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Abstract

We present the structured average intersection-
over-union ratio (STRUCT-IOU), a similarity
metric between constituency parse trees mo-
tivated by the problem of evaluating speech
parsers. STRUCT-IOU enables comparison be-
tween a constituency parse tree (over automati-
cally recognized spoken word boundaries) with
the ground-truth parse (over written words).
To compute the metric, we project the ground-
truth parse tree to the speech domain by forced
alignment, align the projected ground-truth con-
stituents with the predicted ones under certain
structured constraints, and calculate the aver-
age I0oU score across all aligned constituent
pairs. STRUCT-IOU takes word boundaries into
account and overcomes the challenge that the
predicted words and ground truth may not have
perfect one-to-one correspondence. Extending
to the evaluation of text constituency parsing,
we demonstrate that STRUCT-IOU can address
token-mismatch issues, and shows higher tol-
erance to syntactically plausible parses than
PARSEVAL (Black et al., 1991).!

1 Introduction

Automatic constituency parsing of written text
(Marcus et al., 1993, inter alia) and speech tran-
scriptions (Godfrey and Holliman, 1993, inter alia),
as representative tasks of automatic syntactic anal-
ysis, have been widely explored in the past few
decades. Appropriate evaluation metrics have fa-
cilitated the comparison and benchmarking of dif-
ferent approaches: the PARSEVAL F' score (Black
etal., 1991; Sekine and Collins, 1997) has served as
a reliable measure of text parsing across scenarios;
for speech transcription parsing, the SPARSEVAL
(Roark et al., 2006) metric extends PARSEVAL and
accounts for speech recognition errors by allowing
word-level editing with a cost.

"We open-source the code of STRUCT-IOU at https:
//github.com/ExplorerFreda/struct-iou.
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(a) Ground-truth speech parse tree (right), obtained by forced
alignment between the ground-truth text parse tree (left, top)
and the spoken utterance (left, bottom).
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(b) Predicted tree with good word boundaries and an errorful
tree structure (left), or that with errorful word boundaries and
a perfect tree structure (right).

Figure 1: Illustration of how STRUCT-IOU (§§ 4.1
and 4.2) evaluates textless speech constituency parsing.
Best viewed in color, where nodes with the same color
are aligned. Numbers in parentheses are the starting and
ending times of the corresponding spans (in seconds).

Recent work (Lai et al., 2023; Tseng et al., 2023)
has proposed a new task of textless speech con-
stituency parsing. In contrast to earlier work that
parses manually labeled (Charniak and Johnson,
2001, inter alia) or automatic (Kahn and Osten-
dorf, 2012, inter alia) speech transcriptions, these
models construct constituency parse trees over au-
tomatically recognized spoken word boundaries,
where each word is represented with a time range
of the spoken utterance, without using any form of
text. To evaluate these textless models, we need a
metric that compares the predicted tree (over spo-
ken word boundaries) with the manually labeled
ground-truth tree (over written words) and faith-
fully reflects the parsing quality. Since the auto-
matically recognized word boundaries may be im-
perfect, the metric should also reflect the changes
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in parsing quality due to word boundary errors. To
the best of our knowledge, none of the existing
metrics meets these requirements, as they are all
designed to compare parse trees over discrete word
sequences, instead of continuous time ranges.
Motivated by the need for textless speech pars-
ing evaluation, in this paper, we introduce the
structured average intersection-over-union ratio
(STRUCT-10U; Figure 1), a metric that compares
two parse trees over time ranges. We relax the defi-
nition of segment trees (Bentley, 1977) to represent
speech constituency parse trees, where each node
is associated with an interval that represents the
time range of the corresponding spoken word or
constituent. To obtain the “ground-truth” speech
parse trees, we use the forced alignment algorithm
(McAuliffe et al., 2017), a supervised and highly
accurate method that aligns written words to time
ranges of the corresponding spoken utterance, to
project the ground-truth text parses onto the time
domain. STRUCT-I0U is calculated by aligning the
same-label nodes in the predicted and ground-truth
parse trees, following structured constraints that
preserve parent-child relations. The calculation of
STRUCT-IOU can be formulated as an optimization
problem (§4.1) with a polynomial-time solution
(§4.2) in terms of the number of tree nodes.
Although STRUCT-IOU is designed to evaluate
speech parsing, it is also applicable to text pars-
ing evaluation. We analyze STRUCT-IOU for both
purposes: in speech parsing evaluation, STRUCT-
IoU robustly takes into account both the structure
information and word boundaries; in text parsing
evaluation, while maintaining a high correlation
with the PARSEVAL Fy score, STRUCT-IOU shows
a higher tolerance to potential syntactic ambiguity.

2 Related Work

Text constituency parsing and evaluation. In
the past decades, there has been much effort in
building and improving constituency parsing mod-
els (Collins and Koo, 2005; Charniak and Johnson,
2005; McClosky et al., 2006; Durrett and Klein,
2015; Cross and Huang, 2016; Dyer et al., 2016;
Choe and Charniak, 2016; Stern et al., 2017; Kitaev
and Klein, 2018, inter alia). PARSEVAL (Black
etal., 1991) has been the standard evaluation metric
for constituency parsing in most scenarios, which
takes the ground truth and predicted trees and cal-
culates the harmonic mean of precision and recall
of labeled spans. For morphologically rich lan-

guages, TEDEVAL (Tsarfaty et al., 2012) extends
PARSEVAL to accept multiple morphological anal-
yses over sequences of words. A few alternative ap-
proaches have been pursued to address the potential
mismatch in words and sentences (Calder, 1997,
Jo et al., 2024). All these metrics are designed to
evaluate parses over discrete word sequences, and
cannot be easily extended to evaluate speech parses
over continuous time ranges. Although our met-
ric, STRUCT-I0U, is designed to evaluate speech
constituency parsing, it can be easily extended for
text parsing evaluation, reflecting a different aspect
from existing metrics (§5.2).

Speech constituency parsing and its evaluation.
Work on conversational speech parsing has fo-
cused on addressing the unique challenges posed
by speech, including speech recognition errors
(Kahn and Ostendorf, 2012; Marin and Ostendorf,
2014), unclear sentence boundaries (Kahn et al.,
2004), disfluencies (Jamshid Lou and Johnson,
2020; Kahn et al., 2005; Lease and Johnson, 2006),
as well as integrating prosodic features into the
parsing systems (Tran et al., 2018; Tran and Os-
tendorf, 2021). On the evaluation side, the closest
work to ours is SPARSEVAL (Roark et al., 2006),
which extends PARSEVAL to account for speech
recognition errors by allowing for word-level in-
sertion, deletion, and substitution. In contrast, our
metric STRUCT-10U applies to the cases where no
speech recognizer is applied or available.

Other structured evaluation metrics for pars-
ing. There have been evaluation metrics of abstract
meaning representations (AMRs; Cai and Knight,
2013), where two AMR graphs are matched by
solving an NP-complete integer linear program-
ming problem. While our work shares the spirit
with theirs, we focus on the evaluation of speech
constituency parsing over continuous word bound-
aries. There also exists a polynomial-time exact
solution to our optimization problem.

3 Preliminaries

We use real-valued open intervals to represent
speech spans for simplicity, although most of the
following definitions and conclusions can be easily
extended to closed intervals and half-open inter-
vals. Proof of each corollary and proposition can
be found in Appendix A.
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Figure 2: Examples of conflicted and non-conflicted node matchings (Definition 10).

3.1 Open Interval Operations

Definition 1. The length of a real-valued open
interval I = (a,b), where a < b, is |I| = b — a.

Definition 2. The intersection size of open inter-
vals I; and Io is

0 ifLNL=0

) = {\h N L

otherwise.

Definition 3. The union size of open intervals I}
and _[2 is U(Il,fg) = |Il| + ‘Ig’ - I(Il, Ig).

Definition 4. The intersection over union (I0U)
ratio between open intervals I; and I5 is

(1, Iy)

IOU(Il, _[2) - m

Throughout this paper, we will use IoU as the
similarity metric between two intervals.

3.2 Relaxed Segment Trees

We relax the definition of a segment tree (Bentley,
1977) as follows to represent parse trees.

Definition 5. A node n of a relaxed segment tree
is atriple n = (I, Cp, ln,), Where £, refers to the
label of the node, and

1. I, = (Sn, ey, is an open interval (i.e., segment)
associated with the node n, where s,, < €n;

2. C, is a finite set of disjoint children nodes of
n: forany p,q € Cp(p # q), Ip N 15 = 0.
Cy = 0 if and only if n is a terminal node;

3. For a nonterminal node n, s, = mingec,, Sp,
and e,, = maxpec,, €p-

Corollary 5.1. For nodes p,n, if p € Cy,, then

I, C I.

Definition 6. Node p is an ancestor of node q
if there exists a sequence of nodes ng, nq, ...,
ni(k > 1) such that (i.) ng = p, (ii.) ny = q,
and (iii.) for any i € [k],> n; € Cp,_,.

Corollary 6.1. If node p is an ancestor of node q,
then I, O Igq.

2] = {1,2,...,k}, where k € N.

Definition 7. Node p is a descendant of node q if
q is an ancestor of p.

Definition 8. A relaxed segment tree 7 =

(ry, NT) is a tuple, where

1. 7 is the root node of T ;

2. Ny = {r7} U{n : nisadescendant of r7}
is a finite set of all nodes in 7.

Example 8.1. A constituency parse tree over spo-
ken word time ranges (Figure 1a) can be repre-
sented by a relaxed segment tree.

Corollary 8.1. A relaxed segment tree can be
uniquely characterized by its root node.

In the following content, we use 7 (n) to denote
the relaxed segment tree rooted at n.

Proposition 9. For a relaxed segment tree T and
P,q € N, p is neither an ancestor nor a descen-
dant of ¢ & Ip N 1Iq = 0.

4 The STRUCT-IOU Metric

4.1 Problem Formulation

Given relaxed segment trees 71 and 75 with node

INT | N7, |
sets N7y = {n1,;};,_;' and Ny, = {"Q,j}j:f ,
we can align the trees by matching their same-label
nodes. Let ny; <> mo ; denote the matching be-

tween the nodes 11 ; and 1y ;.

Definition 10 (conflicted node matchings; Fig-
ure 2). The matchings ny; <> no; and nqy <
no ¢ are conflicted if any of the following condi-
tions holds:

1. my; is an ancestor of 121 j, and my ; is not an
ancestor of 19 4;

2. my; is not an ancestor of ny x, and no ; is an
ancestor of 1o 4;

3. nq; is a descendant of ny i, and mo ; is not a
descendant of n ¢;

4. ny; is not a descendant of 121 ;, and no ; is a
descendant of 13 4.

Intuitively, we would like the alignment to be con-
sistent with the ancestor-descendant relationship
between nodes.
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The optimal (i.e., maximally IoU-weighted)
structured alignment between 77 and 75 is given
by the solution to the following problem:

Problem 11 (maximally IoU-weighted alignment).

IN7 | [N |
A*:argmjx Z Za”IOU n“,anJ)
=1 j=1
sty aij < 1(Vi € [[Ng])), (1)
J
> aij < 1(¥j € [Nz, @)

7
a5 + Qg ¢ < 1if Ny <> N2 j and Nk <> Moy

are conflicted.

A € {0, 11N XINT| denotes an alignment ma-
trix: a; ; = 1 indicates that the matching n; <>
no ; is selected, otherwise a; ; = 0. The last con-
straint of Problem 11 ensures that there are no con-
flicted matchings selected. Equations (1) and (2)
imply one-to-one matching between nodes; that
is, in a valid tree alignment, each node in 77 can
be matched with at most one node in 73, and vice
versa. The solution to Problem 11 gives the maxi-
mal possible sum of IoU over aligned node pairs.

Definition 12. The structured average IoU
(STRUCT-TOU) between 77 and 75 is given by

10U(T1, T2)

1 INT, | INT, |
H IOU I, .
TRl Ve 2 Z 54100 towss Toas)

where A* = {a; ;} is the solution to Problem 11.

4.2 Solution

We present a polynomial-time algorithm for the
exact solution to Problem 11, by breaking it down
into structured subproblems and solving them re-
cursively with dynamic programming.

We define the subproblem as follows: given re-
laxed segment trees 71 and 72, we would like to
find the maximum 10U weighted alignment of Ty
and 72, where the roots of 77 and 75 are aligned.
Without loss of generality, we assume that the root
nodes of 77 and 73 are both indexed by 1. Formally,
Problem 13 (maximum IOU weighted alignment,
with root nodes aligned).

|NT1| |N7_2|

= max Z Z a; 5 IoU (I’nl,i’InQ,j)

i=1 j=1

17

s.loap = 1;

Zaz‘,j < 1(Vi € [[N7 1)),
J
Zai,j < 1(Vj € [[Ng),

Qi+ age < 1if Ny < Noj andnLk & Noy
are conflicted,

where A € {0, 1}/711¥I72| is the alignment matrix.

While Problems 11 and 13 are not equivalent
in principle, Problem 11 can be reduced to Prob-
lem 13 within O(1) time, by adding a dummy root
node to each tree that associates with segments
covering all the segments in both trees. We now
present a polynomial-time solution to Problem 13.

Definition 14. Given a node n of a relaxed seg-

ment tree, D = (nj,ng,...,nyg) is an ordered

disjoint descendant sequence of n if

1. (ordered) for any i,j € [k] and i < j, sp, <
Sn;» where sy, and s, are left endpoint of the
associated intervals;

2. (disjoint) for any i,j € [k] and i # j, I, N
Inj =0;

3. (descendant) for any i € [k], n; is a descendant
of n.

Corollary 14.1. In an ordered disjoint descen-
dant sequence D = (n1,na,...,nE) of N, en,; <
Sy, forany i € [k —1].

The solution to Problem 13 is given by the fol-
lowing recursion:

fr,7 =1oU (IT‘T 7‘[7’7’2) +
D1 |

D1=IDs |ZfT T O
where r7; and r7; denote the root nodes of 7;
and 7 respectively; | - | denotes the length of
a sequence; Dy = (dLl,dLQ,...,dL‘Dﬂ) and
Dy = (dy1,d22,..., d27|D2|) are same-length or-
dered disjoint descendant sequences of r7; and 7,
respectively. Equation (3) can be computed within
polynomial time, by solving a knapsack-style prob-
lem with dynamic programming. Specifically, let

g[7-1775761762] -

DY
e, 3 Ira

62.)7
DY = \DEQ\ 2
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Algorithm 1 Polynomial time solution to Equation (3)

Input: 71,75
g[T, T2, x,y] < 0,V y
G [T, T2, x,y] = maXy gy <y 9[T1, T2, 2, Y]

d; < the sequence of all descendants of r;, sorted in increasing order of right endpoint
dy < the sequence of all descendants of r7;, sorted in increasing order of right endpoint

fori <« 1...,|d;|do
for j «+ 1...,|dy| do

9T, T2, €dy ;» €dy ;] < max(g[T1, T2, €dy ;5 €dy ;1> FT(dr ) T(do ) + 9 [T15 T2, Sy 15 Sdn ;1)
update ¢" accordingly within O(1) time using bidimensional prefix sum

end for
end for
Output: Equation (3) = ¢[71, 72, ery erTQ]

where e; and eg are arbitrary scalars denot-
ing the constraints of endpoints; Dj' =
(dy, .., dil\Dil ‘) is an ordered disjoint descen-
dant sequence of r7;, where for any j; €
[[D{'[], the right endpoint of the correspond-
ing node e &L < e; similarly, D$?* =
(dg?h dg,z27 e dg?‘DSZ‘)
sequence of 77, of which the right endpoint of
each node does not exceed ez. Algorithm 1 com-
putes g and Equation (3) within polynomial time,
and therefore leads to a polynomial-time solution
to Problem 13.

is a disjoint descendant

Complexity analysis. Suppose |71| = n and
| 72| = m. To compute fr; 7, all we need to com-
pute is g[7{, T3, €}, e5] for all T/, T, €| and €.
Here, 7; and 75 enumerate over all subtrees of 7;
and Tz, respectively, and €] and ¢/, enumerate over
the endpoints of all nodes in both trees, respec-
tively. The update process requires O(1) time for
each 71, 7T, e1, e2. The edge cases, i.e., g values of
terminal nodes, can be directly computed in O(1)
time, and therefore, the overall time complexity to
solve Problem 13 is O(n?m?).

S Experiments

5.1 Speech Constituency Parsing Evaluation

We use the NXT-Switchboard (NXT-SWBD; Cal-
houn et al., 2010) dataset to train and evaluate mod-
els, where the parser can access the forced align-
ment word boundaries in both training and testing
stages. We train an off-the-shelf supervised con-
stituency parsing model for speech transcriptions
(Jamshid Lou and Johnson, 2020) on the training
set of NXT-SWBD, do early-stopping using PAR-
SEVAL F7j on the development set, and perform all

1.0
0.9 2O
0.8 —
07 .
0.6 =
0.85 0.90 0.95 1.00
STRUCT-IOU
Figure 3: STRUCT-IOU vs. PARSEVAL Fj on

NXT-SWBD (Spearman’s correlation p = 0.689, p-
value=1.79 x 10~54). Each dot represents the results of
the base model (F1=85.4 on the full development set)
on 10 random examples from the development set.

the analysis below on the development set. The
model achieves F; = 85.4 and STRUCT-IOU (av-
eraged across sentences)’= 0.954 on the standard
development set.

5.1.1 Comparison with PARSEVAL F

Since the forced alignment word boundaries are ac-
cessible by the models, the PARSEVAL F metric
can be directly calculated between the predicted
speech constituency parse tree and the ground truth.
We compare the values of STRUCT-IOU and PAR-
SEVAL (Sekine and Collins (1997) implementation
with default parameters) in the settings with forced-
alignment word segmentation (Figure 3), and find
a strong correlation between the two metrics.

3Unless otherwise specified, all STRUCT-TOU scores re-
ported in the paper are computed by averaging across STRUCT-
IoU scores of individual sentences. We compare and discuss
sentence-level and corpus-level STRUCT-10U in §5.1.3
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5.1.2 Analysis: STRUCT-IOU with Perturbed
Word Boundaries

In textless speech parsing (Lai et al., 2023; Tseng
et al., 2023), the word boundaries are unknown, and
the boundaries predicted by the parser are usually
imperfect. As a controlled simulation to such set-
tings, we perturb the forced alignment word bound-
aries of the predicted parse tree (Figure 4), and
calculate the STRUCT-IOU score between the per-
turbed parse tree and the ground truth over the origi-
nal forced alignment word boundaries. Specifically,
we suppose the word boundaries of a sentence with
n words are B = by, by, ..., b,,* and consider the
following types of perturbation with a hyperparam-
eter § € [0, 1] controlling the perturbation level:

« Noise-6. We start with B0 = B, and update
the boundaries iteratively as follows. For each
i € [n — 1], we randomly draw a number r;
from the uniform distribution U(—4, ), and let

0 =04 (60 0 whee

sgn(+) : R — {1, —1} denotes the sign function

1 ifz > 0;
(@) =3 <0

)

For all j # i and j € [n], we let bgi remain the

same as bgz_l). Finally, we take B("~1) as the
perturbed word boundaries for the predicted tree.

¢ Insert-6. We randomly draw a number r; from
the uniform distribution for each boundary index
i € [n]. If r; < 0, we insert a word boundary at
the position b}, randomly drawn from the uniform
distribution U (b;_1, b;), breaking the i spoken
word into two (i.e., [b;—1, b] and [V, b;]).

* Delete-§. Similarly to the insertion-based per-
turbation, we randomly draw a number r; from
the uniform distribution U (0, 1) for each bound-
ary index i € [n — 1], and delete the boundary
b; if ; < 6. Since such boundary deletion may
break the predicted tree structure, we use the base
model to re-predict the parse tree with the new
word boundaries, where words concatenated by
space are taken as the textual input (Jamshid Lou
and Johnson, 2020).

A larger d means a higher level of perturbation is
applied, and we therefore expect a lower STRUCT-
IoU score; § = 0 means no perturbation is applied,
and the STRUCT-IOU score is the same as that

“We assume no silence between spoken words; if any inter-
word silence exists, we remove it.

b b b)) by

[si, €i]

(i-1) _ 5.

(a) Noise-§, where s; = b (bﬁi’” - bﬁi}”)

ande; = bV 46 (b(i—n _pliD)

i1 ) denote the most

left and right possible position of bgi).

bi—1 b; b;

(b) Insert-, with r; < J; otherwise b} will not be inserted.

bi—1 b; bi+1

(c) Delete-d, with r; < J; otherwise b; will not be deleted.

Figure 4: Examples of three types of perturbation:
when applicable, the added boundaries are shown in
red and the deleted boundaries are shown in blue. Best
viewed in color.

for the predicted parse trees with forced alignment
word boundaries.

For each § € {0.1,0.2,...,1.0}, starting from
the base model (for deletion-based perturbation) or
its predicted parse trees (for noise and insertion-
based perturbation), we run the perturbation 5 times
and report both the mean and the standard deviation
of the STRUCT-10U result after perturbation.

Results and discussion. We present how the
STRUCT-IOU value changes with respect to ¢ for
different types of perturbation (Figure 5). The
standard deviation is nearly invisible in the figure,
showing that our metric is stable under a specific
setting. For all three types of perturbation, as de-
sired, a larger § leads to a lower STRUCT-IOU
score. Among the perturbation types, STRUCT-
IoU is the most sensitive to deletion, and the least
sensitive to noise-based perturbation. Although
the results are not comparable across perturbation
types in the most rigorous sense, this reflects the
fact that STRUCT-10U, to some extent, is more sen-
sitive to structural change of the trees than simple
word boundary changes.

Although both word boundary insertion and dele-
tion change the predicted tree structures, the former
has less impact on the STRUCT-10U scores. This
also aligns with our expectation: boundary inser-
tion only splits some of the spoken words into two
and keeps the longer constituents; however, dele-
tion may change significantly the tree structure,
especially when it happens at the boundary of two
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Figure 5: STRUCT-IOU scores with respect to ¢ for
different types of perturbations.

long constituents.

5.1.3 Corpus-Level vs. Sentence-Level Metric

Note that 39.7% utterances in the NXT-SWBD de-
velopment set contain only one spoken word, and
the STRUCT-10U score of such sentences is always
high—the metric degenerates to the IoU score
between two intervals. Averaging the STRUCT-
IoU scores across all sentence pairs in the dataset
may therefore overly emphasize these short utter-
ances. To address this, we introduce the corpus-
level STRUCT-I0U score as an alternative, where
Definition 12 is modified as follows:

Definition 15. The corpus-level STRUCT-10U be-
tween two sets of parsed trees D1 = {77} and

Dy = {72} is given by

IOU(Dl, Dg)
P (Tl + | To]) TOU(Tig, Tok)
D
ST+ T

where |D1| = |D2|, and a pair of 77 and T,
denotes the parse trees of the k”* sentence in the
corpus respectively.

We compare the corpus-level and sentence-level
STRUCT-I0OU scores (Figure 6). As desired, the
corpus-level STRUCT-IOU score has lower abso-
lute values than the sentence-level one, and the
difference is more significant when longer sen-
tences are considered. A similar phenomenon has
been found in text constituency parsing (Kim et al.,
2019) as well, where corpus-level PARSEVAL F}
scores are lower than sentence-level ones.

0.99

098 Metric Type

' —— Corpus-Level
% 0.97 Sentence-Level
& 0.96
S,
2 095
[_4

0.94

0.93

0 20 40 60
Length (<)

Figure 6: Corpus-level and sentence-level STRUCT-
IoU scores of the predicted parse trees of the base model
(£} = 85.4 on the development set), evaluated on de-
velopment examples with less than or equal to a certain
number of spoken words.

5.2 Evaluation of English Text Constituency
Parsing

We extend our experiment to the evaluation of text

constituency parsing. In this part, we suppose every

written word corresponds to a unit-length segment—
analogously, this can be considered as speech pars-
ing with evenly distributed word boundaries, for

both predicted and ground-truth trees.

5.2.1 Correlation with PARSEVAL F; Scores
on the Penn Treebank

We use the Penn Treebank (PTB; Marcus et al.,
1993) dataset to train and evaluate Benepar (Ki-
taev and Klein, 2018), a state-of-the-art text con-
stituency parsing model, doing early-stopping us-
ing labeled PARSEVAL F' on the development set.
The base model achieves PARSEVAL F; = 94.4
and STRUCT-I0U (averaged across sentences) =
0.962 on the standard development set.

We compare the STRUCT-10U scores with the
PARSEVAL F} scores on the development set (Fig-
ure 7). As in the speech parsing experiment, we
find a strong correlation between the two metrics,
showing that STRUCT-I0U is consistent with the
existing metric in the text parsing domain.

5.2.2 STRUCT-IOU vs. PARSEVAL I} on
Syntactically Ambiguous Sentences

We consider a special setting of parsing syntac-
tically ambiguous sentences, where the syntacti-
cally plausible parse tree of a sentence may not be
unique (see examples in Figure 8). We simplify the
case shown in Figure 8 using synthetic sentences
with syntactic ambiguity with the template N (P
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Figure 7: Comparison of STRUCT-IOU and PARSE-
VAL F} (Spearman’s rank correlation p = 0.821, p-
value=8.16 x 10~43). Each dot represents the results of
the base model on 10 random examples from the PTB
development set.

N) {n}, where P denotes a preposition and N de-
notes a noun, and n determines how many times
the P N pattern is repeated. For N (P N) {2},
the two potential parse trees are shown in Figure 9.
We compare PARSEVAL and STRUCT-I0U in
the following scenarios, choosing a random syntac-
tically plausible parse tree as the ground truth:

* Ground truth vs. random parse trees, where
the random parse trees are constructed by recur-
sively combining random consecutive words (or
word groups) into a binary tree. We construct
100 random parse trees and report the average.

¢ Ground truth vs. syntactically plausible parse
trees, where we report the lowest possible score
between the ground truth and other syntactically
plausible trees.

As shown in Table 1, the lowest possible PARSE-
VAL F score between the ground truth and another
syntactically plausible tree is significantly lower
than the score achieved by meaningless random
trees; however, STRUCT-10U consistently assigns
higher scores to the syntactically plausible parses,
showing a higher tolerance to syntactic ambiguity.

5.3 Evaluation of Hebrew Text Constituency
Parsing

We extend our experiment to the evaluation of
text constituency parsing on Hebrew, a morpho-
logically rich language that allows different tok-
enizations of the same sentence. In this subsec-
tion, we suppose every written character (instead
of a word for English; §5.2) corresponds to a unit-
length segment. We evaluate STRUCT-IOU by run-
ning a pre-trained Hebrew constituency parsing

NP VP
DT NN VBD NP
TLe gi‘rl sa‘w DT NN PP
L TN
a cat P NP
S wi‘th DT NN
NP/\VP é‘i telesLope
DT NN VBD NP PP
Tl‘le gi‘rl sa‘w DT NN P NP
2‘1 th Wi‘th DT NN

a telescope

Figure 8: An example syntactically ambiguous sen-
tence: The girl saw a cat with a telescope. Both parses
are syntactically valid, but the first one implies that a cat
was holding the telescope, whereas the second implies
the girl was using the telescope.

NP NP
P T
NP PP NP PP
\ PR P N
N P NP NP PP P NP
P \ PN \
NP PP N P NP N
\ N \
N P NP N
\
N

Figure 9: Two syntactically plausible parses of the N
(P N) {2}, where NP denotes a noun phrase, and PP
denotes a prepositional phrase.

model (benepar_he2; Kitaev et al., 2019) on
the SPMRL 2013 Hebrew development set (Seddah
et al., 2013). Similarly to the English text parsing
evaluation result (§5.2), we obtain a high Spear-
man rank correlation coefficient of 0.823 (over 10-
sentence buckets) between STRUCT-IOU (0.959 av-
eraged across sentences) and PARSEVAL F1 scores
measured by EVALB-SPMRL (93.3).

In addition, we demonstrate that STRUCT-IOU
naturally provides a metric that supports mis-
aligned morphological analysis. The default to-
kenization in the SPMRL dataset does not extract
the plural morphemes M and @*; therefore, simply
extracting the plural morphemes forms another ac-
ceptable tokenization strategy (see Figure 10 for an
example). We break the nouns ending with these
two morphemes and feed the new tokenization to
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Metric Ground-Truth vs. Random, Average
PARSEVAL F} 27.3
STRUCT-IOU 61.9
Ground-Truth vs. Plausible, Lowest
PARSEVAL F} 12.5
STRUCT-IOU 63.6
Table 1: Average PARSEVAL F} and STRUCT-IOU

scores between the ground truth and a random binary
tree, and the lowest possible scores between the ground
truth and another syntactically plausible tree. Exper-
iments are done on the string “N (P N) {8}”. For
simplicity, we report the unlabeled scores, where all
nonterminals are treated as having the same label.

the benepar_he2 model.’ The prediction with
our new tokenization receives a STRUCT-1I0U of
0.907 against the ground-truth—as desired, it is
lower than 0.959 with the ground-truth tokeniza-
tion. However, the STRUCT-IOU score remains
high, reflecting the facts that (1) the manipulation
introduces misalignment between parses, and (2)
the Benepar model is fairly robust to such mis-
match on tokenization (see footnote 5). In contrast
to TEDEVAL (Tsarfaty et al., 2012), which treats
all mismatched nodes as errors with the same penal-
ization in the final metric, STRUCT-IOU offers an
alternative approach for evaluating parsing quality
under misaligned morphological analyses, assign-
ing partial credit to aligned same-label nodes with
IoU > 0.

6 Conclusion and Discussion

In this paper, we present STRUCT-I0OU, the first
metric that computes the similarity between two
parse trees over continuous spoken word bound-
aries. STRUCT-IOU enables the evaluation of text-
less speech parsing (Lai et al., 2023; Tseng et al.,
2023), where no text or speech recognizer is used
or available to parse spoken utterances.

In the canonical text and speech parsing settings,
STRUCT-IOU complements the existing evaluation
metrics (Black et al., 1991; Roark et al., 2006; Tsar-
faty et al., 2012). Even for the evaluation of En-
glish constituency parsing, STRUCT-IOU shows a
higher tolerance to potential syntactic ambiguity
under certain scenarios, providing an alternative
interpretation of the parsing quality.

>The benepar_he2 model is not trained on this tok-
enization; however, we expect the model to work reasonably
well, since it uses XLM-R (Conneau et al., 2020) as the word

embeddings, which provides syntactic information of the new
tokenization.

Ground-truth Tree

FRAGQ

——
NP SYN yyQM
T~ ‘
NP yyQM
\ \ \
DTT ?

[ \
R
[

owNe
Predicted Tree

SQ
/\
NP SYN_yyQM
— T \
NP yyQM
\ P \
DTT SYN_NNT NP ?

[ \ \
R BNT

\ \
nxn
\

o

Figure 10: Parse trees of the Hebrew sentence
720120 IR with two possible morphological anal-
yses (STRUCT-IOU = 0.635). The plural morpheme 2°
appears as a separate token in the predicted tree. Best
viewed in color: the aligned nodes are shown in the
same color.

Faithful evaluation of parsing quality is crucial
for developing both speech and text parsing models.
In supervised parsing, it has been common sense
that higher evaluation metric scores (i.e., PARSE-
VAL F1) imply better models. However, the mis-
alignment between linguistically annotated ground
truths and model predictions, especially unsuper-
vised parsing model predictions, does not necessar-
ily indicate poor parsing quality of the models (Shi
et al., 2020)—instead, the models may have learned
different but equally valid structures. Conversely,
annotations made by linguistic experts (such as the
Penn Treebank) may exhibit discrepancies when
compared to the responses of native speakers who
lack formal linguistic training. We suggest that fu-
ture work investigate what properties of the parses
are emphasized by each evaluation metric, and con-
sider multi-dimensional evaluation metrics (Kasai
et al., 2022, inter alia).
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Limitations

STRUCT-I0U is designed to evaluate constituency
parse trees over continuous spoken word bound-
aries, and is not directly applicable to evaluate
other types of parses, such as dependency parse
trees; however, it may be extended to evaluate other

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331-2336, Austin, Texas.
Association for Computational Linguistics.

Michael Collins and Terry Koo. 2005. Discriminative

reranking for natural language parsing. Computa-
tional Linguistics, 31(1):25-70.

types of parse trees by modifying the alignment Alexis Conneau, Kartikay Khandelwal, Naman Goyal,

constraints. We leave the extension of STRUCT-
IoU to other types of parses as future work. We
do not foresee any risk associated with the use of
STRUCT-I0U beyond the inherent minimal risks
encountered in computer science research.
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Appendix

A Proof of Corollaries and Propositions

We present the proof of the corollaries mentioned
in the main content as follows.

Corollary 5.1 For nodes p,n, if p € C,, then
I, C I,.

Proof. According to the definition of open intervals
and Definition 5 (3),

an < ap < bp < by,
:>IP = (ap’bp) g (anabn) = In

O

Corollary 6.1 If node p is an ancestor of node g,
then I, O I.

Proof. According to Definition 6, there exists a
sequence of nodes ng,nq,...,nE(k > 1) such
that (1) ng = p, (2) n = g and (3) forany i € [k],

n; c Cniil.
Corollary 5.1 implies that for any i € [k],
In, 2 In;, = Iny 2 I, = I 2 1. O

Corollary 8.1 A relaxed segment tree can be
uniquely characterized by its root node.

Proof. (=) Definition 8 implies that each relaxed
segment tree has one root node.

(<) Given a specific node n, we have the unique
set ' = {n}u{n’ : n' is a descendant of n}, and
therefore extract the set of all nodes in the relaxed
segment tree rooted at n. 0

Proposition 9 For a relaxed segment tree 7 and
P, q € N7, pis neither an ancestor nor a descen-
dantof ¢ < I, NI = 0.

Proof. (=) Let z denote the least common ances-
tor of p and q. There exists p’,q' € C,(p' # ¢')
such that I,y 2 I, and 14 2 Ig4; therefore

Definition 5 (2
I,NI, ClynI, ™y 1 a1, =9

(<) If I, N I = 0, according to Definition 5 (3)
and Definition 6, p is not an ancestor of g and vice
versa. O

Corollary 14.1 Given an ordered disjoint descen-
dant sequence S = (n1, no, ..., ni) of n, for any
i€ k—1],bn, < nyy,y-
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Proof. 1f there exists i € [k — 1] such that b,, >
an,, > then
Ini N I’ni+1
:(aniv bnz) N (a’ni+1 ) bni+1)
= {2z : max(an,, an,,,) <z < min(bp,,bn,,,)}
={2:an,,, <z <min(by,,bn,,,)}
(Definition 14 (1)).

Since b > @, , (definition of open intervals),

i1

Ungyy <min(bp;, bn,, ) = In, N In,,, #0.

This conflicts with Definition 14 (2). ]
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