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Abstract

Detecting non-factual content is a long-
standing goal to increase the trustworthiness
of large language models (LLMs) generations.
Current factuality probes, trained using human-
annotated labels, exhibit limited transferability
to out-of-distribution content, while online self-
consistency checking imposes extensive com-
putation burden due to the necessity of gener-
ating multiple outputs. This paper proposes
PINOSE, which trains a probing model on of-
fline self-consistency checking results, thereby
circumventing the need for human-annotated
data and achieving transferability across di-
verse data distributions. As the consistency
check process is offline, PINOSE reduces the
computational burden of generating multiple
responses by online consistency verification.
Additionally, it examines various aspects of
internal states prior to response decoding, con-
tributing to more effective detection of factual
inaccuracies. Experiment results on both factu-
ality detection and question answering bench-
marks show that PINOSE achieves surpassing
results than existing factuality detection meth-
ods. Our code and datasets are publicly avail-
able on this github repository.

1 Introduction

Large language models (LLMs), after pre-training
on massive corpora (Brown et al., 2020; Touvron
et al., 2023a; Jiang et al., 2023), show a surpris-
ing ability to generate knowledgeable content (Sun
et al., 2023; Yu et al., 2022). Although this abil-
ity facilitates a wide range of applications, such as
question answering (QA) (Abdallah et al., 2023;
Liu et al., 2022; Li et al., 2022) and information
retrieval (Mao et al., 2021; Ma et al., 2023), the
propensity of LLMs to occasionally produce non-
factual knowledge (Lin et al., 2022; Wang et al.,
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2023a) potentially hinders the practical utilization
of generated content. Thus, it is necessary to detect
whether LLMs generate non-factual content.

Previous studies offer evidence that the internal
representation vectors in LLMs determine whether
they produce factual answers to the input ques-
tion (Azaria and Mitchell, 2023a; Kadavath et al.,
2022; Zou et al., 2023). Specifically, the factual be-
havior entailed is extracted from the feed-forward
layer activations of tokens before the generated con-
tent using linear probes (Alain and Bengio, 2017;
Belinkov, 2022). However, their construction relies
on the labor-intensive process of annotating natural
language questions, as well as labeling LLMs’ out-
puts with factuality annotations, a factor that limits
their applicability to questions and responses with
unseen distributions.

To avoid the annotation process, the most recent
studies detect non-factual content via online self-
consistency checking (Wang et al., 2022). They
assume that if LLMs give contradictory responses
to the same prompt, the model is more likely to hal-
lucinate to give that answer (Elazar et al., 2021). In
this way, detecting non-factual content is reduced
to the mutual-entailment analysis among multiple
generations, which is usually realized as natural lan-
guage inference (NLI) models (Kuhn et al., 2023;
Manakul et al., 2023a) or heuristic comparison of
the hidden representation similarity (Anonymous,
2023). However, self-consistency checking intro-
duces extensive computation overhead to sample
multiple responses. In addition, due to the lack of
training process, these methods are less robust than
previous factuality probes.

Giving these limitations of existing methods, we
propose PINOSE, a method to predict non-factual
responses from LLMs. The main idea of PINOSE

is to construct a probing model that learns from
offline self-consistency checking. It aims to present
two core advantages over existing methods:

Transferability. Comparing with existing prob-
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ing methods, PINOSE eliminates human annota-
tion for training data. This is achieved with boot-
strapped natural language questions and generated
pseudo factuality labels through an offline consis-
tency checking mechanism. Moreover, as PINOSE

does not rely on specific training data, it transfers
effortlessly to any different data distributions.

Efficiency and Effectiveness. Comparing with
online consistency checking, PINOSE avoids the
computational burden associated with multiple gen-
erations during inference, thus enhancing time effi-
ciency. Additionally, by analyzing the continuous
internal representations of LLMs rather than dis-
crete tokens in the response, PINOSE gains access
to a broader spectrum of information, enhancing
its prediction effectiveness.

We conduct comprehensive experiments on es-
tablished factuality detection benchmarks and vari-
ations of QA datasets. Our results reveal several
key findings: (1) PINOSE outperforms supervised
probing-based baselines by 7.7-14.6 AUC across
QA datasets, despite being trained without anno-
tated labels. (2) Moreover, our PINOSE achieves
significant performance improvements (3-7 AUC)
compared to unsupervised consistency checking
baselines, while also demonstrating superior time
efficiency. (3) Additionally, the dataset gener-
ated via offline self-consistency checking shows
promise for transferring to probe various LLMs.

2 Preliminaries

This study concentrates on identifying non-factual
content using decoder-only LLMs. It begins by
formally defining the task and then elaborates
on decoder-only LLMs and the construction of
probes for these models. Additionally, it discusses
the distinctions between online and offline self-
consistency checking.

Task Definition. Formally, given a question q =
⟨q1, q2, . . . , qn⟩ composed of n tokens, and its cor-
responding response r = ⟨r1, r2, . . . , rm⟩ consist-
ing of m tokens, non-factual content detection aims
to assign a binary judgment f ∈ {True, False},
determining the factual correctness of r. For ex-
ample, given the question “What is the capital city
of China?”, “Beijing” serves as the response with
True judgement, while “Shanghai” is classified as
False. Without losing generality, we allow q to
be null (i.e., q = ∅), in which scenario, the task
evaluates the factuality of the standalone assertion.

To detect whether LLMs generate non-factual

content, in our setting, the response r is usually
sampled from an LLM. In this case, we expect the
model to assess the factuality of content generated
by itself without the need of another LLM.

Decoder-only LLMs. Decoder-only LLMs com-
prise a stack of Transformer decoder lay-
ers (Vaswani et al., 2017). After embedding tokens
into the hidden representation H(0), each layer ma-
nipulates the hidden representation of the previous
layer as follows1:

H(l) = FFN
(
Attn

(
H(l−1)

))
,

where Attn(·) is the attention mechanism. FFN(·)
is the feed-forward network composed of two con-
secutive affine transformations and activation func-
tions. Thus, the intermediate representations of
decoder-only LLMs are usually extracted from the
output of FFN(·) operation. In the following of this
paper, we denote the hidden representation of the
ith token extracted from layer l as H(l)[i].

Language Model Probing. Probing method ex-
tracts implicit information from the intermediate
representation. It is usually implemented as a sim-
ple classification model that maps from the hidden
representation of certain token into discrete classes.

The probe in PINOSE is a two-layer feed-
forward network with binary classification outputs:

Probe
(
H(l)[i]

)
= σ2

(
W2σ1

(
W1H

(l)[i] + b1

)
+ b2

)
,

(1)

where σ1 is the Sigmoid function, σ2 is any non-
linear function, and W,b are trainable parameters.
Probe

(
H(l)[i]

)
is the probability for True.

Consistency Checking. Consistency checking
requires LLMs to generate multiple responses to-
wards the same question, and utilize these seman-
tic consistency to judge whether the generations
are correct. Previous methods for non-factual con-
tent detection are online self-consistency checking,
where LLMs need to generate extensive responses
to answer a single question to obtain factuality la-
bels. Our method falls into the offline consistency
checking category, where consistency checking is
solely used to generate labels for training the probe.
During online checking, LLMs only need to pro-
duce a single response and obtain the factuality
label from the probe.

1We omit residual connection (He et al., 2016) and layer
normalization (Ba et al., 2016) for simplicity.
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3 Methodology

The construction of PINOSE involves three main
stages: (1) In the data preparation stage, we boot-
strap natural language questions and generate mul-
tiple responses, which together serve as model in-
puts; (2) In the offline consistency checking stage,
we employ a peer review mechanism to generate
pseudo factuality label for each response; (3) In the
probe construction stage, these pseudo factuality
labels are used to train a language model probe.
Figure 1 illustrates the overall process.

3.1 Stage 1: Data Preparation

In alignment with the requirements of the non-
factual content detection task, the supporting data
consists of three elements: natural language ques-
tions q, their corresponding responses r, and fac-
tuality labels f . This stage concentrates on gen-
erating large-scale data containing the initial two
elements (i.e., q and r).

Question Bootstrapping. PINOSE leverages
natural language questions to prompt LLMs to gen-
erate responses for consistency checking. However,
natural language questions are not always available
across all domains. Furthermore, both the diversity
and quantity of questions can significantly impact
the quality of the prepared data. Therefore, we
aim to enable LLMs to bootstrap questions with
minimal human involvement.

Fortunately, as Honovich et al. (2023) point out,
high-performing language models show significant
capacity in question generation. Inspired by these
findings, we manually annotate a set of seed ques-
tions and employ them as demonstrations for LLMs
to generate a large volume of questions via in-
context learning (Brown et al., 2020, ICL). To
enhance diversity in generation, we broaden the
scope of seed questions by incorporating the gen-
erated ones and sample diverse combinations from
the seed questions for subsequent generation. De-
tailed prompt for question generation is provided
in Figure 4 of Appendix A.5.

Diverse Response Generation. We use previ-
ously generated questions as input for LLMs to
generate multiple responses for subsequent con-
sistency checking. We design two strategies to
encourage the diversity of multiple responses to
the same input question. (1) From the perspective
of decoding, we adjust the decoding strategy by ap-
plying a vanilla sampling method with a relatively
high sampling temperature (t = 1). (2) From the

perspective of model input, we instruct LLMs to
answer a question using a variety of prompts (as
shown in Figure 5 in Appendix A.5).

The outcome of this stage is a dataset contain-
ing questions paired with multiple responses, des-
ignated as {(q, {ri})}, where the number of re-
sponses k = |{ri}| serves as a hyperparameter that
determines the quantity of responses per question
for the subsequent consistency check.

3.2 Stage 2: Offline Consistency Checking
We engage LLMs in the offline consistency check
process via a peer review mechanism. First, we
gather reviews by asking LLMs to determine for
each response whether it is consistent with other
responses. Then, we enrich reviews by sampling
multiple consistency judgements by varying model
inputs. Finally, we integrate reviews to form the
pseudo-factuality label for each response and filter
out low-quality responses.

Review Gathering. Formally, consistency
reviewing involves asking an LLM to evaluate
whether the response ri to the question q is se-
mantically consistent with other responses (i.e.,
rj , j ̸= i). If ri has equivalent meaning with
other responses, it is considered factual. To en-
sure unambiguous judgment, we require the LLM
to make pairwise comparisons with other k − 1
responses. For each comparison, it must output
one of three labels: “Consistent”, “Neutral”, or
“Non-Consistent”. To achieve this, we specify
the output format with in-context demonstrations
and prompt instructions (as shown in Figure 6 in
Appendix A.5).

Review Enrichment. To enhance the diversity
of reviews, we introduce variability in the input pro-
vided to the LLM during consistency assessments.
Recognizing the significant impact of demonstra-
tions on LLM judgments in ICL (Wang et al.,
2023b), we utilize a range of diverse demonstration
combinations for ICL to elicit varied reviews from
the LLM for each pairwise comparison. Diverse
demonstrations facilitate the collection of multiple
reviews, each potentially providing a unique per-
spective. In total, we gather N round of reviews
for each pairwise comparison, where N is a hyper-
parameter.

Integration and Filtering. We integrate N re-
views for each pairwise comparison, and subse-
quently integrate k − 1 pairwise comparisons for
each response through the same majority voting
mechanism. Here is how the voting works: we first

12350



Offline Consistency Checking Probe ConstructionData Preparation

LLM

Sample Seeds

Bootstrapped Questions

How much of earth is 
covered with water

LLM

Diverse Responses

Approximately 71% 
of theThe Earth's surface 

is predominantly 
water, covering

About 71% of the 
Earth's surface is 
covered with water.

Question Bootstrapping
Who played the father in
the sound of music?

Resulting Dataset 𝐪, 𝐫!, 𝐟!

Pairwise Comparison for Review Gathering

About 71% of the …

Around 71% … Nearly 71% area …
One-quarter of …

Decoder Layer

LLM

· Consistent
· Non-Consistent
· Consistent

• Assess the connection between the two …
• Are the two responses the same? Output with …

ATTN

Diverse Prompts for Review Enrichment

𝐪:	How much of 
earth is covered 
with water

𝐫!:	About 71% of the …

𝐫":	One-quarter of …

Input

FFN Hidden 𝐇 #

Output

Extract Internal 
Representation

ProbeTraining Data

LLM

Figure 1: The overall architecture of PINOSE.

consider Neutral consistency judgement as an ab-
stention for voting. Then, to guarantee the qual-
ity of the final dataset, we exclude controversial
judgements where no single label (Consistent,
Neutral, Non-Consistent) receives over 50% of
the votes. This step ensures that only the most
widely agreed-upon judgements are retained for
analysis. Finally, we assign the factuality label
True (False) to responses that are predominantly
considered consistent (non-consistent) with others.

This stage outputs the dataset with full elements
for consistency checking, i.e., {(q, {(ri, fi)})}.

3.3 Stage 3: Probe Construction
PINOSE predicts the factuality of responses via
a probing model, as defined in Equation 1. To
be more specific, PINOSE integrates the response
with the question, both formatted according to the
template outlined in Figure 7 in Appendix A.5, into
the LLM for detection. Subsequently, the hidden
representation of the last token in the response at
the middle layer of the LLM is employed as the
input for the probing model. We train the probing
model to maximize the probability of the factuality
label while freezing all the parameters of the LLM.
Formally, the construction process of the probe
optimizes the following cross-entropy loss:

loss = −
∑

{q,rj ,fj}
log Probe

(
H(l)[i]

)
1

(
fj = True

)
,

where 1(·) is the indicator function, i is the index
of the last input token, and l represents half the
layer number of the LLM to be detected.

3.4 Discussion

We discuss the rationality of PINOSE and the in-
volvement of LLMs for implementing PINOSE.

The reason of why PINOSE successfully detect
non-factual responses comes from the model and
data perspective. (1) Model property. LLMs are
well-calibrated after massive pre-training (Kada-
vath et al., 2022; Zhu et al., 2023). This indicates
that for non-factual responses, LLMs tend to as-
sign less probability, while preserve relatively high
probability for factual generations. This calibra-
tion property guarantees the feasibility of distill-
ing factuality detection dataset from offline consis-
tency checking. It also suggests that the internal
states of LLMs tracks whether they are producing
factual contents, which PINOSE tries to uncover
with probing model. (2) Data quality. Offline
consistency checking gathers diverse instances of
inconsistency between responses from LLMs, po-
tentially enhancing the quality of training data for
the probing model. Consequently, it enables the
model to address a broader range of inconsistency
scenarios compared to online consistency checking.
Moreover, as the data collection process is fully au-
tomated, the dataset can be significantly larger than
existing training data for factuality probes. The
feasibility of this principle is also widely verified
in distant supervision (Quirk and Poon, 2017).

To implement PINOSE, LLMs are multiply in-
voked during the construction process, including
data preparation, peer reviewing in consistency
checking, and finally non-factual detection. For
a coherent implementation, we employ the same
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True-False NQ TriviaQA WebQ

#Train 5, 000 N/A N/A N/A
#Test 1, 000 1, 000 1, 000 1, 000
%True 40.5 46.6 49.5 58.3

Table 1: Data statistics. #Train and #Test are the num-
ber of instances in the training data and test set, respec-
tively. %True is the ratio of True labels in the test set.
N/A indicates the absence of factuality labels associated
with question responses, although the questions in these
datasets are present.

LLM for detecting the factuality of responses as
the one used for generation and checking consis-
tency. This implementation strategy aligns with our
setting, where no third-party LLM is available, and
it also enhances the transferability of our method.

4 Experiment

We conduct experiments to examine the perfor-
mance of PINOSE by comparing it to baseline meth-
ods for factuality detection. Additionally, we assess
its transferability and efficiency.

4.1 Experiment Setup

4.1.1 Datasets
The datasets include both factuality detection
benchmark and variations of QA datasets. We in-
troduce the purpose to incorporate each dataset
and their data specifications. Detailed statistics are
shown in Table 1.

Benchmark. We follow previous research to
use True-False benchmark (Azaria and Mitchell,
2023b). True-False provides statements generated
by LLMs along with corresponding factuality la-
bels examined by humans. It does not include ques-
tions for each statement (i.e., q = ∅). True-False
comes with both training dataset and test dataset.

Variation of QA. Given that probing statements,
such as those in True-False dataset, is less practi-
cal compared to examining responses to questions
from LLMs, for practical evaluation, we establish
test sets based on existing QA datasets: Natural
Questions (NQ) (Kwiatkowski et al., 2019), Trivi-
aQA (Joshi et al., 2017), and WebQ (Berant et al.,
2013). In particular, we sample 1, 000 questions
from each dataset and employ Llama2-7B (Touvron
et al., 2023b) to generate responses accordingly.
The factuality label for each response is annotated
by human annotators through comparing with the
original ground-truth of each question.

4.1.2 Baselines
We compare PINOSE against probing-based and
consistency-checking-based methods. Addition-
ally, to ensure a comprehensive comparison, we
implement heuristic confidence-based methods as
baselines.

• Probing Based: SAPLMA (Azaria and Mitchell,
2023a) utilizes a feed-forward neural network for
factuality detection, trained on the True-False
training data. RepE (Zou et al., 2023) conduct
principal component analysis (PCA) on the inter-
nal representations of True-False training data. It
selects a factual direction vector using the factu-
ality labels. During testing, RepE compute the
dot product between the internal representation
of the given response and the factual direction
vector.

• Consistency Checking Based: We compare
against SelfCheckGPT (Manakul et al., 2023b),
which performs factuality detection via on-
line self-consistency checking. We implement
two variants. SelfCheckGPT-NLI (SCGPT-
NLI) uses a BERT-based NLI model (Williams
et al., 2018) for consistency checking, while
SelfCheckGPT-Prompt (SCGPT-PT) elicits
LLM itself to evaluate the consistency between
two responses via prompt. The prompt used for
SCGPT-PT is shown in Figure 8 in the Appendix.

• Confidence Based: We also utilize model con-
fidence as an indicator for factuality detection.
Perplexity-AVE (PPL-AVE) and Perplexity-
Max (PPL-MAX) (Kadavath et al., 2022; Azaria
and Mitchell, 2023a; Zou et al., 2023) quantify
the average and maximum token-level probabili-
ties of statements within each test set generated
by the evaluated LLM. It-is-True (Azaria and
Mitchell, 2023a) compares the probabilities be-
tween sentences “It is true that q||r.” and “It is
false that q||r.”, where || denotes concatenation.

It is worth noting that probing based baselines
rely on training data. We thus implement them us-
ing the training dataset from True-False. Besides,
as SCGPT-PT and SCGPT-NLI needs input ques-
tions to generate multiple responses, it is infeasible
to test on True-False, where we mark their results
as “N/A” in Table 2.

4.1.3 Evaluation Metrics
We follow conventions (Azaria and Mitchell,
2023b) in factuality detection, employing the area
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True-False NQ TriviaQA WebQ

AUC ACC AUC ACC AUC ACC AUC ACC

RepE 63.3 61.9 62.6 60.8 67.5 64.3 65.5 63.5
SAPLMA 90.2 83.7 69.7 67.8 69.3 64.5 75.6 69.5

SCGPT-PT N/A N/A 72.3 70.3 76.4 69.9 72.5 72.5
SCGPT-NLI N/A N/A 77.4 71.0 76.9 72.1 77.4 72.3

PPL-AVE 67.1 64.1 61.8 59.2 61.7 58.5 63.7 63.3
PPL-MAX 60.7 61.7 54.2 55.0 57.6 57.0 56.4 60.0
It-is-True 54.8 60.1 63.0 59.5 61.7 59.1 75.6 71.0

PINOSE 86.6 82.1 80.4 72.5 83.9 73.8 83.3 76.0

Table 2: Overall performance over four test sets.

under the receiver operating characteristic curve
(AUC) and accuracy (ACC) as evaluation metrics.

4.1.4 Implementation Details
To implement PINOSE, we uniformly use Llama2-
7B for data preparation, consistency checking, and
factuality detection. For hyperparameters, we set
the number of sampled responses N to 9 and the
round of peer review k to 7. For fair comparison,
we also allow SelfCheckGPT to generate N = 9
responses for consistency checking. The training
dataset for PINOSE consists of 20, 000 constructed
triplets {(q, ri, fi)}. The threshold for calculating
accuracy is determined by selecting the value that
yields the highest accuracy among 100 validation
instances partitioned from the test sets.

4.2 Main Results

Table 2 presents the AUC and ACC scores for all
the compared methods across four test sets. Mean-
while, Table 3 provides insights into the average
detection time required by SCGPT-NLI and our
PINOSE for each instance. In general, PINOSE
outperforms probing-based methods across all
QA variation dataset, despite being trained with-
out annotated labels. Additionally, PINOSE ex-
hibits superior performance compared to con-
sistency checking methods and is also more effi-
cient. Some detailed findings include:

Leveraging factuality labels substantially im-
proves factuality detection accuracy. This is evi-
denced by PINOSE ’s superior performance trained
on factuality labels, compared to confidence-based
methods such as PPL and It-is-True.

Limitations of annotated labels on model
transferability. Despite being trained using an-
notated labels, probing-based methods like RepE
and SAPLMA lag behind a large margin compared
to PINOSE on the three QA variation test sets.

NQ TriviaQA WebQ

SCGPT-NLI 2.530 2.210 2.050
PINOSE 0.024 0.023 0.024

Table 3: Average time required for detecting each in-
stance (in seconds).

This disparity arises because the two baselines
are trained on True-False’s training data, which
consists of statements rather than question and re-
sponses. This difference in input distribution signif-
icantly limits the transferability of these models to
out-of-distribution datasets. In contrast, PINOSE is
trained on a diverse range of questions, leading to
superior performance across the QA datasets. The
slight lag observed in True-False from SAPLMA
is also attributed to the model’s training on ques-
tions. However, probing the factuality of responses
to questions is more practical than evaluating state-
ments given by True-False. Therefore, training on
datasets guided questions is reasonable.

Self-consistency correlates well with factu-
ality. Despite SCGPT lacking supervision from
factuality labels, it surpasses supervised probing-
based baselines, suggesting a strong correlation be-
tween its self-consistency principle and factuality.
Furthermore, PINOSE, also adhering to the self-
consistency principle, outperforms SCGPT. This
is due to PINOSE being exposed to numerous in-
stances with diverse inconsistencies between re-
sponses, unlike SCGPT, which focuses solely on
responses related to the given question. Moreover,
PINOSE evaluates the consistency of internal rep-
resentations rather than discrete output responses
like SCGPT, allowing it access to a wider range
of information, thereby enhancing its predictive
accuracy.

PINOSE’s detection time is significantly
shorter than SCGPT, as shown in Table 3. This
is because PINOSE relies on offline consistency
checking, incorporating consistency characteris-
tics into internal representations during training.
As a result, its online inference depends solely on
internal representations, eliminating the need for
multiple online inferences like those performed by
SCGPT.

4.3 Cross-model Evaluation

To implement PINOSE, LLMs are invoked multi-
ple times during the construction process, includ-
ing data preparation, peer reviewing in consistency
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#
Data

Preparation
Consistency

Checking
Factuality
detection

AUC ACC

1 Llama2-7B Llama2-7B Llama2-7B 80.4 72.5

2 Llama2-7B Llama2-7B Llama2-13B 81.1 73.2
3 Llama2-7B Llama2-7B Mistral-7B 81.3 73.1

4 Llama2-7B Llama2-13B Llama2-13B 81.7 73.5
5 Llama2-7B Mistral-7B Mistral-7B 81.4 73.3

Table 4: Cross-model evaluation performance on NQ.
We explore different combinations of LLMs across each
of the three stages to evaluate their effectiveness.

checking, and finally non-factual detection. By de-
fault, we employ the same LLM for all stages, lever-
aging an LLM’s calibration property. Additionally,
we explore whether training data generated by one
LLM can effectively train a probe to detect the fac-
tuality of content generated by other LLMs. To
study this, we use Llama2-7B for data preparation
but vary the detection target to Llama2-13B and
Mistral-7B. We further switch the LLM for con-
sistency checking to Llama2-13B and Mistral-7B,
consistent with the model to be detected. It’s im-
portant to note that for a given LLM to be detected,
the probe needs to be aligned with it, specifically
in terms of probe’s input, which consists of the in-
ternal representation of the response along with the
question, that must be generated by the LLM. The
crucial findings, as presented in Table 4, include:

More powerful LLMs brings better detection
performance. Comparing group 2 and 3 with
group 1, where the training data remains consis-
tent (created by Llama2-7B), probes built based on
more powerful LLMs demonstrate higher perfor-
mance, attributed to the enhanced representational
capacity of these models.

Generated data facilitates probing across var-
ious LLMs. Switching the LLM for consistency
checking to match the LLM being detected results
in comparable performances between groups 4 and
2, as well as between groups 5 and 3, respectively.
This indicates that we can generate the training
data, comprising (question, response, factuality la-
bel) triplets, once, regardless of the LLMs being
probed, and utilize them uniformly to train probes
for any LLM.

4.4 Ablation Studies on Data Preparation

We examine the impact of question distribution in
the data preparation stage with two variants:

• PINOSE with self questions: Assumes a sce-

nario where the training dataset consists of ques-
tions from the same distribution as the test ques-
tions. We utilize questions from the training data
that belong to the same dataset as the test set.

• PINOSE with external questions: Considers a
scenario where questions from the same distri-
bution as the test questions are unavailable. We
utilize questions from the training data that be-
long to a different dataset from the test set.

We evaluate these variants across three QA test
sets, maintaining a consistent number of training
questions (1, 000 per set) for the first variant. For
the second variant, we collect 5, 000 training ques-
tions from the remaining two datasets for each tar-
get test set. Additionally, we vary the number of
generated questions within the range of [1K, 2K,
3K, 4K, 5K, 10K] to assess its impact. We maintain
fairness in our evaluation approach by applying an
identical labeling methodology, specifically offline
consistency checking, to each dataset.

Figure 2(a)(b)(c) presents the performance of
these variants on the three QA test sets. We find:

Training on questions of the same distribu-
tion as the test set yields significantly better re-
sults than a different distribution. Despite hav-
ing more external questions (5, 000 vs 1, 000), the
second variant still lags behind the first.

Training on generated questions could en-
hance transferability of the probe. Across the
three test sets, training with fewer than 5, 000 gen-
erated questions (approximately 3, 000+, 2, 000+,
1, 000+ questions on NQ, TriviaQA, and WebQA,
respectively) can achieve performance comparable
to using 5, 000 external questions. Additionally,
training with approximately 6, 000, 10, 000, and
3, 000 generated questions on these three datasets
respectively could outperform training using 1, 000
self-questions. These results indicate that gener-
ated questions offer greater diversity, facilitating
the transferability of the probe across different
test sets, despite the diverse distributions observed
among the three test sets.

4.5 Ablation Studies on Consistency Checking

We investigate the impact of two hyperparameters,
k (the number of responses) and N (the number
of review rounds per response), in the consistency
checking stage.

Figure 2(d) displays the detection performance
on NQ with varying values of k from 1 to 9 with
interval 2 and different values of N (1, 3, 5, 7).
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(a) NQ (b) TriviaQA (c) WebQA (d) N&k on NQ

Figure 2: Effects of question generation and the number of reviews and responses. We assess three question
distributions for factual detection training data: “self questions” (1, 000 questions from the training data within the
same question distribution.), “external questions” (5, 000 questions from a different dataset), and our proposed
approach, “generated questions” (without relying on available questions). Subfigures (a)-(c) demonstrate the
effects of different question distributions on various test sets, while subfigure (d) presents the effects of various k
(the number of responses) and N (the round of reviews per response) on NQ.

Model AUC ACC

first-layer 52.0 53.3
middle-layer 80.4 72.5
last-layer 76.4 70.3

average token 77.1 70.9
last token 80.4 72.5

Table 5: Evaluating probe construction using internal
representations from different layers, either averaged or
using the last token.

It’s worth noting that N = 1 corresponds to the
review strategy in SCGPT. Remarkably, the best
performance is achieved with N = 7, indicating
that multiple inferences from an LLM, each guided
by different demonstrations acting as instructions,
contribute to more robust and confident review out-
comes akin to opinions from multiple reviewers.
The figure also illustrates that the performance ex-
hibits a smooth increase as more responses are used,
also suggesting that multiple responses could result
in more confident consistency checking.

4.6 Ablation Studies on Probe Construction

We investigate feature selection at the probe con-
struction stage, exploring the use of internal repre-
sentations from the last (32nd), middle(16th), and
first layers of Llama2-7B. Additionally, we experi-
ment with averaging representations of all tokens
within a layer or using only the last token. The
default configuration includes the middle-layer rep-
resentation and the last token in a layer. The results,
as depicted in Table 5, indicate that the middle-
layer representation and the last token are optimal
choices within our setting.

5 Related work

Factuality detection for LLM generated content
mainly falls into two categories: consistency-based
and probing-based.

Consistency-based methods detect non-factual
generations by comparing model generated content
with other information. Among these methods, the
most widely adopted assumption is that, LLMs usu-
ally fail to give consistent responses to the same
prompt when generating multiple times (Elazar
et al., 2021; Mündler et al., 2023; Pacchiardi et al.,
2023), thus motivating a series method to detect
non-factual content (Manakul et al., 2023b; Cohen
et al., 2023; Azaria and Mitchell, 2023a) or reduce
non-factual generations (Dhuliawala et al., 2023;
Kuhn et al., 2023). Another thread of works evalu-
ate model self-consistency via model’s confidence
to the generated content (Kadavath et al., 2022;
Azaria and Mitchell, 2023a; Zou et al., 2023). Ex-
cept for self-consistency checking, there are also
attempts that use consistency between model gener-
ated content and external information as factuality
indicator (Wang et al., 2023c; Gao et al., 2023;
Chern et al., 2023).

Probing-based methods possesses the belief that
the hidden representation entails certain property of
generated content and can be extracted via a light
weight model (Alain and Bengio, 2017; Gurnee and
Tegmark, 2023). Probing whether LLMs are pro-
ducing factual content is proved to be feasible (Ka-
davath et al., 2022), thus motivating researchers to
develop more accurate probes (Azaria and Mitchell,
2023a; Zou et al., 2023; Chen et al., 2023). Com-
paring with these works, which rely on annotated
training data, PINOSE provides a method that dis-
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till consistency patterns from LLMs into a probe.

6 Conclusion

This paper presents PINOSE, a probing method for
non-factual content detection that learns from of-
fline consistency checking. PINOSE achieves good
transferability among different distributed datasets
as its does not rely on manually annotated data. It
also avoids the computational burden for online
consistency checking. In the future, PINOSE po-
tentially paves way to build more faithful LLMs.

Limitations

The limitations of this work are as follows: (1)
Data Preparation: PINOSE employs an offline
consistency checking method to automatically gen-
erate factuality labels for training a probe model.
Although the probe model efficiently infers the fac-
tuality label of a response from an LLM in a single
pass, the offline data preparation stage requires
a large amount of data. This involves multiple
inferences of the LLM for generating questions,
responses, and reviews, resulting in high offline
construction costs. Fortunately, as online usage in-
creases, the amortized cost of offline construction
decreases. (2) Open-sourced LLMs: PINOSE

is limited to detecting factuality errors in open-
sourced LLMs because it requires the internal rep-
resentation of the input response along with the
question as features input to the probing model
for detection. (3) Factuality Error: PINOSE is
constrained to detecting the factuality errosr in re-
sponses to questions or statements. Other aspects
of errors, such as logical error, require further in-
vestigation.

Ethical Considerations

We discuss the ethical considerations and broader
impact of this work in this section: (1) Intellectual
Property: The datasets employed in this study,
comprising True-False, NQ, TriviaQA, and WebQ,
are widely accessible and established resources de-
signed to facilitate extensive research in artificial
intelligence and natural language processing (NLP).
We are confident that these resources have been ad-
equately de-identified and anonymized. (2) Data
Annotation: We recruit 10 annotators from com-
mercial data production companies to label factual
accuracy for three QA test sets, seed questions for
question generation, and consistent/inconsistent re-
sponse pairs for consistency checking. Annotators

are compensated fairly based on agreed-upon work-
ing hours and rates. Prior to annotation, annota-
tors are briefed on the data’s processing and usage,
which is formalized in the data production contract.
(3) Intended Use: The proposed PINOSE is uti-
lized for detecting non-factual content generated
by LLMs. (4) Misuse Risks: There is a risk that
PINOSE could be exploited for adversarial learn-
ing, potentially enabling LLMs to generate more
implicit non-factual content that is more challeng-
ing to detect. (5) Potential Risk Control: The
trained PINOSE is made publicly available to the
open-source community, which may help mitigate
the risks associated with its potential misuse for
adversarial learning.
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A.1 Perplexity-based Baseline
The perplexity-based baseline is formulated as:

PPL(AVE) = − 1

J

∑

j

log pij , (2)

PPL(MAX) = max
j

(− log pij), (3)

where i denotes the i-th statement, and j denotes
the j-th token in the i-th statement. J is the number
of tokens in the i-th statement. pij denotes the
probability of the j-th token in the i-th statement
generated by the LLM. PPL(AVE) measures the
average likelihood of all tokens, while PPL(MAX)
measures the likelihood of the least likely token in
the statement.

A.2 Cross-model Evaluation on TriviaQA and
WebQ

We present the cross-model evaluation results on
TriviaQA in Table 6 and on WebQ in Table 7 to ex-
plore whether training data generated by one LLM

#
Data

Preparation
Consistency

Checking
Factuality
detection

AUC ACC

1 Llama2-7B Llama2-7B Llama2-7B 83.9 73.8

2 Llama2-7B Llama2-7B Llama2-13B 83.8 77.0
3 Llama2-7B Llama2-7B mistral-7B 86.8 76.8

4 Llama2-7B Llama2-13B Llama2-13B 83.7 77.1
5 Llama2-7B mistral-7B mistral-7B 86.3 76.9

Table 6: Cross-model evaluation performance on Trivi-
aQA.

#
Data

Preparation
Consistency

Checking
Factuality
detection

AUC ACC

1 Llama2-7B Llama2-7B Llama2-7B 83.3 76.0

2 Llama2-7B Llama2-7B Llama2-13B 83.4 76.3
3 Llama2-7B Llama2-7B mistral-7B 83.1 76.5

4 Llama2-7B Llama2-13B Llama2-13B 83.4 76.4
5 Llama2-7B mistral-7B mistral-7B 83.1 76.6

Table 7: Cross-model evaluation performance on WebQ.

can effectively train a probe to detect the factual-
ity of other LLMs. The settings are the same as
those presented for NQ in Table 4. In addition
to the default setting where we employ the same
LLM for all stages of data preparation, consistency
checking, and factuality detection, we also inves-
tigate two other settings. The first setting involves
using Llama2-7B for data preparation but varying
the detection target to Llama2-13B and Mistral-7B.
The second setting involves further switching the
LLM for consistency checking to Llama2-13B and
Mistral-7B, consistent with the LLM to be detected.

Tables 6 and 7 present observations: for the first
setting, when the detection target is changed to
more powerful LLMs, the detection performance
increases, indicating that more powerful LLMs can
improve detection performance. Additionally, for
the second setting, when changing the LLM for

Figure 3: AUC obtained using the internal representa-
tions of different layers at the probe construction stage.
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consistency checking to the same more powerful
LLMs, the detection performance remains almost
unchanged. This suggests that we can generate
training data for questions, responses, and reviews
once, regardless of the LLMs being probed, and
uniformly employ them to train probes for any
LLMs.

A.3 Evaluation of Different Layers

We vary the internal representations obtained per
layer from the 1st to the last layer (32nd) of Llama2-
7B, use them to construct probes respectively, and
show the evaluated AUC on the three QA test sets
in Figure 3. The results demonstrate that the detec-
tion performance of PINOSE generally increases
and then decreases with the increase in the num-
ber of layers. Typically, the best performance is
achieved at the middle layer.

A.4 Training Dataset Samples

As shown in Table 8, the extensive internal knowl-
edge of Large Language Models (LLMs) enables
them to generate datasets encompassing a broad
array of topics. This diversity enhances the effec-
tiveness of training downstream detectors.

A.5 Employed Prompts

We introduce the prompts used at different steps
of our proposed PINOSE, and also other baseline
methods that need prompts.

Prompt for Question Generation in PINOSE is
shown in Figure 4, where the seed questions are
randomly sampled from an initial set of questions
annotated by humans, which is then expanded by
the newly generated questions.

Prompt for Response Generation in PINOSE is
shown in Figure 5, where five instructions for gener-
ating responses are presented. We randomly select
an instruction from this set each time to encourage
diverse response generation.

Prompt for Consistency Checking in PINOSE
is depicted in Figure 6. It instructs LLMs to de-
termine whether two responses are “Consistent”,
“Neutral”, or “Non-Consistent” given a question.
For each judgment, three demonstrations are ran-
domly selected from a set of 16 consistency judg-
ment pairs. These diverse demonstrations facilitate
the collection of multiple judgments (reviews) for
each comparison between two responses, poten-
tially offering unique perspectives.

Prompt for Probe Construction in PINOSE is
depicted in Figure 7, where a question and the an-
swer generated by the LLM under detection are
organized as input for the LLM to obtain their inter-
nal representation. This representation then serves
as input for the probe to predict its factual label.

Prompt for SelfCheckGPT-Prompt is displayed
in Figure 8, identical to the one presented in (Man-
akul et al., 2023b). SelfCheckGPT-Prompt facili-
tates consistency checking by presenting a sentence
and its context to LLM, enabling it to judge whether
the context adequately supports the sentence.
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Table 8: Sample of LLM Generated Training Dataset

Question Response Label

what composer wrote the music
for the lord of the rings film tril-
ogy?

The music for the Lord of the Rings film tril-
ogy was composed by Howard Shore.

True

when did charles dickens publish
"a christmas carol"?

Charles Dickens published "A Christmas
Carol" in 1843.

True

who sings the song with every
beat of my heart?

Lindsay Lohan sings with every beat of my
heart.

False

what was the peak unemploy-
ment rate during the us great de-
pression?

47.7% in 1933. False

what is the latest operating sys-
tem (os) for apple watch?

The latest operating system for Apple Watch
is watchOS 7.

False

Prompt for Question Generation in PINOSE.

Please ask some objective questions of similar difficulty to [Seed Questions].

### [Seed Questions]
1. which part of earth is covered with water?
2. what is the military equivalent of a gs-14?
3. who provided the voice for the geico insurance company gecko?
4. who played the father in sound of music?
5. fugees killing me softly with his song original?
6.

Figure 4: Prompt for question generation in PINOSE. Five seed questions from NQ are provided and the blank
following item 6 is the new question that encourages LLMs to generate.
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Prompt 1 for Response Generation in PINOSE.

### Question
where is taurus the bull in the night sky
### Answer

Prompt 2 for Response Generation in PINOSE.

### Instruction
Answer the following question.

### Question
where is taurus the bull in the night sky
### Answer

Prompt 3 for Response Generation in PINOSE.

### Instruction
Give a helpful answer.

### Question
where is taurus the bull in the night sky
### Answer

Prompt 4 for Response Generation in PINOSE.

### Instruction
Generate a brief response in just one sentence.

### Question
where is taurus the bull in the night sky
### Answer

Prompt 5 for Response Generation in PINOSE.

### Instruction
Compose a concise answer within a single sentence.

### Question
where is taurus the bull in the night sky
### Answer

Figure 5: Prompt for response generation in PINOSE. Five different instructions are randomly employed to elicit
diverse responses.
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Prompt for Consistency Checking in PINOSE.

Assess the connection between the two responses to the initial query, taking into account the potential scenarios of
Endorsement, Contradiction, and Impartiality.

### Input

- **Question:** where is vina del mar located in chile
- **First Response:** Vina del Mar is located in the Valparaíso Region of Chile, approximately 120 kilometers west of
Santiago.
- **Second Response:** Viña del Mar is a city located on the central coast of Chile. It is part of the Valparaíso Region and
is situated about 120 kilometers (75 miles) northwest of Santiago, the capital of Chile.

### Output
Judgement: Endorsement
@Reason@: The two responses provide consistent information about the location of Viña del Mar in the Valparaíso Region
of Chile, approximately 120 kilometers west/northwest of Santiago. The details in both responses align, endorsing the
accuracy of the information.

### Input

- **Question:** where is taurus the bull in the night sky
- **First Response:** Taurus the Bull is located in the southeastern part of the sky, near the constellation Orion and the
celestial equator.
- **Second Response:** Taurus the Bull is located in the eastern part of the night sky, stretching from the constellation
Orion to the constellation Gemini.

### Output
Judgement: Contradiction
@Reason@: The two responses provide different information regarding the location of Taurus the Bull in the night sky.

### Input

- **Question:** who is the old man in waiting on a woman
- **First Response:** The old man in the waiting room is Mr. Johnson’s father.
- **Second Response:** The old man in the picture is likely the grandfather or great-grandfather of the woman he is
waiting on, as he appears to be elderly and has a gentle expression on his face.

### Output
Judgement: Impartiality
@Reason@: There is no explicit contradiction between the two responses, and they may collectively provide a more
detailed and comprehensive answer to the question. The overall tone is impartial, as the information in the responses is
neither conflicting nor mutually supportive.

### Input

- **Question:** where is vina del mar located in chile
- **First Response:** Vina del Mar is located in the Valparaíso Region of Chile, approximately 120 kilometers west of

Santiago.
- **Second Response:** Viña del Mar is a city located on the central coast of Chile. It is part of the Valparaíso Region

and is situated about 120 kilometers (75 miles) northwest of Santiago, the capital of Chile.

### Output
Judgement:

Figure 6: Prompt for Consistency Checking in PINOSE. Three demonstrations illustrate judgments of endorsement,
contradiction, and impartiality, respectively.
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Prompt for Probe Construction in PINOSE.

### Instruction
Compose a concise answer within a single sentence.

### Question
where is taurus the bull in the night sky

### Answer
Taurus the Bull is located in the southeastern part of the sky, near the constellation Orion and the celestial equator.

Figure 7: Prompt for Probe Construction in PINOSE. The LLM under detection receives the question and its
generated answer to obtain the corresponding internal representation. This representation serves as the input for
training the probe.

Prompt for SelfCheckGPT with Prompt.

Context: Delhi was made the capital of India for the first time by the British East India Company in 1858, when the British
assume control of the Indian subcontinent following the Indian Rebellion of 1857.

Sentence: Delhi was first made the capital of India by the Mughal emperor Shah Jahan in the 17th century.

Is the sentence supported by the context above? Answer Yes or No.

Answer:

Figure 8: Prompt for SelfCheckGPT-Prompt. A sentence and its context are provided to enable LLMs to determine
whether the sentence is supported by the context.
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