of new weights need to be loaded.

coincides with the activation of the ith intermediate
neuron. Consequently, by storing these correspond-
ing columns and rows together in flash memory,
we can consolidate the data into larger chunks for
reading. Refer to Figure 5 for an illustration of this
bundling approach. If each element of weights of
the network is stored in num_bytes such bundling
doubles the chunk size from dmodel×num_bytes to
2dmodel×num_bytes as shown in Figure 5. Our
analysis and experiment show this increases the
throughput of the model.

Bundling Based on Co-activation. We hypoth-
esized that neurons might exhibit highly correlated
activity patterns, enabling bundling. By analyzing
activations on the C4 validation dataset, we found
a power law distribution of coactivations. However,
bundling neurons with their highest coactivated
neuron (closest friend) led to multiple loadings of
highly active neurons, counteracting our goal. This
result suggests that very active neurons are the clos-
est friends of many others. We present this negative
result to inspire future research on effective neu-
ron bundling for efficient inference. Please refer to
Appendix D for details.

3.3 Optimized Data Management in DRAM

Although data transfer within DRAM is more ef-
ficient compared to accessing flash memory, it still
incurs a non-negligible cost. When introducing
data for new neurons, reallocating the matrix and
appending new matrices can lead to significant
overhead due to the need for rewriting existing
neuron data in DRAM. This is particularly costly
when a substantial portion (approximately 25%)

0

0

0

0

Predictor’s
Output

Down Proj 
Rows

Up Proj  
Columns

Flash Memory

load  
from  
flash

Figure 5: By bundling columns of the up project and
rows of the down project layer, we can load 2x chunks
instead of reading columns or rows separately.

of the Feed-Forward Networks (FFNs) in DRAM
needs to be rewritten. To address this issue, we
adopt an alternative memory management strategy.
This involves the preallocation of all necessary
memory and the establishment of a corresponding
data structure for efficient management. The data
structure comprises elements such as pointers,
matrix, bias, num_used, and last_k_active
shown in Figure 6.

Each row in the matrix represents the concate-
nated row of the ‘up project’ and the column of
the ‘down project’ of a neuron. The pointer vec-
tor indicates the original neuron index correspond-
ing to each row in the matrix. The bias for the
‘up project’ in the original model is represented in
the corresponding bias element. The num_used
parameter tracks the number of rows currently
utilized in the matrix, initially set to zero. The
matrix for the ith layer is pre-allocated with a size

12566

1
10
15
5
1
1
1
1
1
1

Copy

Pointer

1
5
15
5
1
1
1
1
1
1

0.5
0.4
0.2
0.4
1
1
1
1
1
1

Scalar

 num_rows 
4

1
5
15
7
9
1
1
1
1
1

0.5
0.4
0.2
0.4
0.3
1
1
1
1
1

 num_rows 
5

To be deleted Remaining New

Pointer Scalar

0.5
0.7
0.2
0.4
1
1
1
1
1
1

Pointer Scalar

1. Start deletion 2. Deletion complete 3. Insertion complete

 num_rows 
3

Figure 6: Memory management; First we replace elements to be deleted by last elements to maintain a consecutive
occupation of memory. Then the new weights are stacked at the end. This reduces the unnecessary data movements.

of Reqi × 2dmodel, where Reqi denotes the maxi-
mum number of neurons required for the specified
window size in a subset of C4 validation set. By al-
locating enough memory for each layer in advance,
we minimize the need for reallocation. Finally, the
last_k_active component identifies the neurons
from the original model that were most recently
activated using the last k tokens. The following
operations can be done as depicted in Figure 6:

1. Deleting Neurons: Neurons that are no longer
required are identified efficiently in linear
time, utilizing the associated last_k_active
value and the current prediction. The matrix,
pointer, and scalars of these redundant neu-
rons are replaced with the most recent elements,
and their count is subtracted from num_rows.
For O(c) neurons to be deleted, a memory
rewrite of the order O(c× dmodel) is required.

2. Bringing in New Neurons: The required
weights are retrieved from flash memory. The
corresponding pointers and scalars are read from
DRAM, and these rows are then inserted into
the matrix, extending from num_row to num_row
+ num_new. This approach eliminates the need
for reallocating memory in DRAM and copying
existing data, reducing inference latency.

3. Inference Process: For the infer-
ence operation, the first half of the
matrix[:num_rows,:d_model] is used as the
‘up project’, and the transposed second half,
matrix[:num_rows,d_model:].transpose(),
serves as the ’down project’. This configuration
is possible because the order of neurons in the
intermediate output of the FFN does not alter
the final output, allowing for a streamlined
inference process.

These steps collectively ensure efficient memory
management during inference, optimizing the neu-
ral network’s performance and resource utilization.

4 Experiments and Results

We start this section by briefly discussing our
experimental setup and implementation details.
Next, we show that the techniques introduced
in Section 3 can improve the inference latency
significantly across different models and runtime
platforms. We postpone the some details to the
appendix sections as follows: performance of our
trained low-rank predictor (Appendix B).

4.1 Experimental Setup
Our work is mainly motivated by optimizing infer-
ence efficiency on personal devices. To this end,
in our experiments, we process sequences individ-
ually, running only one sequence at a time. This
approach allows us to allocate a specific portion of
DRAM for the Key-Value (KV) cache while pri-
marily focusing on the model size. For the imple-
mentation of our inference process, we utilize Hug-
gingFace Transformers library (Wolf et al., 2019)
and PyTorch (Paszke et al., 2019). This setup is
tested under the condition that approximately half
of the model size is available in DRAM. While with
a different level of sparsity or employing quantiza-
tion, one can work with smaller available DRAM
capacity, these optimizations are orthogonal to our
proposed method.

Models. We mainly use OPT 6.7B (Zhang et al.,
2022b) and the sparsified Falcon 7B (Mirzadeh
et al., 2023) model for our evaluations, but we ad-
ditionally report results on Phi-2 (Gunasekar et al.,
2023), Persimmon 8B (Elsen et al., 2023) and a

12567

Table 2: The I/O latency of OPT 6.7B 16 bit on M1 Max when half the memory is available. By employing the
activation predictor and windowing, we can reduce the data transfer from flash memory to DRAM. While this
reduces the throughput, the bundling technique can alleviate this by doubling the data transfer chunk size and hence
the throughput which leads to reducing the overall latency to half.

Configuration Performance Metrics

Hybrid Predictor Windowing Bundling DRAM (GB) Flash→ DRAM (GB) Throughput (GB/s) I/O Latency (ms)

✗ ✗ ✗ ✗ 0 13.4 GB 6.10 GB/s 2196 ms
✓ ✗ ✗ ✗ 6.7 6.7 GB 6.10 GB/s 1090 ms
✓ ✓ ✗ ✗ 4.8 0.9 GB 1.25 GB/s 738 ms
✓ ✓ ✓ ✗ 6.5 0.2 GB 1.25 GB/s 164 ms
✓ ✓ ✓ ✓ 6.5 0.2 GB 2.25 GB/s 87 ms

Llama 2 (Touvron et al., 2023b) which is sparsified
using FATReLU (Song et al., 2024). Note that
the techniques introduced in this work are mostly
independent of architecture.

Data. We use a small subset of C4 validation
dataset for our latency measurements. We take the
first 128 tokens of each example as the prompt, and
generate 256 new tokens.

Hardware Configuration. Our models are eval-
uated across three hardware setups. The first in-
cludes an Apple M1 Max with a 1TB SSD. The
second features an Apple M2 Ultra with a 2TB
SSD. On MacBooks we run the model on the CPU
with float32 or GPU with Metal and float16. The
third setup uses a Linux machine with a 24GB
NVIDIA RTX 4090, where GPU computations uti-
lize bfloat16 models. Across all setups, we assume
nearly half of the total memory (DRAM and GPU)
is allocated for model computations.

Baselines. We compare our models with a naive
baseline of loading the model on demand when
doing the forward pass. We additionally compare
with our hybrid loading approach as a secondary
baseline when half of the model is persisted in
memory and the other half is loaded on demand at
generation of every token without use of sparsity.
We used best theoretical possible numbers for IO
latency for each of the methods to make a fair
comparison, the real number might be higher. For
methods not employing sparsity or weight sharing,
at least half of the model must be transferred
from flash memory during the forward pass. This
necessity arises because, initially, only half of the
model is available in DRAM, but as the forward
pass progresses, the entire model capacity is
utilized. Consequently, any data not present at the
start must be transferred at least once. Thus, the
most efficient theoretical baseline involves loading
half of the model size from the flash memory

into DRAM. This optimal I/O scenario serves
as our primary baseline. Given the nature of our
setup (i.e., the limited available DRAM or GPU
memory), we are not aware of any other method
that can surpass this theoretical I/O efficiency.

Implementation Details. To optimize data load-
ing from flash memory, our system employs reads
parallelized over 32 threads. This multithreaded
approach is intended to both better amortize
latency to the first byte by not waiting for each read
sequentially, and maximize read throughput by
reading multiple streams at once (Figure 2b). To
better assess the actual throughput, we conducted
benchmarks without the aid of operating system
caching leading to a more accurate measurement.

4.2 Faster Load From Flash

Our first result in Table 2 demonstrates the effec-
tiveness of techniques we introduced in Section 3,
where the I/O latency depends on how much data
is being transferred from flash to DRAM, and the
chunk size which determines the throughput. For
instance, by using a low-rank predictor, we reduce
the data transfer significantly, and the amount of
this traffic can be further reduced using our pro-
posed windowing technique. Compared to a long,
contiguous read, scattered reads will necessarily re-
sult in lower throughput (e.g. 1.25 GiB/s sparse vs
6.1 GiB/s dense), but this is partially mitigated
by bundling up-projection and down-projection
weights. The overall effect of sparse reads is still
strongly favorable, because only a small subset of
the overall weights is loaded incrementally in each
iteration, and the load of just the required subset of
weights takes less time and less DRAM.

Additionally, we examine end-to-end latencies
under various setups in Table 3. We allocate ap-
proximately 50 % of the model size for OPT, Fal-
con, and Persimmon and Llama 2. For the sig-
nificantly smaller Phi-2 model, we observed less

12568

Table 3: The end-to-end inference latency across differ-
ent setups. Our efficient implementation (referred as All)
that employs the predictor, windowing, and bundling
can lead to significant latency reduction.

Inference Latency (ms)

Model Method Backend I/O Mem Compute Total

OPT 6.7B Naive CPU 2196 0 986 3182
OPT 6.7B All CPU 105 58 506 669
OPT 6.7B Naive Metal M1 2196 0 193 2389
OPT 6.7B All Metal M1 92 35 438 565
OPT 6.7B Naive Metal M2 2145 0 125 2270
OPT 6.7B All Metal M2 26 8 271 305
OPT 6.7B Naive GPU 2196 0 22 2218
OPT 6.7B All GPU 30 34 20 84
OPT 6.7B Speculative GPU 38.5 9.5 12 60

Falcon 7B Naive CPU 2295 0 800 3095
Falcon 7B Hybrid CPU 1147 0 800 1947
Falcon 7B All CPU 161 92 453 706

Persimmon 8B Naive CPU 2622 0 1184 3806
Persimmon 8B Hybrid CPU 1311 0 1184 2495
Persimmon 8B All CPU 283 98 660 1041

Phi-2 2.7B Naive CPU 885 0 402 1287
Phi-2 2.7B Hybrid CPU 309 0 402 711
Phi-2 2.7B All CPU 211 76 259 546

Llama 2 7B Naive CPU 2166 0 929 3095
Llama 2 7B Hybrid CPU 974 0 929 1903
Llama 2 7B All CPU 279 152 563 994

sparsity rates, prompting us to set this limit at 65%.
We observe a significant improvement in loading
efficiency over both naive and hybrid approaches
across all models. Moreover we showed the GPU
backend outcomes further improve when combined
with speculative decoding.

4.3 The Memory-Latency Tradeoff

So far, we have mainly worked under the assump-
tion that the available DRAM is roughly half of
our model size. However, we note that this is not a
hard constraint and we can relax this constraint.

To this end, we study the impact of window size
on memory usage, and consequently on latency.
By increasing the window size, we increase the
percentage of model parameters that we keep in
DRAM. As a result, we need to bring fewer param-
eters, and hence the latency can be reduced at the
cost of using higher DRAM as shown in Figure 7.

5 Ablation analysis

5.1 The Impact of Longer Generation

In our previous results, we have used short to
medium-length (256 tokens) generations for our
benchmarks. It is possible that for longer genera-
tion of tokens, the ssd enable thermal throttling and
lower the performance. However, Figure 8 shows
that this is not the case, even when we generate

35 40 45 50 55 60 65 70 75 80
% of Model in DRAM

0

10

20

30

40

L
at

en
cy

(m
s)

Compute

Memory Management

Load From Flash

Figure 7: By bringing more of our model (OPT-6.7B)
parameters into DRAM, the latency can be reduced on
the GPU machine.

1000 tokens for OPT 6.7B model on GPU. More-
over, we show that the average flash latency doesn’t
increase as we go further in generation. In contrast,
the flash latency for the the first few tokens is higher
since the allocated memory in DRAM is empty and
needs to be filled in with neurons and for first few
tokens we need more data transfer.

Also it is possible to argue that the non-greedy
sampling methods such as the Nucleus sam-
pling (Holtzman et al., 2020) method can result
in more diverse activation, and hence less favor-
able towards our method. We found out this is not
the case either for long token generations. Nucleus
sampling doesn’t lead to lower performance in long
generation in neither cpu or gpu.

5.2 Speculative Decoding

To further showcase the strength of our method
and adaptability to other decoding strategies we
have applied speculative decoding on the OPT 6.7B
model. The challenge for doing speculative decod-
ing is the limited memory available within DRAM.
Given λ tokens from the draft model, the big model
verifies them and will keep a window of size k for
each layer. The model should decide neurons of
which tokens to keep in memory before verifica-
tions are done. If the model keeps the last k tokens
out of λ+ 1 tokens in memory and most of them
get rejected, there will be very few neuron reuse
for the next forward pass. We conjecture that if
the ratio of the acceptance is α keeping the last k
tokens ending with α(λ+ 1)th token is optimal in
DRAM. We used λ = 4 and were able to improve
the speed of decoding by 1.4x as shown in table
5, this is close to the original 1.58x speedup of
speculative decoding.

12569

0 200 400 600 800 1000

Generation Length

0

100

200

300

400

500

600

D
R

A
M
→

F
la

sh
L

at
en

cy
(m

s)

CPU (Nucleus)

GPU (Nucleus)

GPU (Greedy)

Figure 8: Weight loading latency of OPT 6.7B with
increasing generation length.

5.3 A Note on Power Consumption
In evaluating the efficiency of our method, we com-
pared the power consumption of our sparse model
approach with that of generating tokens using a
dense model of similar size. While the power us-
age (energy per unit of time) of the sparse model
was lower than that of the dense model, the ex-
tended duration required for token generation re-
sulted in the sparse model having a higher total
energy consumption. This is going to be reflected
in the greater area under the curve when plotting
power over time for the sparse model compared
to the dense model. A systematic and quantitative
evaluation of the exact power usage pattern is left
as a future work.

6 Related Works

As LLMs grow in size, reducing their computa-
tional and memory requirements for inference has
become an active area of research. Approaches
broadly fall into two categories: model compres-
sion techniques such as pruning and quantization
(Han et al., 2016b; Sun et al., 2023; Jaiswal et al.,
2023; Xia et al., 2023; Zhang et al., 2022a; Xu et al.,
2023; Shao et al., 2023; Lin et al., 2023; Hoang
et al., 2023; Zhao et al., 2023; Ahmadian et al.,
2023; Li et al., 2023), and selective execution such
as sparse activation (Liu et al., 2023b; Mirzadeh
et al., 2023), or conditional computation (Graves,
2016; Baykal et al., 2023). Our work is orthogonal
to these directions, focusing mainly on minimizing
data transfer from flash memory during inference.

Perhaps most related to our work is the literature
on selective weight loading. SparseGPU (Narang
et al., 2021) exploits activation sparsity to load
a subset of weights for each layer. However, it
still requires loading from RAM. FlexGen (Sheng

et al., 2023) offloads the weights and KV-cache
from GPU memory to DRAM and DRAM to flash
memory. In contrast, we consider only the cases
where the full model can’t reside in the whole
DRAM and GPU memory on the edge devices.
Notably, FlexGen is still theoretically bound by
the slow throughput of flash to DRAM in such
scenarios. An expanded discusion of related works
is deferred to Appendix E.

Overall, the primary assumption in the literature
is that the model can fully reside in the GPU mem-
ory or system DRAM. However, considering the
limited resources available on personal devices, we
do not share this assumption in this work. Instead,
we concentrate on exploring how to store and load
parameters on flash memory more efficiently, aim-
ing to enhance inference efficiency.

7 Discussion

In this study, we have tackled the significant chal-
lenge of running large language models (LLMs)
on devices with constrained memory capacities.
Our approach, deeply rooted in the understand-
ing of flash memory and DRAM characteristics,
represents a novel convergence of hardware-aware
strategies and machine learning. By developing an
inference cost model that aligns with these hard-
ware constraints, we have introduced two new tech-
niques: ‘windowing’ and ‘row-column bundling’.

The practical outcomes of our research are
noteworthy. We have demonstrated the ability to
run LLMs up to twice the size of available DRAM.
For example, on OPT model, we achieve an
acceleration in inference speed of 4-5x compared
to traditional loading methods in CPU, and 20-25x
in GPU. This is particularly crucial for deploying
LLMs in resource-limited environments, thereby
expanding their applicability and accessibility.

While in this work we have studied the previ-
ously unexplored problem of serving LLMs from
flash, we note that this work is only a first step in
this direction, and has several limitations that we
discuss in the next section, and we believe there
are several interesting problems left to be explored
in future works. For instance, from the algorithmic
perspective, more optimized techniques of weight
bundling and data structures can be crafted, while
from the engineering perspective, the character-
istics of specific hardware platforms can inform
works on building more efficient inference stacks.

12570

8 Limitations

Our study represents an initial endeavor in the
pursuit of democratizing Large Language Model
(LLM) inference, making it accessible to a wider
array of individuals and devices. We recognize that
this early effort has its limitations, which, in turn,
open up compelling avenues for future research. A
critical aspect for future exploration is the system-
atic analysis of power consumption and thermal
limitations inherent in the methods we propose,
particularly for on-device deployment.

Currently, our study is limited to single-batch
inference. We provide some preliminary results
on combining our proposed idea with specula-
tive decoding, however, expanding this to include
more complex scenarios like prompt processing
and multi-batch inference are valuable areas for
further investigation.

In our initial proof of concept, we operated under
the assumption of memory availability being half
the size of the model. Exploring the dynamics of
working with varying memory sizes—both larger
and smaller—introduces a fascinating balance be-
tween latency and accuracy, and is a compelling
area for future exploration.

In conclusion, our methodology is constructed
on the foundation of sparsified networks. Nonethe-
less, the underlying concept holds potential for
broader applications. It can be adapted to selec-
tively load weights in non-sparse networks or to
dynamically retrieve model weights from flash stor-
age. This adaptation would be contingent on the
specific requirements of the input prompt or the
contextual parameters provided. Such an approach
suggests a versatile strategy for managing model
weights, and optimizing performance based on the
nature of the input, thereby enhancing the effi-
ciency, usefulness, and applicability of the pro-
posed scheme in various scenarios dealing with
Large Language Models (LLMs).

Acknowledgements

We would like to thank Itay Sagron, Lailin Chen,
Chenfan (Frank) Sun, Hanieh Hashemi, Mahyar
Najibi, Qichen Fu, Moin Nabi, Peter Zatloukal, Ar-
salan Farooq, Sachin Mehta, Mohammad Samragh,
Matt Johnson, Etai Zaltsman, Lin Chang, Dominic
Giampaolo, Tal Uliel, Hadi Pouransari, Fartash
Faghri, Oncel Tuzel, Samy Bengio, Ruoming Pang,
Chong Wang, Ronan Collobert, David Grangier,
and Aftab Munshi for the valuable discussions.

References
Arash Ahmadian, Saurabh Dash, Hongyu Chen, Bharat

Venkitesh, Stephen Gou, Phil Blunsom, A. Ustun,
and Sara Hooker. 2023. Intriguing properties of quan-
tization at scale. ArXiv, abs/2305.19268.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,
Maitha Alhammadi, Mazzotta Daniele, Daniel Hes-
low, Julien Launay, Quentin Malartic, Badreddine
Noune, Baptiste Pannier, and Guilherme Penedo.
2023. The falcon series of language models: To-
wards open frontier models.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. Deepspeed-inference: enabling
efficient inference of transformer models at unprece-
dented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–15. IEEE.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and
Se-Young Yun. 2023. Fast and robust early-
exiting framework for autoregressive language mod-
els with synchronized parallel decoding. ArXiv,
abs/2310.05424.

Cenk Baykal, Dylan Cutler, Nishanth Dikkala, Nikhil
Ghosh, Rina Panigrahy, and Xin Wang. 2023. Al-
ternating updates for efficient transformers. ArXiv,
abs/2301.13310.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-
janya Poria. 2023. Instructeval: Towards holistic
evaluation of instruction-tuned large language mod-
els.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Han Dai, Yi Zhang, Ziyu Gong, Nanqing Yang, Wei Dai,
Eric Song, and Qiankun Xie. 2021. Spatten: Efficient
sparse attention architecture with cascade token and
head pruning. In Advances in Neural Information
Processing Systems, volume 34.

Erich Elsen, Augustus Odena, Maxwell Nye, Sağ-
nak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak
Moparthi, and Arushi Somani. 2023. Releasing
Persimmon-8B.

12571

https://api.semanticscholar.org/CorpusID:258967189
https://api.semanticscholar.org/CorpusID:258967189
https://api.semanticscholar.org/CorpusID:263830054
https://api.semanticscholar.org/CorpusID:263830054
https://api.semanticscholar.org/CorpusID:263830054
https://api.semanticscholar.org/CorpusID:256416125
https://api.semanticscholar.org/CorpusID:256416125
http://arxiv.org/abs/2306.04757
http://arxiv.org/abs/2306.04757
http://arxiv.org/abs/2306.04757
https://www.adept.ai/blog/persimmon-8b
https://www.adept.ai/blog/persimmon-8b

Mingyu Gao, Jie Yu, Wentai Li, Michael C Dai,
Nam Sung Kim, and Krste Asanovic. 2022. com-
putedram: In-memory compute using off-the-shelf
dram. In Proceedings of the 27th ACM International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 1065–
1079.

Google Gemini Team. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Alex Graves. 2016. Adaptive computation time for re-
current neural networks. In International Conference
on Machine Learning, pages 3500–3509. PMLR.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks are all you need. CoRR,
abs/2306.11644.

Jongmin Ham, Jinha Kim, Jinwoong Choi, Cheolwoo
Cho, Seulki Hong, Kyeongsu Han, and Taejoo Chung.
2016. Graphssd: a high performance flash-based stor-
age system for large-scale graph processing. In 2016
USENIX Annual Technical Conference (USENIXATC
16), pages 243–256.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-
dram, Mark A Horowitz, and William J Dally. 2016a.
Eie: efficient inference engine on compressed deep
neural network. arXiv preprint arXiv:1602.01528.

Song Han, Huizi Mao, and William J Dally. 2016b.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. In International Conference on Learn-
ing Representations (ICLR).

Awni Hannun, Jagrit Digani, Angelos Katharopoulos,
and Ronan Collobert. 2023. MLX: Efficient and
flexible machine learning on apple silicon.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee,
and Di He. 2023. Rest: Retrieval-based speculative
decoding. ArXiv, abs/2311.08252.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Duc Nien Hoang, Minsik Cho, Thomas Merth, Moham-
mad Rastegari, and Zhangyang Wang. 2023. (dy-
namic) prompting might be all you need to repair
compressed llms. ArXiv, abs/2310.00867.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on

Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang,
Zhangyang Wang, and Yinfei Yang. 2023. Compress-
ing llms: The truth is rarely pure and never simple.
ArXiv, abs/2310.01382.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2022. Fast inference from transformers via spec-
ulative decoding.

Liang Li, Qingyuan Li, Bo Zhang, and Xiangxiang
Chu. 2023. Norm tweaking: High-performance low-
bit quantization of large language models. ArXiv,
abs/2309.02784.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. Awq: Activation-
aware weight quantization for llm compression and
acceleration. ArXiv, abs/2306.00978.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi,
Raghuraman Krishnamoorthi, and Vikas Chandra.
2023a. Llm-qat: Data-free quantization aware train-
ing for large language models. CoRR.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023b. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137–22176. PMLR.

Moinuddin K Meswani, Sergey Blagodurov, David
Roberts, John Slice, Mike Ignatowski, and Gabriel
Loh. 2015. Neural cache: Bit-serial in-cache acceler-
ation of deep neural networks. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 383–394. IEEE.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo
C Del Mundo, Oncel Tuzel, Golnoosh Samei, Mo-
hammad Rastegari, and Mehrdad Farajtabar. 2023.
Relu strikes back: Exploiting activation sparsity in
large language models.

Sharan Narang, Logan Feistel, Erich Elsen Undersander,
Cindy Song, and Gregory Diamos. 2022. Firefly:
A lightweight system for running multi-billion pa-
rameter models on commodity hardware. In 2022
ACM/IEEE 49th Annual International Symposium
on Computer Architecture (ISCA), pages 757–771.
IEEE.

12572

https://doi.org/10.48550/ARXIV.2306.11644
https://github.com/ml-explore
https://github.com/ml-explore
https://api.semanticscholar.org/CorpusID:265157884
https://api.semanticscholar.org/CorpusID:265157884
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://api.semanticscholar.org/CorpusID:263605807
https://api.semanticscholar.org/CorpusID:263605807
https://api.semanticscholar.org/CorpusID:263605807
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://api.semanticscholar.org/CorpusID:263605754
https://api.semanticscholar.org/CorpusID:263605754
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
http://arxiv.org/abs/2211.17192
http://arxiv.org/abs/2211.17192
https://api.semanticscholar.org/CorpusID:261557634
https://api.semanticscholar.org/CorpusID:261557634
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258999941
https://api.semanticscholar.org/CorpusID:258999941
http://arxiv.org/abs/2305.17888
http://arxiv.org/abs/2305.17888
http://arxiv.org/abs/2310.04564
http://arxiv.org/abs/2310.04564

Sharan Narang, Erich Elsen Undersander, and Gregory
Diamos. 2021. Sparse gpu kernels for deep learning.
In International Conference on Learning Representa-
tions.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara,
Antonio Puglielli, Rangharajan Venkatesan, Brucek
Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. 2017. Timeloop: A systematic ap-
proach to dnn accelerator evaluation. In 2017 IEEE
International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 241–251.
IEEE.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
Breaking the gpu memory wall for extreme scale
deep learning. In SC21: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–14.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons,
Arslan Zulfiqar, and Stephen W Keckler. 2013.
vdnn: Virtualized deep neural networks for scalable,
memory-efficient neural network design. In 2016
49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), page Article 13. IEEE
Computer Society.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqiang Li, Kaipeng Zhang, Peng
Gao, Yu Jiao Qiao, and Ping Luo. 2023. Omniquant:
Omnidirectionally calibrated quantization for large
language models. ArXiv, abs/2308.13137.

Yifan Shao, Mengjiao Li, Wenhao Cai, Qi Wang,
Dhananjay Narayanan, and Parthasarathy Ran-
ganathan. 2022. Hotpot: Warmed-up gigascale infer-
ence with tightly-coupled compute and reuse in flash.
In Proceedings of the 55th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages
335–349.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:
High-throughput generative inference of large lan-
guage models with a single GPU. In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
31094–31116. PMLR.

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding
Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan Liu,
Guangli Li, Tao Yang, and Maosong Sun. 2024.
Prosparse: Introducing and enhancing intrinsic acti-
vation sparsity within large language models.

Vedant Subramani, Marios Savvides, Li Ping, and Sha-
ran Narang. 2022. Adapt: Parameter adaptive token-
wise inference for vision transformers. In Proceed-
ings of the 55th Annual IEEE/ACM International
Symposium on Microarchitecture.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2023. A simple and effective pruning approach for
large language models. ArXiv, abs/2306.11695.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang,
Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin, and
Shuaiwen Leon Song. 2023. Flash-llm: Enabling
low-cost and highly-efficient large generative model
inference with unstructured sparsity. Proc. VLDB
Endow., 17:211–224.

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue
Wang, Kaixiong Zhou, Xia Hu, and Anshumali Shri-
vastava. 2023. Compress, then prompt: Improving
accuracy-efficiency trade-off of llm inference with
transferable prompt. ArXiv, abs/2305.11186.

Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shang-
guang Wang, and Mengwei Xu. 2023. Edgemoe:
Fast on-device inference of moe-based large language
models. ArXiv, abs/2308.14352.

Jinchao Zhang, Jue Wang, Huan Li, Lidan Shou,
Ke Chen, Gang Chen, and Sharad Mehrotra. 2023.
Draft & verify: Lossless large language model ac-
celeration via self-speculative decoding. ArXiv,
abs/2309.08168.

Shizhao Zhang, Han Dai, Tian Sheng, Jiawei Zhang,
Xiaoyong Li, Qun Xu, Mengjia Dai, Yunsong Xiao,
Chao Ma, Rui Tang, et al. 2022a. Llm quantization:

12573

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://api.semanticscholar.org/CorpusID:261214575
https://api.semanticscholar.org/CorpusID:261214575
https://api.semanticscholar.org/CorpusID:261214575
http://arxiv.org/abs/2402.13516
http://arxiv.org/abs/2402.13516
https://api.semanticscholar.org/CorpusID:259203115
https://api.semanticscholar.org/CorpusID:259203115
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://api.semanticscholar.org/CorpusID:262054394
https://api.semanticscholar.org/CorpusID:262054394
https://api.semanticscholar.org/CorpusID:262054394
https://api.semanticscholar.org/CorpusID:258823240
https://api.semanticscholar.org/CorpusID:258823240
https://api.semanticscholar.org/CorpusID:258823240
https://api.semanticscholar.org/CorpusID:261243273
https://api.semanticscholar.org/CorpusID:261243273
https://api.semanticscholar.org/CorpusID:261243273
https://api.semanticscholar.org/CorpusID:262013673
https://api.semanticscholar.org/CorpusID:262013673

Quantization-aware training for large language mod-
els. In Advances in Neural Information Processing
Systems, volume 35.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022b.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han,
Yankai Lin, Chaojun Xiao, Chenyang Song, Zhiyuan
Liu, Zeyu Mi, and Maosong Sun. 2024. Relu2 wins:
Discovering efficient activation functions for sparse
llms.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tianqi Chen, and Baris Kasikci. 2023. Atom: Low-
bit quantization for efficient and accurate llm serving.
ArXiv, abs/2310.19102.

12574

http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2402.03804
http://arxiv.org/abs/2402.03804
http://arxiv.org/abs/2402.03804
https://api.semanticscholar.org/CorpusID:264828796
https://api.semanticscholar.org/CorpusID:264828796

A Appendix Overview

The appendix is structured as follows:

• In Appendix B, we provide additional details on
the low-rank predictor introduced in Section 3.
We evaluate our trained predictors from both ac-
curacy (i.e., their impact on the model’s accuracy)
and efficiency perspectives (i.e., the additional
neurons they predict to be activated).

• Appendix C offers a more detailed description of
our experimental setup and implementation for
the experiments conducted in Section 4.

• In Appendix D, we discuss a negative result re-
garding the strategy of bundling neurons based
on co-activation as a potential method for increas-
ing chunk size (cf. Section 3.2). We intention-
ally include this negative result as we believe it
may inspire future research on effective neuron
bundling and its utilization for efficient inference.

• In Appendix E, we delve deeper into the review
of related works in the literature.

• In Appendix F, we go over implications of llm in
flash when going to smaller devices.

• Finally, Appendix G compares the texts gener-
ated by the base model with those produced by
our models that utilize the predictor.

B Low-Rank Activation Predictor:
Additional Results

B.1 Sparsity patterns of predictors
The number of neurons predicted to be active will
determine the efficiency of our algorithm, the less
sparse the predicted activation the more weights
will have to be loaded from flash. We evaluated
the sparsity patterns over 100 random samples of
the C4 validation dataset. In Figure 9 we can see
the sparsity patterns of OPT, Persimmon, and Phi.
In OPT, the number of active neurons predicted by
the predictor is 3x the amount of actual sparsity
observed in the case of dense inference. In Persim-
mon it is about the same - 3x the required neurons,
and in Phi-2 it is roughly 2x the required neurons
of the original model that are activated by the pre-
dictor. The neurons that are activated by the model
and not the predictor are the false negatives. The
gap between the neurons active in both the predic-
tor and the model, and the neurons active only in
the model is very narrow in all three models, hence

false negatives constitute a small fraction of predic-
tions. To reduce false negatives, the predictor has
to "over-predict", which results in loading neurons
that are redundant, that is, will have zero activation
and no effect on the outcome. An interesting future
direction of this work is improving the accuracy
of the predictors to be able to load fewer neurons.
One observation we had in OPT and Persimmon
is the later layers have more active neurons, which
can be seen in Figure 9d.

B.2 Accuracy of models using predictors

We evaluate the accuracy of models on public
benchmarks with predictors in place. In Table 4 it
can be seen zero shot accuracy of models doesn’t
drop. Also, we can see that increasing the predictor
size for the last 4 layers of Persimmon and Falcon
improves the zero-shot metrics. We evaluated mod-
els on MMLU (Hendrycks et al., 2021) benchmark
as well. We used Instruct Eval’s implementaion
(Chia et al., 2023) for evaluating MMLU. In Figure
10a we can see the MMLU of Persimmon doesn’t
drop when the last 4 layers use higher rank pre-
dictors but this is not the case for lower ranked
ones. Phi2’s MMLU will drop 2.3 points from
the relufied model still keeping at 52 as shown in
Figure 10b. By increasing the threshold of low-
rank predictor we can reduce the amount of data
load, this comes with a slight degradation in zero-
shot metrics as seen in the Table 4 for different
thresholds of the Persimmon model. We have used
threshold=0.7 for Persimmon.

B.3 Overhead of predictors

The average rank of predictors in the OPT-6.7B
is 240, this will result in less than 2.4% of non-
embedding weights and FLOPs. In M1 Max CPU
experiments this was comprising 2.75% and in
RTX GPU it was 4.8% of inference time which
is negligible. For Falocn 7B, predictors take 4%
model size and CPU computation. For Persimmon
it was taking 2.85% of inference time on CPU. For
Llama 2 7B it was taking 3.92% of inference time
on CPU.

C Extended Results

Experimental Setup: Our experiment is designed
to optimize inference efficiency on personal de-
vices. To this end, we process sequences individ-
ually, running only one sequence at a time. This
approach allows us to allocate a specific portion of

12575

0 5 10 15 20 25 30

Layer number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
N

on
ze

ro
Non Sparse portion

both

model

predictor

(a) OPT-6.7B

0 5 10 15 20 25 30 35

Layer number

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

N
on

ze
ro

(b) Persimmon 8B

0 5 10 15 20 25 30

Layer number

5

10

15

20

25

30

N
on

ze
ro

(c) Phi-2

0 50 100 150 200 250

Token

0

10

20

30

40

C
ac

he
d

ne
ur

on
s%

layer 8

layer 16

layer 24

layer 32

(d) Rows cached over time

Figure 9: (a) The percentage of fired neurons in each layer’s FFN is less than 5%. In predictor, roughly 3x of this
amount will get activated. The narrow gap between neurons that are activated in both shows the model output will
not change abruptly. (b) Earlier layers of Persimmon have less active neurons, and later layers of Persimmon have
higher active neurons, so we trained larger predictors for them. (c) In Phi2 middle layers have a higher active neuron
ratio, so we trained larger predictors for those layers. (d) The number of neurons cached within a real scenario of
inference, later layers have more cached rows because of their higher nonsparse ratio.

0.50 0.55 0.60 0.65 0.70

Threshold

35

36

37

38

39

40

41

42

M
M

L
U

A
cc

ur
ac

y

Persimmon-8B

Predictor: (32× 256) + (4× 1152)

Original

Predictor: 36× 256

(a)

Phi-2 Model

46

48

50

52

54

56

58

M
M

L
U

A
cc

ua
rc

y

Original

+ Relufication

+ Distillation

+ Predictor

(b)

Figure 10: (a) If we use larger predictors in the last 4 layers MMLU wouldn’t drop a lot in Persimmon. (b) Phi’s
MMLU will drop in the relufication process due to lower quality data, using distillation can improve the results for
that. Using predictors will downgrade the results but still keep it at 52.

DRAM for the Key-Value (KV) cache while pri-
marily focusing on the model size. This strategy is
particularly effective when dealing with only one
sequence/query at a time.2

For the implementation of our inference process,
we utilize the HuggingFace Transformers and KV
caching. This setup is tested under the condition
that approximately half of the model size is avail-
able in DRAM. We select this amount as a show-
case of the idea of hosting the LLM in Flash. With
a different level of sparsity or employing quantiza-
tion, one can work with smaller available DRAM
capacity as well, or alternatively use larger models.
Such a configuration demonstrates the practicality
of executing inference with lower memory foot-
prints.

Systems performance optimization: The pri-
mary target of our experiments was the Apple ma-

2For OPT 6.7 B model with context length 2048 KV-cache
requires 2048× 2dmodel elements which is only 8% of model
size. Also, the KV cache itself can be held in flash memory.

cOS 14.3 operating system. For high-performance
inference, most of the existing deep learning frame-
works require that the shape of the weights and
the intermediate results in the computation remain
static throughout. In particular, the Metal Perfor-
mance Shaders (MPS) backend for PyTorch demon-
strates rather steep performance cliffs when any
shape dynamism is present in the computational
graph. In order to build a high-performance imple-
mentation, we chose to borrow custom, dynamism-
friendly Metal kernels from Apple’s open-source
MLX deep learning framework (Hannun et al.,
2023). In addition, we made use of the unified
memory architecture available on Apple systems,
which we exploit to maintain the weights cache
using the GPU allocator, by creating the tensors us-
ing the MTLStorageModeShared allocation mode.
This mode allows both the CPU and the GPU to
access the same memory buffer directly, without
redundant copies. We observe that the inputs to
and the outputs from the feed-forward network

12576

Table 4: Model performance on zero-shot tasks when using predictors

Model Predictor Parameters Zero-Shot Metrics

Rank for
Sensitives *

Rank for
Other Layers Threshold ArcEasy Arc

Challenge
Hella
Swag

OPT 6.7B - - - 66.1 30.6 50.3
OPT 6.7B with predictors 1024 128 0.5 66.2 30.6 49.8

Falcon 7B - - - 74.62 40.05 57.77
Falcon 7B relufied - - - 72.52 38.23 54.17
Falcon 7B relufied with predictors 128 128 0.50 70.20 35.41 50.74
Falcon 7B relufied with predictors 1152 128 0.50 71.51 34.22 52.28
Falcon 7B relufied with predictors 1152 256 0.50 72.35 36.35 53.16

Persimmon 8B - - - 67.80 34.64 50.70
Persimmon 8B with predictors 256 256 0.5 67.26 33.87 50.51
Persimmon 8B with predictors 256 256 0.55 66.71 34.73 50.54
Persimmon 8B with predictors 256 256 0.60 66.67 34.04 50.59
Persimmon 8B with predictors 256 256 0.65 66.41 34.22 50.42
Persimmon 8B with predictors 1152 256 0.70 66.30 34.40 52.70

Phi-2 - - - 79.62 51.49 55.17
Phi-2 relufied - - - 80.60 50.12 54.30
Phi-2 relufied with predictors 800 mix 160, 480 0.40 79.96 49.57 53.50
Phi-2 relufied with predictors 800 mix 160, 480 0.55 78.90 47.90 52.75

* For OPT, Falcon, and Persimmon sensitive layers are the last 4 layers. For Phi-2 it is the middle 8.

have a static shape, so by hiding the dynamism
inside a binary extension and handling the shape
dynamism and memory management internally, we
were able to achieve a level of performance that is
not achievable with PyTorch MPS backend alone
while leaving the rest of the model intact. Over
the course of our work, we were able to eliminate
nearly all redundant data movement, improving
inference performance.

Caching Considerations for Data Loading
from Flash Memory. When data is read from flash
memory, the operating system typically caches the
blocks in the block cache, anticipating future reuse.
However, this caching mechanism consumes ad-
ditional memory in DRAM beyond what is allo-
cated for the model. To accurately assess the real
throughput of flash memory under limited DRAM
conditions, benchmarks should be conducted with-
out relying on caching. Practical systems may or
may not rely on filesystem cache, depending on
requirements.

For the purpose of our hardware benchmarking
in this study, we deliberately and significantly
pessimize our NVMe throughput measurements.
On macOS and iOS, we employ the F_NOCACHE
flag with the fcntl() function, while on Linux,
we use DirectIO. Additionally, on macOS, we

clear any resident buffers before initiating the
benchmark using the purge command. This
approach provides a conservative lower bound
of throughput in scenarios where no caching is
permitted and makes the benchmarks repeatable.
It’s worth noting that these figures can improve if
either the inference code or the operating system
is allowed to cache some part of the weights.

While OS-level buffer caching is advantageous
for general-purpose applications with high cache
hit rates, it lacks fine-grained control over cache
usage per process or buffer eviction at the appli-
cation level. In the context of on-device memory
constraints and large model sizes, this could lead to
a situation where the file system level cache does
not help because in order to evaluate later layers
earlier layers must be evicted in a rolling pattern,
so the effective cache hit rate is close to zero. Aside
from being inefficient, this can cause coexistence
issues with other processes due to memory allo-
cation pressure and Translation Lookaside Buffer
(TLB) churn.

C.1 Results for OPT 6.7B Model

This section presents the outcomes for the OPT
6.7B model, specifically under conditions where
the memory allocated for the model in DRAM is

12577

Table 5: The end-to-end inference latency across different setups with standard deviation. Our efficient imple-
mentation (referred to as All) that employs the predictor, windowing, and bundling can lead to significant latency
reduction.

Inference Latency (ms)

Model Method Backend I/O Mem Compute Total

OPT 6.7B All CPU 104.90 (± 18.46) 57.79 (± 9.63) 506.50 (±17.33) 669.20 (± 39.74)
OPT 6.7B All GPU 30.55 (±3.09) 34.11 (±2.38) 19.97 (±0.86) 84.64 (±6.16)
OPT 6.7B Speculative GPU 38.53 (±10.0) 9.45 (±1.7) 12.18 (±2.0) 60.16 (±13.4)

Persimmon 8B All CPU 310.52 (±41.12) 155.80 (±21.30) 623.74 (± 24.76) 1090.08 (±79.08)

Phi-2 All CPU 211.08 (±24.81) 76.87 (±7.18) 258.74 (±20.90) 546.69 (±31.98)

approximately half of its baseline requirement.
Predictors. For the initial 28 layers of the OPT

6.7B model, we train predictors with a rank of
r = 128. To reduce the occurrence of false nega-
tives, the final four layers employ predictors with a
higher rank of r = 1024. These predictors achieve
an average of 5% false negatives and 7% false posi-
tives in the OPT 6.7B model. As depicted in Figure
3a, our predictor accurately identifies most acti-
vated neurons, while occasionally misidentifying
inactive ones with values near zero. Notably, these
false negatives, being close to zero, do not signifi-
cantly alter the final output when they are excluded.
Furthermore, as demonstrated in Table 1, this level
of prediction accuracy does not adversely affect the
model’s performance in 0-shot tasks.

Windowing in the OPT 6.7B Model. Utilizing
a windowing method with k = 4 in the OPT 6.7B
model significantly reduces the necessity for fresh
data loading. Using active neurons of predictor
would require about 10% of the DRAM memory
capacity on average; however, with our method,
it drops to 2.4%. This process involves reserving
DRAM memory for a window of the past 5 tokens,
which, in turn, increases the DRAM requirement
for the Feed Forward Network (FFN) to 24%.

The overall memory retained in DRAM for the
model comprises several components: Embed-
dings, the Attention Model, the Predictor, and the
Loaded Feed Forward layer. The Predictor ac-
counts for 1.25% of the model size, while Em-
beddings constitute 3%. The Attention Model’s
weights make up 32.3%, and the FFN occupies
15.5% (calculated as 0.24×64.62). Summing these
up, the total DRAM memory usage amounts to
52.1% of the model’s size.

Latency Analysis: Using a window size of 4,
each token requires access to 2.4% of the Feed
Forward Network (FFN) neurons. For a 32-bit

model, the data chunk size per read is 2dmodel ×
4 bytes = 32 KiB, as it involves concatenated rows
and columns. On an M1 Max, this results in the
average latency of 105ms per token for loading
from flash and 57ms for memory management (in-
volving neuron deletion and addition). Thus, the
total memory-related latency is less than 162ms
per token (refer to Figure 1). In contrast, the base-
line approach, which requires loading 13.4GB of
data at a speed of 6.1GB/s, leads to a latency of
approximately 2196ms per token. Therefore, our
method represents a substantial improvement over
the baseline.

For a 16-bit model on a GPU machine, the flash
load time is reduced to 30.5ms, and memory man-
agement takes 35ms, slightly higher due to the
additional overhead of transferring data from CPU
to GPU. Nevertheless, the baseline method’s I/O
time remains above 2000 milliseconds.

Detailed comparisons of how each method im-
pacts performance are provided in Table 2.

C.2 Results for Falcon 7B Model

To verify that our findings generalize beyond OPT
models we also apply the idea of LLM in flash
to Falcon model (Almazrouei et al., 2023). Since
the original Falcon model is not sparse, we used a
sparsified (relufied) version with almost the same
performance as that of the base version (Mirzadeh
et al., 2023). Similar to the previous section, we
present the results obtained under the condition that
approximately half of the model size is available
for use in DRAM.

Predictors. In the Falcon 7B model, predictors
of rank r = 256 are used for the initial 28 layers,
and r = 1152 for the last four layers.

Window configuration. Our model reserves
memory for a window containing the last 4 tokens.
This setup utilizes 33% of the Feed Forward Net-

12578

Original

OPT 6.7B

Ours Original

Persimmon

Ours Original

Phi2

Ours Relufied
0

2

4

6

8

10

12
P

er
pl

ex
it

y

Figure 11: There is a slight drop in the perplexity of
OPT and persimmon and more drop in phi-2 after using
predictors.

work (FFN). In terms of memory allocation, em-
beddings take 4.2% of the model size, attention
weights account for 19.4%, and predictors require
4%. The active portion of the FFN, given our win-
dow size, is 25.3% (calculated as 0.33 × 76.8).
Overall, this amounts to 52.93% of the model’s
total size.

Latency Analysis. Using a window size of 4
in our model requires accessing 3.1% of the Feed
Forward Network (FFN) neurons for each token. In
a 32-bit model, this equates to a data chunk size of
35.5 KiB per read (calculated as 2dmodel ×4 bytes).
On an M1 Max device, the time taken to load this
data from flash memory is approximately 161ms,
and the memory management process adds another
90ms, leading to a total latency of 250ms per token.
In comparison, the baseline latency is around 2196
milliseconds, making our method approximately 9
to 10 times faster.

C.3 Persimmon 8B
We have applied LLM in Flash for Persimmon 8b
models. Since Persimmon is already using squared
ReLU activation we didn’t need to finetune it fur-
ther.

Predictors. In the Persimmon 8B base model,
predictors of rank r=256 are used for the initial
32 layers and r = 1152 for the last four layers.s.
Persimmon’s sparsity is less than OPT and Falcon
so we changed the sigmoid threshold to 0.7. In
figure 10a you can see that the MMLU of the model
doesn’t drop with this setting. This wouldn’t be the
case if all the predictors had a rank of 256. Also in
Figure 11 you can see that perplexity on wikitext2
with doesn’t drop abruptly. Qualitative evaluations
can be found in Section G.

Window configuration. Our model reserves

memory for a window containing the last 4 tokens
and also reduces window size dynamically when-
ever the whole memory usage passes the 25% of
FFN size threshold.

Latency analysis. Since we have fixed the mem-
ory budget we won’t exceed the 25% limit in the
FFN which will be 50% of the total model size. We
used nucleus sampling «cite nucleus» with p=0.9
to have a broader analysis. As it can be seen in
Figure 1 it takes 310ms for loading from flash and
155ms for memory management.

C.4 Phi-2
We have applied LLM in Flash for Phi-2 models.
We first relufied the model then trained the pre-
dictor and applied inference. Since the model is
already small, we gave it 65% of its memory for
running the inference. During the inference, we
modified the window size to make sure it will never
exceed the limit.

Relufication. We finetuned the model using
a refined-web dataset following Mirzadeh et al.
(2023). We found that adding a distillation loss
as suggested by (Liu et al., 2023a) improves the
results as can be seen in 10b. MMLU metric drops
from 57 to 54.3 after relufication with distillation.

Predictors. The sparsity pattern of Phi-2 is dif-
ferent than other models. As you can see in figure
9c the sparsity of the middle layers is less than other
layers for a random sample of the C4 dataset. As a
general rule of thumb, we trained larger predictors
for the less sparse layers. If layers are grouped by
4, we will have 8 groups of layers. For the last
group, we didn’t use any predictors. For the first,
second, and seventh groups, we trained a predic-
tor of size 160. For the third and sixth groups we
trained predictors of size 480 and for groups in the
middle we trained predictors of size 800.

Latency analysis. Phi-2 gets 2.35x speedup
over naive baseline as it can be seen in table 3. It
also improves our hybrid-only approach.

C.5 Llama 2
To further validate our result we tried running
Llama2 (Touvron et al., 2023b) on flash. We used
the sparisified Llama2 (Song et al., 2024) as the
base model and run our experiments on M1 Max
CPU. We used window size of 2. We didn’t cache
weights when the total memory was growing over
55% of model size.

Sparse models. The sparsified model (Song
et al., 2024) uses FATReLU function to ensure

12579

sparsity of llama is above 90%. For models that
have used Swi-GLU activation function (having a
gated linear unit, a down project and an up project),
replacing Swish with ReLU within the FFN doesn’t
ensure high amount of sparsity (Mirzadeh et al.,
2023). The FATReLU function activates neurons
with gated value greater than a threshold. This will
ensure only a small portion of neurons are activated
which are the most informative.

Predictors. We used predictors of size 1024
in 4 middle layers and predictor of size 256 in all
other layers. The reason we used larger predictors
in the middle layers is higher neuron activation in
middle layers (similar to Phi2). The reason why in
some networks middle layers are more active and
in some networks later layers are more active is
subject to follow up research.

Latency analysis. LLM in flash gets 3x speed
up over naive baseline (Table 3). It is also perform-
ing better than hybrid model which is the theoret-
ical lower bound for approaches that doesn’t use
sparsity.

Accuracy analysis. When doing MMLU eval-
uation using InstructEval repo (Chia et al., 2023)
we got MMLU of 41.8 for Llama 2, 38.96 for spar-
sified model by (Song et al., 2024) and 38.63 after
training our predictors. We noted a difference be-
tween reported numbers and our evaluations. Using
predictors on top of the sparse models didn’t hurt
the MMLU results.

Alternative approaches. Since Llama 2’s gate
project with FATReLU provides sparse neurons,
we can directly use gate project as predictor. This
completely matches with the sparse base model.
Since gate projects take 1

3 of FFN layer and 5
9 of

each transformer block, keeping them in memory
will occupy more space in DRAM than having
predictors. In fact with window size of 1, this
approach resulted in requiring 65% of model size
in DRAM.

D Bundling Based on Co-activation

Given the high reuse of data in sparse models, we
hypothesize that neurons may be highly correlated
in their activity patterns, which may enable further
bundling. To verify this we calculated the activa-
tions of neurons over the C4 validation dataset. For
each neuron, the coactivation of that neuron with
other ones forms a power law distribution as de-
picted in Figure 12a. Now, let’s call the neuron that
coactivates with a neuron the most closest friend.

Indeed, the closest friend of each neuron coacti-
vates with it very often. As Figure 12b demon-
strates, it is interesting to see each neuron and its
closest friend coactivate with each other at least
95% of the time. The graphs for the 4th closest
friend and 8th closest friend are also drawn. Based
on this information we decided to put a bundle of
each neuron and its closest friend in the flash mem-
ory; whenever a neuron is predicted to be active
we’ll bring its closest friend too. Unfortunately, this
resulted in loading highly active neurons multiple
times and the bundling worked against our original
intention. It means the neurons that are very active
are the ‘closest friends’ of almost everyone.

E Extended Related Works

Efficient Inference for Large Language Models.
As LLMs grow in size, reducing their computa-
tional and memory requirements for inference has
become an active area of research. Approaches
broadly fall into two categories: model compres-
sion techniques like pruning and quantization (Han
et al., 2016b; Sun et al., 2023; Jaiswal et al., 2023;
Xia et al., 2023), (Zhang et al., 2022a; Xu et al.,
2023; Shao et al., 2023; Lin et al., 2023; Hoang
et al., 2023; Zhao et al., 2023; Ahmadian et al.,
2023; Liu et al., 2023a; Li et al., 2023), and se-
lective execution like sparse activations (Liu et al.,
2023b; Mirzadeh et al., 2023; Zhang et al., 2024)
or conditional computation (Graves, 2016; Baykal
et al., 2023). Our work is complementary, focus-
ing on minimizing data transfer from flash memory
during inference.

Selective Weight Loading. Most related to our
approach is prior work on selective weight loading.
SparseGPU (Narang et al., 2021) exploits activa-
tion sparsity to load a subset of weights for each
layer. However, it still requires loading from RAM.
Flexgen (Sheng et al., 2023) offloads the weights
and KV-cache from GPU memory to DRAM and
DRAM to flash memory, in contrast, we consider
only the cases where the full model can’t reside in
the whole DRAM and GPU memory on the edge
devices. Flexgen is theoretically bound by the slow
throughput of flash to DRAM in such scenarios.
Firefly (Narang et al., 2022) shares our goal of
direct flash access but relies on a hand-designed
schedule for loading. In contrast, we propose a
cost model to optimize weight loading. Similar
techniques have been explored for CNNs (Parashar
et al., 2017), (Rhu et al., 2013). Concurrently,

12580

20 100 200 300 400 500 600 700 800 900 1000

Top Co-activated Neurons

10

30

50

70

90

100
F

re
qu

en
cy

(%
)

(a) coactivation intensity

94 95 96 97 98 99 100

Percentage of coactivation

0

2000

4000

6000

8000

10000

12000

14000

16000

N
um

b
er

of
ne

ur
on

s

(b) Closest friend

60 70 80 90 100

Percentage of coactivation

0

100

200

300

400

500

600

700

N
um

b
er

of
ne

ur
on

s

(c) 4th closest friend

50 60 70 80 90 100

Percentage of coactivation

0

200

400

600

800

1000

1200

N
um

b
er

of
ne

ur
on

s

(d) 8th closest friend

Figure 12: (a) For a randomly selected neuron from the 10th layer of OPT 6.7B, there exists a group of neurons that
are coactivated with high probability (b) The closest friend of a neuron is defined as the most coactivated neuron in
the same layer, and the closet friend of every neuron in OPT 6.7B almost always get coactivated. (c) The 3rd closest
friend gets co-activated with each neuron 86% of the time on average (d) The 7th closest friend seems to be less
relevant and doesn’t coactivate with the neuron very often.

Adapt (Subramani et al., 2022) has proposed adap-
tive weight loading for vision transformers. We
focus on transformer-based LLMs and introduce
techniques like neuron bundling tailored to LLMs.

To hide flash latency, we build on speculative
execution techniques like SpAtten (Dai et al., 2021;
Bae et al., 2023). But, we introduce lightweight
speculation tailored to adaptive weight loading.

Hardware Optimizations. There is a rich body
of work on hardware optimizations for efficient
LLM inference, including efficient memory archi-
tectures (Gao et al., 2022), dataflow optimizations
(Han et al., 2016a; Shao et al., 2022), hardware
evaluation frameworks Zhang2023AHE, and flash
optimizations (Ham et al., 2016), (Meswani et al.,
2015). We focus on algorithmic improvements, but
these could provide additional speedups.

Speculative Execution. Speculative decoding
(Leviathan et al., 2022; Zhang et al., 2023; He et al.,
2023) is a technique that uses a draft model for
generation and uses the larger model to verify those
tokens. This technique is orthogonal to us and can
be used for further improvement. In the case of
speculative decoding, the window in our method is
updated with multiple tokens rather than one.

Mixture of Experts. Mixture of Experts
(Yi et al., 2023) have a sparse structure in their
feed-forward layer and can leverage our method
for enabling larger models on the device.

In summary, we propose algorithmic techniques
to minimize weight loading from flash memory dur-
ing LLM inference. By combining cost modeling,
sparsity prediction, and hardware awareness, we
demonstrate 4-5x and 20-25x speedup on CPU and
GPU, respectively.

Table 6: Active neuron percentage in different layers
of OPT 6.7B vs Quantized model over 100 sequences.

Layer OPT 6.7B Quantized

1 1.56% 1.42%
16 2.66% 2.44%
32 5.36% 5.45%
average 3.30% 3.27%

F Small Device Implications

We note that many of the hardware assumptions
(e.g., limited DRAM capacity, characteristics of
Flash such as bandwidth limitations and increased
throughput with larger chunks) are also applicable
to smaller devices like smartphones. For exam-
ple, when running a 7B model on a smartphone,
the same technique can be employed; instead of
loading 16-bit values, 4-bit values would be loaded.
Consequently, rather than the baseline’s 3.5GB of
required DRAM, our model would necessitate less
than 2GB of memory for operation.x We believe
that since quantization does not alter activation
sparsity patterns, the same technique can be uti-
lized here by loading 4-bit instead of 16-bit values
(Table 6). However, actual implementation would
require special 4-bit compute kernels on device,
which falls outside the scope of this paper.

G Qualitative Evaluations

Here we present some of the examples generated
from the model with a predictor. The purpose is to
qualitatively demonstrate that the models’ output is
comparatively reasonable when the predictors are
applied. Table 7 and 8 show the results where the
prompt was "once upon a time there was a" and
the models are asked to complete it. Table 9 shows
the results after prompting the model to complete a
random sample taken from C4 dataset.

12581

Table 7: Comparison of the output of original model and model with predictors.

Prompt: Once upon a time there was a

OPT 6.7B OPT 6.7B with predictors

little girl who was very sad.
She was sad because her daddy was gone.
He was in the army and he was in Iraq.
She was sad because she missed him so much.
She was sad because she was so lonely.
She was sad because she was so scared.
She was sad because she was so sad.
She was sad because she was sad.
She was sad because she was sad.
She was sad because she was sad.

man who was very rich.
He had a beautiful wife and two beautiful children.
He was a very good man and he loved his family very
much.
One day he was walking down the street when he
saw a poor man who was begging for money.
The man was very poor and he had no money.
The man asked the man for some money.
The man gave the man some money.
The man was very happy and he thanked the man.

Persimmon 8B Persimmon 8B with predictors

man named Bilbo Baggins.
Bilbo Baggins was a small hobbit, and he lived in a
hole in the ground.
Bilbo Baggins had many adventures, and he met
many friends.
Bilbo Baggins was brave, and he was not afraid of
anything.
Bilbo Baggins was happy, and he always smiled.
Bilbo Baggins was a kind person, and he always
helped others.

man named Bilbo Baggins. He lived in a hole in the
ground, with many other hobbits.
Bilbo Baggins was a very brave hobbit. He liked to
eat LOTS of cheese.
One day, Bilbo Baggins decided to leave his hobbit
hole. He decided to travel the world.
Bilbo Baggins was very hungry. He ate many
cheeses.
Bilbo Baggins was very tired. He slept in a cave.
Bilbo Baggins was very cold. He

12582

Table 8: Comparison of the output of original model and model with predictors.

Prompt: Once upon a time there was a

Phi-2 Relufied Phi-2 with predictors

young girl named Lily who loved to read. She would
spend hours in her room with her nose buried in a
book, lost in the world of the characters she was
reading about. Her parents were always happy to see
her reading, knowing that it was good for her mind
and her imagination.
One day, Lily’s parents decided to take her to the
library to pick out some new books to read. As
they walked through the aisles, Lily’s eyes widened
with excitement at all the different titles and covers.
She picked out a few books that caught her eye and
couldn’t wait to start reading them.
As they were leaving the library, Lily’s parents no-
ticed a sign advertising a book club for kids. They
thought it would be a great opportunity for Lily to
meet other kids who loved to read and discuss books
together. Lily was hesitant at first, but her parents
convinced her to give it a try.
At the first book club meeting, Lily was nervous but
excited to meet the other kids. They all sat in a circle
and took turns sharing their thoughts on the book
they had read. Lily was surprised at how much she
enjoyed hearing other people’s perspectives on the
story. She realized that reading wasn’t just about
escaping into a world of her

young girl named Lily who loved to read. She would
spend hours in her room with her nose buried in a
book, lost in the world of the characters she was
reading about. Her favorite books were the ones
that had a happy ending, where the main character
overcame their obstacles and found true love.
One day, Lily’s parents surprised her with a trip to the
library. She was so excited to see all the new books
she could check out. As she walked through the
aisles, she noticed a book with a bright yellow cover
that caught her eye. It was called "The Adventures
of Lily and the Magic Book."
Lily eagerly checked out the book and took it home
to read. As she read, she was transported to a magical
world where she met a talking cat, a brave knight,
and a beautiful princess. The book was filled with
adventure, magic, and romance.
As Lily read on, she noticed that the book was getting
darker and darker. The characters were facing more
and more obstacles, and it seemed like they might
not make it out alive. Lily began to worry that the
book was going to end badly.

Sparse Llama 2 Sparse Llama 2 with predictors

little girl who loved to play with her dolls. She loved
to dress them up and make them do all sorts of things.
One day, she decided to make a dollhouse for her
dolls.
Write a dialogue around the person in the article
based on the content in the previous article.
Melanie: Hey, Mom! I was thinking about making a
dollhouse for my dolls.
Mother: That sounds like a great idea, Melanie!
What

little girl named Lily. She loved to play with her dolls
and stuffed animals. One day, she decided to make
a new doll for herself. Write a dialogue between
the person in the background and the person in the
foreground.
Person in the background: Lily, what are you doing?
Person in the foreground: I’m making a doll for my-
self.
Person in the background: Why do you need a doll?
Person in the foreground

12583

Table 9: Comparison of the output of original model and model with predictors.

Prompt: There is a lot of discussion right now about stress reduction. Today we see an increased work load
of mental health professionals, increased occurrences of abuse or violence faced by social workers and other
therapists, and the terrible struggles facing our returning veterans. All of these things have increased our
awareness of the stressful elements of our society and the impact those elements have on both our clients and
the professionals whose job it is to help. As a social worker I am

Persimmon 8B (nucleus sampling) Persimmon 8B with predictors (nucleus sampling)

constantly reminded of the importance of stress re-
duction.
am aware of this stress, and as a psychotherapist I
help my clients learn techniques to deal with these
stressful elements.
I am writing to encourage all mental health profes-
sionals to learn yoga. I strongly believe that yoga
should be part of your clinical routine, and that yoga
classes should be taken by clinicians for credit, just
like psychotherapy, case management and substance
use classes

constantly reflecting on my own stress levels and
how I can remain more fit to handle the pressures of
the profession. In social work a social worker calls
themselves "a problem solver." While this is the often
expected role of the professional, solving a problem
can often require complex actions to be successful.

Phi-2 Relufied Phi-2 with predictors

constantly looking for ways to reduce stress in my
life and in the lives of my clients. One of the most
effective ways to reduce stress is to take time to relax.
This is not always easy to do, especially when you
are working with clients who are in crisis. However,
it is important to take time to relax and recharge your
batteries. One way to do this is to take a break from
work and go for a walk. Walking is a great way to
clear your mind and get some

often asked how I deal with stress. I have found that
there are a few things that I do that help me to manage
stress.
1. I make sure that I get enough sleep. I try to get
at least 8 hours of sleep a night. I also try to get up
early and get out of bed by 7:00 a.m. This helps me
to start my day feeling refreshed and ready to take on
the day.
2. I make sure that I eat a healthy diet

12584

