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Abstract
This work studies two types of ambiguity in
natural language: prepositional phrase (PP) at-
tachment ambiguity, and garden path construc-
tions. Due to the different nature of these am-
biguities – one being structural, the other in-
cremental in nature – we pretrain and evaluate
the Tree Transformer of Wang et al. (2019),
an unsupervised Transformer model that in-
duces tree representations internally. To as-
sess PP attachment ambiguity we inspect the
model’s induced parse trees against a newly
prepared dataset derived from the PP attach-
ment corpus (Ratnaparkhi et al., 1994). Mea-
suring garden path effects is done by consider-
ing surprisal rates of the underlying language
model on a number of dedicated test suites, fol-
lowing Futrell et al. (2019). For comparison
we evaluate a pretrained supervised BiLSTM-
based model trained on constituency parsing
as sequence labelling (Gómez-Rodríguez and
Vilares, 2018). Results show that the unsu-
pervised Tree Transformer does exhibit garden
path effects, but its parsing ability is far inferior
to the supervised BiLSTM, and it is not as sensi-
tive to lexical cues as other large LSTM models,
suggesting that supervised parsers based on a
pre-Transformer architecture may be the better
choice in the presence of ambiguity.

1 Introduction

One of the core challenges for Natural Language
Understanding (NLU) systems is that they must
advertently deal with ambiguity; depending on the
type of ambiguity, systems may or may not incor-
porate mechanisms for handling ambiguous input.

A typical example of structural ambiguity, i.e.
an ambiguity that is not resolved without external
context, is that of prepositional phrase attachment.
An often used example, with its two possible inter-
pretations, is given below:

(a) I saw the man with the telescope
(b) I saw the man through the telescope
(c) I saw the man that had the telescope

Another form of syntactic ambiguity is given by
garden path effects (Bever, 1970), where a com-
prehender is guided toward a locally plausible but
ultimately incorrect parse, exemplified in

(d) The horse raced past the barn fell.
Here, the reader initially interprets the horse to be
the subject of ‘raced’, only to revise this assump-
tion after reading the final verb ‘fell’.

In this paper, we investigate to what extent
Transformer-based models are sensitive to these
ambiguities.To that end, we rely on the language
modelling and parsing components of a model; the
language modelling component allows for mea-
suring surprisal, and thus measuring the presence
and sensitivity of garden path effects (Futrell et al.,
2019). The parsing component is required in or-
der to measure a model’s capacity to disambiguate
cases of PP attachment. Rather than assessing
whether models can identify ambiguity, we inves-
tigate to what extent models can disambiguate by
means of their parsing components.

Thus, we focus on the Tree Transformer model
(Wang et al., 2019), which adds a constrained at-
tention layer to the base Transformer architecture
to do unsupervised parsing while training on a lan-
guage modelling objective. In doing so, the model
allows us to evaluate the parser as well as the lan-
guage model on the two different evaluation tasks.
For comparison, we evaluate the parsing as se-
quence labelling approach of Gómez-Rodríguez
and Vilares (2018), where a BiLSTM-based lan-
guage model is trained in a supervised fashion. As
an extra baseline, we compare against an end to end
setup with LLM prompting (Tunstall et al., 2023).

In terms of evaluation data, we rely on two
sources: for measuring PP attachment ambiguities,
we modernize the existing prepositional phrase at-
tachment corpus (Ratnaparkhi, 1998), using a stan-
dard BERT language model, to be more naturalistic
and closer to the kind of data our parsers will have
observed during training. Second, for measuring
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garden path effects, we employ existing datasets
from previous work (Futrell et al., 2019).

The results from our comparative evaluation not
only assess the Tree Transformer’s proficiency in
parsing and language modeling but also provide a
deeper understanding of its intrinsic mechanisms
when handling complex grammar structures and
ambiguity. We summarize our main contributions
as follows:

• We convert the PP attachment corpus into nat-
uralistic sentences using BERT.

• We train a Tree Transformer from scratch on
the Penn Treebank, and evaluate it on our
novel data to quantify the Tree Transformer’s
performance.

• We evaluate pre-trained BiLSTM on our novel
data to quantify the model’s performance.

• We quantify the garden path effect size of Tree
Transformer and its sensitivity to subtle lexical
cues, compared with models from other work.

All our code and data is available online.1

2 Background

PP Attachment ambiguity Due to the
widespread presence of prepositional phrase
attachment ambiguity in natural language, it has
garnered significant attention from scholars. In
early research, structure-based methods have
been explored, such as the Right Association
(Kimball, 1973) and Minimal Attachment methods
(FRAZIER, 1978), which despite their popularity
due to simplicity, exhibit notable shortcomings
and perform suboptimally in practical applications.
Additionally, statistics-based methods have been
employed. Hindle and Rooth (1993) introduced
the first corpus-based co-occurrence statistical
method, known as “lexical association". To
address sparsity issues in these methods, Collins
and Brooks (1995) proposed a back-off model and
other work has applied WordNet (Fellbaum, 1998)
classes (Stetina and Nagao, 1997; Toutanova et al.,
2004). However, these methods are limited due
to their specificity, making them cumbersome for
practical applications. Especially in the context of
neural language modelling, the exploration of PP
attachment ambiguity is limited.

Garden Path Effects On the other hand, garden
path effects have been studied in the context of

1https://github.com/L-innnng/
Tree-Transformer-analysis

neural language models: van Schijndel and Linzen
(2018a,b) demonstrate garden path effects in LSTM
models by simulating human reading times. Sur-
prisal theory (Hale, 2001; Levy, 2008) proposed
that observed slowdowns are a result of the unpre-
dictability of each word appearing in a sentence.
Subsequently, the surprisal introduced by grammar-
based language models has been shown to be cor-
related with reading time by Demberg and Keller
(2008). Other work has shown that the surprisal
in RNNs is a powerful predictor of human read-
ing times (Frank and Bod, 2011; Goodkind and
Bicknell, 2018). van Schijndel and Linzen (2018a)
demonstrated the ability of RNNs to make read-
ing time predictions comparable to grammar-based
language models. In addition to validating the sur-
prisal theory across different models, Futrell et al.
(2019) tested multiple LSTMs and RNNG mod-
els to determine if they exhibit the garden path
effect and observed their levels of surprisal in dis-
ambiguating sentences. Their results serve as a
baseline in our work.

(Un)supervised parsing and language models
Much previous research that attempts to incorpo-
rate tree structures into neural networks has focused
on supervised syntactic parsing, relying on anno-
tated parse trees. Through clever encoding of the
parse tree this process can be simplified to sequence
labelling, as proposed by Gómez-Rodríguez and
Vilares (2018) for a BiLSTM-based model.

On the side of unsupervised parsing, researchers
have explored various techniques, hoping that mod-
els could learn latent tree structures from unlabeled
data without explicit syntactic annotations. Among
them, Yogatama et al. (2016) depicted the prob-
lem as a reinforcement learning task. In addition,
there have been attempts based on recurrent neu-
ral networks, such as PRPN (Shen et al., 2017),
On-LSTM (Shen et al., 2018), and Tree-LSTMs
(Tai et al., 2015), an variations like URNNG (Kim
et al., 2019) and DIORA (Drozdov et al., 2019).
More recently, adaptations of the base Transformer
architecture (Vaswani et al., 2017) have been pro-
posed for unsupervised parsing, like Transformer
Grammars (Sartran et al., 2022), and the Tree Trans-
former Wang et al. (2019) which is our focus.

3 Datasets

In our experiments we use four datasets for evalua-
tion, which we discuss in order below.
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Category Word
Verb v provide
Noun n1 services
Preposition p for
Noun n2 customers
Label l V

Table 1: An original example from the prepositional
phrase attachment corpus (Ratnaparkhi et al., 1994).

3.1 Prepositional Phrase Attachment

The prepositional phrase attachment corpus (Ratna-
parkhi et al., 1994) was originally extracted the
from the Penn Treebank (PTB) (Marcus et al.,
1993) and was used to study PP attachment am-
biguity. In this corpus, each example comes as a
quadruple {v, n1, p, n2} and a label l to indicate
the actual attachment of the PP (p, n2), which can
be attached to the noun n1 or the verb v, resulting in
different syntactic structures and meanings. Table
1 displays an example from the original corpus.

Generating naturalistic sentences In order to
have naturalistic example sentences that are still
naturally ambiguous, we convert the examples from
the PP attachment corpus into longer phrases in a
structured way.

We only consider cases from the original corpus
that were extracted from the WSJ-test set, because
for these cases we can be sure that they will not oc-
cur in the PTB train set used for training the parser
later on. We use a pretrained BERT model (Devlin
et al., 2018) 2 on this set to expand the quadru-
ple to 7-tuples {n0, v,m1, n1, p,m2, n2} to form
a complete sentence, leaving the original attach-
ment labels unchanged. This is done as follows.

Prior to using the language model, data cleaning
is necessary. Gerunds or present participle, past
participles, and the verbs like “be" that do not con-
form to the required forms are filtered out. Symbols
and numbers that fail to meet the requirements are
removed. Subsequently, the process of generating
the sentence begins.

We then mask the subject position, i.e. “[MASK]
v n1 p n2", and take the personal pronoun with the
highest score as the subject n0. The following
step is to mask the modifier of noun n1 like “n0

v [MASK] n1 p n2", and the noun, adjective, de-
terminer and possessive pronoun with the highest
score is used as m1. The modifier of the second

2We specifically use Huggingface’s
bert-base-uncased implementation.

noun m2 is obtained in the same way. Throughout
this process we use the POS tagger from NLTK to
identify words of the correct type. As a result we
generate 1424 sentences used for evaluation. An ex-
ample conversion of the item example in Table 1 is
They provide various services for their customers.

3.2 Garden Path Effects

In order to investigate models’ sensitivity to garden
path effects, we rely on three datasets introduced by
Futrell et al. (2019): Main-verb/Reduced-relative
(MV/RR), NP/Z (Overt Object) and NP/Z (Verb
Transitivity).

MV/RR Ambiguity This dataset contains 28 ex-
amples where each example consists of 4 sentences.
The first verb of the sentences is ambiguous. It can
be considered both as the main verb of the sentence
and as a word introducing a reduced relative clause.
This ambiguity can persist for an extensive stretch
of the following context until the disambiguator
appears:

(1) a. The women brought the sandwich from
the kitchen fell in the dining room

b. The women given the sandwich from the
kitchen fell in the dining room

c. The women who was brought the sand-
wich from the kitchen fell in the dining
room

d. The women who was given the sandwich
from the kitchen fell in the dining room

In sentence 1a, the verb “brought" is initially
analyzed as part of the main verb phrase, but upon
the appearance of the disambiguator “fell", read-
ers’ comprehension is severely disrupted and the
verb “brought" had to be reanalyzed as part of a
relative clause. In contrast, the garden path effect
theoretically should be reduced in sentences like
1b. Compared to “gave", “given" is more explicit,
indicating that it should not be the main verb of
the sentence. Furthermore, the garden path effect
should be eliminated in sentences 1c, where the
presence of the words “who was" makes it clear to
the reader.

NP/Z Ambiguity This ambiguity arises from a
noun phrase which can act as either the direct ob-
ject of the main verb in the subordinate clause or
as the subject of the main clause. There are two
datasets with a similar configuration using overt
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objects and intransitive verbs to disambiguate, re-
spectively. Additionally, using a comma to mark
the end of a clause makes the sentence easier at the
disambiguator. Both of them contains 24 examples,
each with 4 sentences.

Overt Object As shown in sentence 2a, prior to
encountering “burst", “shot" is naturally interpreted
as a transitive verb with “the woman" as its direct
object. However, upon the appearance of “burst",
readers realize that “shot" should be considered as
an intransitive verb with “the woman" as the sub-
ject of the main clause. In sentence 2b, introducing
the explicit object “the gun" to the transitive verb
effectively reduces or eliminates the ambiguity be-
fore the disambiguator appears.

(2) a. As the gangster shot the woman burst
into hysterics

b. As the gangster shot his gun the woman
burst into hysterics

c. As the gangster shot, the woman burst
into hysterics

d. As the gangster shot his gun, the woman
burst into hysterics

Verb Transitivity As shown in sentence 3b, it
replaces the transitive verb “shot" with the intransi-
tive verb “laughed" to reduce the garden path effect
by making readers believe that “the women" is not
its object. However, this lexical information about
syntactic structure is so subtle that it is not known
whether humans are as sensitive to it as theory.

(3) a. As the gangster shot the woman burst
into hysterics

b. As the gangster laughed the woman
burst into hysterics

c. As the gangster shot, the woman burst
into hysterics

d. As the gangster laughed, the woman
burst into hysterics

4 Experimental set-up

4.1 Tree Transformer Model
For training and validation of the Tree Transformer
we use the standard splits of the Penn Treebank:
sections 2 to 21 for training (WSJ-train) and 23 for
testing (WSJ-test). Our trained model is a faith-
ful replication of the model by Wang et al. (2019)
except for differences in the preprocessing of the
training set. Where Wang et al. (2019) simplified

Figure 1: A constituency parse tree with its span repre-
sentations.

the training data to being composed of words with
certain POS tags, we require punctuation to be in-
cluded in the training data and so we retain it during
training.

As for validation, following the evaluation set-
ting established in prior research, the performance
of the Tree Transformer is assessed by calculat-
ing F1 scores on the WSJ-test, which is processed
in the same way as WSJ-train. We report macro-
average F1 score over all the predicted trees against
the ground-truth parse trees in the WSJ-test set,
using unlabeled bracketing representations. For
illustration, we provide the parse tree and brack-
eted span representation for a converted sentence
in Figure 1.

4.2 BiLSTM Model
In order to study the difference between the
Tree Transformer and a supervised parser, we
include the pretrained BiLSTM model, i.e.
BILSTMΦ

′

m=2,e,ch, from Gómez-Rodríguez and
Vilares (2018) to make additional comparison. This
model utilizes NCRFpp, a sequence labeling frame-
work grounded on bidirectional short-term mem-
ory networks (Yang and Zhang, 2018). It has been
trained over the original WSJ-train. For compari-
son with Tree Transformer, the preprocessed WSJ-
test is used in the test process. The predicted se-
quence labels will be decoded into a parse tree,
which will then be converted into span representa-
tion to calculate F1 score in the same way as for
the Tree Transformer.

4.3 LLM prompting
For a comparison against generative models, we
include a prompting baseline with Zephyr 7B β
(Tunstall et al., 2023). The prompt forces the model
to predict verb or noun attachment, following the
prompt included in the Appendix.
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(a) Noun Attachment (binary) (b) Verb Attachment (binary) (c) Noun Attachment (ternary) (d) Verb Attachment (ternary)

Figure 2: Two binary ground-truth parse trees where the PP attaches to the noun (a) or to the verb (b), and two
ternary ground-truth parse trees where the PP attaches to the noun (c) or to the verb (d).

4.4 Parsing PP Attachment
We consider two binary ground-truth parse trees for
PP attachment, depending on whether the preposi-
tional phrase attaches to the noun (Figure 2(a)) or
to the verb (Figure 2(b)). For the BiLSTM model,
the generated parsing tree is not necessarily a bi-
nary tree, thus we allow for ternary ground-truth
parse trees as well (Figure 2(c) and 2(d)).

We calculate classification accuracy by consid-
ering whether the model returns a parse tree that
either corresponds to the ground-truth tree, or is
incomplete but still has attached the prepositional
phrase to the noun or to the verb in a subtree. In the
next section we give a more in-depth analysis of
the different cases the models produced, as well as
a breakdown of accuracy with respect to different
verbs and prepositions.

4.5 Measuring Garden Path Effects
Similar to the previous work by Futrell et al. (2019),
we investigate the behavior of the Tree Transformer
and to what extent it reflects incremental representa-
tions of syntactic states. This is done by calculating
surprisal of a word wi as its inverse log-probability
given a prior hidden state hi−1 of the model:

S(wi) = − log p(wi | hi−1)

The measure of the garden path effect, for an
example like sentence 1 can be quantified by sub-
tracting the surprisal at the disambiguator in sen-
tence 1c from the surprisal at the disambiguator in
1a and offsetting against the same difference in the
anticipated less surprising case of 1b minus 1d.

We calculate both differences, and compare them
with the garden path effects of LSTMs and RNNG
in the study by Futrell et al. (2019) on datasets
MV/RR as well as NP/Z (verb transitivity).

5 Results

We initially validate the retrained Tree Transformer
model and the pretrained BiLSTM model on the

WSJ-test data, giving the F1 scores in Table 2.

Model F1-score

Tree Transformer, L=10 49.7
BiLSTM 75.8

Table 2: The F1 scores of Tree Transformer with 10
layers and pre-trained BiLSTM tested on WSJ-test.

The F1 score of the Tree Transformer model is
aligned with the results reported by Wang et al.
(2019), as we stick close to their original setting
for preprocessing the data and computing F1 score.
However, for the pretrained BiLSTM model, the F1
score deviates from the score reported by Gómez-
Rodríguez and Vilares (2018) (90.6). This is due
to few factors: first, they calculate the F1 score
directly from the predicted labels, rather than the
reconstructed span representation. Second, they
use the micro- instead of macro-average F1 score.
Third, the preprocessing of the data is different.

5.1 PP Attachment Results
Given that the PP attachment experiment evaluates
parser performance, we first conduct an error anal-
ysis on the parse trees produced by the models,
before analyzing the classification results.

Parsing error analysis An overview of the types
of parse structures produced by the two models is
given in Table 3.

For the Tree Transformer, close to 80% of cases
are fully correct parses. In cases of incomplete (Par-
tial) parse trees, we could still include 13 out of
14 cases where an attachment preference is clearly
present. These cases, as well as the cases where
no attachment decision could be made, are further
detailed in Figure 3. We classify the remainder as
‘Incorrect’ in our accuracy results, with the main
source of error the incapability of the parser to rec-
ognize the prepositional phrase (19.52% of cases).

For the BiLSTM model there are significantly
fewer parsing errors, with a total of just 13 out of
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(a) Noun attachment (b) Verb attachment (c) Undecidable attachment (d) Undecidable attachment

Figure 3: Partial parse trees produced by the Tree Transformer model.

Tree Transformer BiLSTM
Parse Structure Count Perc. Count Perc.

Correct parse 1120 78.65% 1406 98.74%
PP not found 278 19.52% 2 0.14%
Partial parse 14 0.98% 5 0.35%
Other incorrect 12 0.84% 11 0.77%

Table 3: Different parse structures from the Tree Trans-
former model and the BiLSTM model, with their abso-
lute and relative frequency. We include correct parses,
partial parses with decidable attachments in our result.
The remaining cases are considered incorrect in the clas-
sification results.

1424. There are only 2 cases where the preposi-
tional phrase is not found, significantly lower than
for the Tree Transformer. Again we find cases
where the model provides an incomplete parse
structure in which nevertheless the PP attachment
can still be determined. These partial parse trees
are given in Figure 4 having a total of 5 cases.

Classification results We display the two mod-
els’ accuracy in Table 4, offset against the LLM
baseline. As already shines through in the parsing

Model Accuracy

Tree Transformer 47.2%
BiLSTM 79.4%
Zephyr 62.5%

Table 4: Accuracy on pp attachment sentences for Tree
Transformer and BiLSTM models.

error analysis, we observe significant performance
differences between the Tree Transformer model
and the BiLSTM model. The fact that the latter
model achieves an accuracy of 79.4% may be at-
tributed to its supervised learning approach, where
the high cost of training leads to substantial returns.

A further breakdown of model performance is
given in the confusion matrix in Table 5. While the
number of prepositions attached to nouns (868) is

(a) Verb attachment

(b) Noun attachment

Figure 4: Partial parse trees produced by the BiLSTM
model.

Tree Transf. Prediction
V N Incorr. rec.

G
ol

d V 299 104 153 54%
N 357 373 138 43%
pr. 46% 78%

BiLSTMpad

G
ol

d V 442 110 4 79%
N 171 688 9 79%
pr. 72% 86%

Zephyrpad

G
ol

d V 53 503 0 10%
N 31 837 0 96%
pr. 63% 62%

Table 5: Confusion matrix for the attachment accuracy
on PP attachment sentences for the Tree Transformer
and BiLSTM models.

higher than that attached to verbs (556) in the data,
the Tree Transformer tends to attach prepositional
phrases to verbs (656) rather than nouns (477). Its
ability to determine the PP attachment to nouns
is particularly weak, and there is a significant gap
compared to the gold standard attachments. Ad-
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(a) Data

(b) Tree Transformer

(c) BiLSTM

Figure 5: The proportions of noun attachment, verb
attachments or neither/incorrect for the 20 most frequent
prepositions in our dataset (a), by Tree Transformer (b)
and BiLSTM (c), ordered by overall frequency.

ditionally, the number of attachments where the
attachment decision is neither a noun nor a verb is
not negligible, contributing significantly to the low
accuracy. This also indicates that the Tree Trans-
former is not highly sensitive to the attachment of
prepositional phrases.

However, while the BiLSTM model also tends
to attach prepositional phrases to verbs, this ten-
dency is much less pronounced compared to the
Tree Transformer. As shown in Table 5, the num-
ber of instances where BiLSTM attaches the pp
to a verb is 613, which is higher than the actual
attachment count of 556 in the dataset. Conversely,
BiLSTM attaches prepositional phrases to nouns
798 times, which is lower than the actual attach-
ment count of 868. Furthermore, the number of
attachments that are neither nouns nor verbs is only
13, significantly lower than 291 that the Tree Trans-
former possesses.

As for a comparison against the LLM prompt-
ing, we observe a large imbalance with the LLM
deciding on noun attachment in most of the cases,
leading to low accuracy.

Linguistic Analysis To investigate this imbal-
ance in attachment decisions, we conducted an
analysis of the parsing results combined with the
distribution of verbs and prepositions in the sen-
tences. This analysis aims to explore whether spe-
cific verbs or prepositions contribute to the attach-
ment decision.

(a) Data

(b) Tree Transformer

(c) BiLSTM

Figure 6: The proportions of noun attachment, verb
attachments or neither/incorrect for the 20 most frequent
verbs in our dataset (a), by Tree Transformer (b) and
BiLSTM (c), ordered by overall frequency.

Figure 5 illustrates the distribution of attachment
decisions by preposition, in both the data and the
model output. Figure 5(a) illustrates the prefer-
ence in the dataset, with prepositions ‘of’, ‘about’,
‘between’ and ‘than’ expectedly having a strong
preference to attach to the noun. Figure 5(b) shows
that Tree Transformer has a proportion trend that
is roughly consistent with the data, albeit being
skewed towards verb attachment. The prepositions
‘than’ and ‘over’ deviate, with the model having no
preference for noun over verb attachment for ‘than’
even though verb attachment barely occurs in the
dataset for this preposition; conversely for ‘over’
we find a relatively equal proportion of attachment
choice, whereas the model always chooses verb
attachment.

Figure 5(c) displays the same distribution for
the BiLSTM model, indicating that the parsing re-
sults are closer to the distribution of the original
dataset in terms of different prepositions. However,
for certain prepositions, the distribution trend be-
comes more polarized. The BiLSTM model prefers
noun attachment more than proportionate in the
dataset for the prepositions ‘of’, ‘for’, ‘about’, ‘be-
tween’ and ‘than’, whereas it disproportionately
prefers verb attachment for the prepositions ‘dur-
ing’ and ‘through’. Overall, BiLSTM exhibits a
more pronounced attachment tendency difference
in the prepositional dimension compared to Tree
Transformer.

We present the same proportions but broken
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(a) Tree Transformer

(b) BiLSTM

Figure 7: Evaluation metrics (precision, recall and F1
score) for different types of verbs when attachment de-
cision is noun (N) or verb (V).

down by choice of verb in Figure 6. In the dataset
(Figure 6(a)) we find that inflections of the func-
tional verbs ‘be’ and ‘have’ generally have a higher
preference for noun attachment than notional verbs.
This difference tends to become more pronounced
in the models’ predictions: the Tree Transformer
(Figure 6(b)) tends to choose noun attachment for
functional verbs, and verb attachment for notional
verbs, whereas BiLSTM (Figure 6(c)) displays a
similar trend, albeit less extreme.

Given this observed dichotomy, we compute sep-
arate precision/recall/F1 scores for the aggregate
functional verbs and aggregate notional verbs, dis-
played in Figure 7. The scores in the figure confirm
worse performance in the case of functional verbs,
indicating the sensitivity of the models to lexical
cues in their decision-making.

5.2 Garden Path Effect Results

We combined Figure 8 and 9 to give a comparative
analysis of the performance of each model in the
garden path effect. Figure 8(a) depicts the magni-
tude of the garden path effect generated by Tree
Transformer and verb form ambiguity. Figure 9(a)
illustrates the garden path effect size by four mod-
els and verb form ambiguity directly taken from
Futrell et al. (2019). Upon comparison, it is evi-
dent that Tree Transformer, like the other models,
exhibits a fundamental garden path effect. The gar-
den path effect in Tree Transformer is similar to
that of TinyLSTM, but considerably smaller than
in the other models. Additionally, if the model uses

the morphological form of the verb as a cue for syn-
tactic structure, instances where the verb has not
changed to a passive participle form should exhibit
a stronger garden path effect compared to situations
where the change has already occurred. This is ev-
ident in the figures, where the red bars are higher
than the green ones. Tree Transformer, along with
two large LSTMs and RNNG, displays this pattern.
Despite demonstrating crucial human-like garden
path effect disambiguation due to the verb form am-
biguity, it is noteworthy that significant garden path
effect still persist in these models, even when the
verb form is unambiguous like passive-participial
verb. Regarding TinyLSTM, it does not exhibit
sensitivity to ambiguous verb forms and reduced
relative clauses.

Figures 8(b) and 9(b) respectively illustrate the
garden path effect sizes generated by Tree Trans-
former and four other models along with those of
verb transitivity. Similarly, we observe the pres-
ence of the garden path effect in all models. Al-
though smaller in Tree Transformer, even markedly
smaller than in the two large LSTMs, it is higher
than in TinyLSTM. As for the sensitivity, only the
large LSTMs seem to be sensitive to the transitivity
of embedded verbs, showing smaller garden path
effects for intransitive verbs. Tree Transformer
demonstrates sensitivity just below them, but no-
ticeably higher than RNNG and TinyLSTM.

Figure 8(c) shows the garden path effect sizes
generated by Tree Transformer and presence of
an object. In comparison with Figure 8(b), it can
be observed that Tree Transformer is much more
sensitive to the presence or absence of an object
than lexical cues such as verb transitivity.

6 Conclusion

In this work, we prepared a novel prepositional
phrase attachment ambiguity dataset, suitable for
evaluating modern parsers on their capacity to rec-
ognize such ambiguities. We evaluated the Tree
Transformer model, which combines an unsuper-
vised parsing objective with masked language mod-
elling. As such, we could evaluate both on prepo-
sitional phrase attachment ambiguity by analyz-
ing the induced parse trees, as well as compare
with prior work on measuring garden path effects
through language model surprisal rate (Futrell et al.,
2019).

In order to align with the datasets for our experi-
ment, we trained a Tree Transformer from scratch
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(a) MV/RR (b) NP/Z(verb transitivity) (c) NP/Z(overt object)

Figure 8: Average garden path effect size by Tree Transformer and disambiguation lexical clues on (a) MV/RR
dataset; (b) NP/Z (verb transitivity) dataset; (c) NP/Z (overt object) dataset. Error bars depict 95% confidence
intervals computed based on the standard error of the surprisals after subtracting out the mean surprisal (Masson
and Loftus, 2003).

(a) MV/RR

(b) NP/Z(verb transitivity)

Figure 9: Figures are the original ones taken from the
paper of Futrell et al. (2019). Average garden path
effect by 4 models and disambiguation lexical clues on
(a) MV/RR dataset; (b) NP/Z (verb transitivity) dataset.

and compared its performance with a supervised
BiLSTM-based parser trained on constituent pars-
ing as sequence labelling (Gómez-Rodríguez and
Vilares, 2018).

Our study reveals that the Tree Transformer
model performs suboptimal in disambiguating PP
attachments at the sentence level, and less effective
than the BiLSTM-based model. Primary factors are
its poor ability to identify prepositional phrases and
a tendency to attach prepositional phrases to verbs.
We argue that this is likely to be caused by Tree
Transformer’s unsupervised nature. Additionally,
the Tree Transformer demonstrates garden path ef-
fects across multiple datasets and exhibits varying
sensitivity to different subtle lexical cues, generally
being more sensitive to the presence of an object
than to specific verb form. Overall, the evalua-
tion suggests that an unsupervised model like Tree
Transformer may be the lesser choice compared
to a supervised model based on a pre-Transformer
architecture, when it comes to natural language
ambiguities.

7 Limitations

There is still room for improvement, and many
related aspects warrant further investigation. For
example, enriching the diversity and quantity of pp
attachment sentences can enhance the depth of eval-
uation, and the accuracy of results. Improving Tree
Transformer’s ability to correctly identify preposi-
tional phrase structures is essential for increased
accuracy. Additionally, training Tree Transformer
on larger datasets could be attempted to explore
differences in performance of garden path effect
compared to large LSTMs.
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A Appendix

Given a sentence containing a prepositional phrase
attachment ambiguity, the task is to indicate whether
the prepositional phrase attaches to the main verb in
the sentence, or to the main noun.
——
Sentence: He saw the person with the binoculars.
Attachment: Verb
Sentence: They understand the cost of living.
Attachment: Noun
Sentence: He saw the person with the binoculars.
Attachment: Noun
Sentence: I drove home with my bike.
Attachment: Verb
Sentence: We prepare a dinner for the family.
Attachment: [FILL]

Figure 10: The prompt we use to have the LLM pre-
dict verb or noun attachment. [FILL] indicates the gen-
eration of the model which is constrained to the two
possible labels.
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