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Abstract

Explanations for AI should aid human users,
yet this ultimate goal remains under-explored.
This paper aims to bridge this gap by inves-
tigating the specific explanatory needs of hu-
man users in the context of Knowledge Graph
Completion (KGC) systems. In contrast to the
prevailing approaches that primarily focus on
mathematical theories, we recognize the poten-
tial limitations of explanations that may end up
being overly complex or nonsensical for users.
Through in-depth user interviews, we gain valu-
able insights into the types of KGC explana-
tions users seek. Building upon these insights,
we introduce GradPath,1 a novel path-based
explanation method designed to meet human-
centric explainability constraints and enhance
plausibility. Additionally, GradPath harnesses
the gradients of the trained KGC model to
maintain a certain level of faithfulness. We
verify the effectiveness of GradPath through
well-designed human-centric evaluations. The
results confirm that our method provides expla-
nations that users consider more plausible than
previous ones.

1 Introduction

Explainability is an essential requirement of AI,
especially in high-risk areas, such as healthcare,
which directly influence the life and health of hu-
mans. Only if users understand why an AI system
arrives at a particular result can they trust the pre-
diction and engage with the AI-driven system. This
makes eXplainable AI (XAI) an essential ingredi-
ent for the adoption of AI in high-risk areas (Han
and Liu, 2022; Chaddad et al., 2023). However,
most existing XAI approaches aim to learn algo-
rithmic explanations, which are supported by math-
ematical theories (like other ML methods), but are

*Research work conducted during internship at NEC Lab-
oratories Europe.

1More information is available at: https://github.com/
nec-research/gradpath.

Figure 1: Explain a predicted triple (in red) with the
top 5 most influential training triples (in blue), learned
by Gradient Rollback (Lawrence et al., 2021). The
algorithmic explanations are not plausible for users.

often difficult for users to understand, especially for
users without an AI background. Not only do such
implausible explanations not improve user trust in
AI, in a contrary manner, they amplify users’ doubt
and hesitation.

With this concern, we focus to improve plausibil-
ity of explanations, which refers to how convincing
explanations are for human users (Jacovi and Gold-
berg, 2020). For the prediction task with knowl-
edge graph data, a.k.a. Knowledge Graph Comple-
tion (KGC), the concept of plausibility is especially
tricky, because non-expert users are not familiar
with graph structures and the existing explanation
methods do not aim to generate graph explanations
in a human understandable manner (Betz et al.,
2022; Lawrence et al., 2021; Pezeshkpour et al.,
2019).

Fig. 1 illustrates the challenge with a KGC pre-
diction (in red) and its explanations (in blue) gener-
ated by Gradient Rollback (GR) (Lawrence et al.,
2021). In particular, the predicted triple (Angela,
is_sister_of, Marco) is explained with the top 5
most influential training triples that are selected as
per gradients of the learned KGC model. Although
the provided explanations are faithful subject to a
bound on the approximation error (Lawrence et al.,
2021), it is difficult for users to understand. For
example, how can the training triple (Charlotte,
is_sister_of, Colin) explain the prediction? It is not
plausible for users.

To better understand what kind of explanations
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would be more plausible for users in the context of
KGC, we started with a series of interviews. We
provided users with predicted triples and GR-based
explanations and interviewed them to understand
their opinions about the explanations. This inves-
tigation led to an insightful finding: Interviewees
remarked that the explanations linked to a path are
the most plausible, see e.g. Fig. 2 (a). Here we
learned that Angela is indeed the sister of Marco
because Angela is the daughter of Pierre whereas
Marco is the son of Pierre, therefore, explaining
the prediction plausibly. The explanations are no
longer scattered; instead, they form a connection
between the entities in the predicted triples. This
allows users to link them for reasoning.

Building upon this insight, we introduce Grad-
Path, a novel method for generating human-centric
explanations to enhance plausibility. The path
based explanations intend to establish reasoning
loops akin to human reasoning. Technically, the
existence of the explanation path can increase the
likelihood of the predicted triple, compared with
the scenario wherein the path does not exist. To
approximate the probabilities, GradPath utilizes
gradients collected by GR during training, which
ensures a certain level of faithfulness of the gen-
erated explanations. These explanation paths can
vary in length, as illustrated in Fig. 2.

Evaluating plausibility is also challenging, as it
inherently relies on human perception (Lyu et al.,
2024; Wood-Doughty et al., 2021). There is not
yet a standard way in the literature to evaluate
plausibility of explanations (see also Appendix
A.1). To draw solid conclusion for plausibility,
we investigate diverse aspects of a human evalua-
tion study, and introduce a comprehensive human-
centric evaluation framework. We utilize human-
understandable benchmark data and quantify plau-
sibility with different metrics. The human evalua-
tions validate that GradPath produces more plausi-
ble explanations for users in comparison to previ-
ous XAI KGC methods. The major contributions
of the paper can be summarized as follows:
• We propose a novel method GradPath to improve

plausibility of post-hoc explanations for KGC by
extracting explanation paths.

• We suggest a human-centric evaluation frame-
work to evaluate plausibility. It investigates di-
verse aspects of a human evaluation study for
comprehensive assessment of plausibility.

• Experiments on the benchmark datasets demon-

(a) score = 0.2891 (b) score = 0.2497

Figure 2: Explanations (in blue) learned with GradPath
for a predicted triple (in red): (a) explanation path of
length ℓ = 2, and (b) length ℓ = 3. The path based ex-
planations are more plausible for human users because
they create a connection between the entities in the pre-
dicted triple.

strate the proposed method is more plausible than
previous ones.

2 Background and Notation

Assume a knowledge graph G, consisting of entities
and relation types. Two entities and a relation are
combined to form a triple in the format (subject,
relation, object), shortened as t = (s, r, o). The
subject and object are entities that can be visualized
as the nodes of the graph G, while the relation
specifies a labeled link from the subject entity to
the object one.

Typically knowledge graphs are incomplete.
Therefore, Knowledge Graph Completion (KGC)
is the task of predicting unknown triples in the
knowledge graph. For this, two parts of a triple
are given to a prediction system and the third is in-
ferred. For example, t∗ = (s∗, r∗, ?) would predict
the object given the particular subject and relation.

We consider differential KGC methods, such as
DistMult (Yang et al., 2015) and Complex (Trouil-
lon et al., 2016). They learn embedding vectors
xe for each entity e and xr for each relation type
r. Given the vectors, the likelihood of a triple is
defined via a score function ϕ(xs, xr, xo). During
training, the vectors are optimized, such that the
likelihood of a training triple is larger than that of a
randomly sampled unknown triple. These methods
can often well predict an object o∗ for a test triple
t∗ = (s∗, r∗, ?), but they are black boxes without
explanations for users’ trust.

The task of our work is to explain why the KGC
model trained on the graph G arrives at a particular
prediction. Existing work achieved this by focus-
ing on purely mathematical aspects. For instance,
Criage (Pezeshkpour et al., 2019) utilized influence
functions, and Gradient Rollback (Lawrence et al.,
2021) tracked gradients during training to produce
explanations.
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In contrast to previous work, which focused on
algorithmic faithfulness, we place our focus on
the human factor: extending algorithmic XAI to
also respect human needs and produce explanations
that are plausible for users. With this, we aim
to combine the best of both worlds and therefore
move KGCs closer to real-world applications with
human-centric explanations to facilitate trust.

3 GradPath: Generate Plausible
Explanations for KGC

We propose the method GradPath to learn human-
centric explanations for KGC methods, such that
the explanations are plausible for human users, and
facilitate them to assess whether the KGC predic-
tions are reasonable or not.

3.1 Initial Human-Centric Survey
We started with an initial survey to assess what
individuals think about KGC predictions and ex-
planations learned with the recent XAI method GR.
We first used the dataset Kinship (Hinton, 1990),
which is about familial relations and easy for testers
to understand. We asked three testers2 to assess
whether they think the kinship predictions are true
or false based on the explanations. We further in-
terviewed them by the following questions: What
will be a helpful explanation? Why do you think
an explanation is helpful? Next, we repeated the
interview using real-world user preference data col-
lected from a recommender system.3 We inter-
viewed two testers4 with the same questions. Upon
the collected feedback, we concluded the following
two significant findings.

First, the interviews revealed that the testers of-
ten searched for “paths” that link the nodes of the
predicted triple to the nodes of explanations. See
for example the “triangle” explanation in Fig. 2(a),
where two triples as the explanations can connect
the two nodes of the predictions with another node
in a triangle relationship. In situations where expla-
nations do not connect to the predicted triples (e.g.,

2The testers have a good ML background but did not know
this particular task.

3The data is about user preferences regarding the products
of a company. It consists of the attributes of the products and
users, alongside information of user preferences for specific
products. We transformed the data into a knowledge graph.
Due to user privacy and commercial confidentiality of the
company providing the dataset, we are unable to publicly
disclose the dataset.

4The two interviewees are the engineers of the recommen-
dation system. They are closely familiar with the end users
and possess a strong understanding of users needs.

the scattered explanations in Fig. 1), the testers
considered the explanations nonsensical.

Second, the testers often found a small set of
explanations plausible (2-3) and remarked that a
large number of explanations (e.g., > 10) create
confusion.

3.2 Defining Path-based Explanations
Inspired by the findings from the interviews, we
suggest extracting influential paths as explanations
for a prediction, where the paths connect the two
entities of the prediction. The explanation paths
intend to emulate the sequential reasoning process
humans use to deduce over a knowledge graph,
therefore making the resulting explanations more
human-centric, namely more plausible for humans.
Formally, we define:

Definition 1. An explanation is an influential path
of length ℓ, denoted as γ = {t1, . . . , tℓ | tj ∈ G},
with the constraints:

1. All tj are selected from training triples;

2. There is a joint entity between two adjacent
triples tj and tj+1;

3. The subject s∗ and object o∗ of the test triple
are entities of the start triple t1 and the end
triple tℓ, respectively;

4. Sequentially, existence of each current triple
has the potential to increase the likelihood of
the subsequent triple;

5. Ultimately, at the end of the path, the predic-
tive probability of the test triple is improved
when compared with the scenario wherein the
path of triples does not exist.

Thus, an influential path is a series of training
triples that connect the subject and object entities
of the predicted triple and make the predicted triple
more likely. Such influential paths are the explana-
tions that the testers searched for in our initial inter-
views, thereby motivating the concept of influential
paths from a human point of view. Technically,
we look for a path that increases the likelihood of
the predicted triple, compared with the scenario
wherein the path does not exist and therefore de-
creases the likelihood of the predicted triple. Fig. 3
illustrates the key idea. Note that the influential
paths are not supposed to be directed. Regardless
of the direction of a triple, it provides the testers
with the information for reasoning. For instance,
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Figure 3: GradPath: (a) G′ ≡ G \ γ in which the path γ is removed from G; (b) the likelihood of the subsequent
triple increases if the current triple exists; (c) at the end of the path, the predictive probability of the test triple
t∗ = (s∗, r∗, o∗) will be improved if the entire path exists.

the paths in Fig. 2 are not directed yet plausible.
The testers can follow the path-based explanations
to understand how a KGC method arrives at a pre-
diction, and to judge the prediction by comparing
the predictive procedure of KGC with the mental
models in their minds.

3.3 Generating Path-based Explanations
Based on the formulation above, we now turn to
how the influential paths can be generated. The
paths that satisfy the constraints 1-3 can be readily
computed with arbitrary graph traversal algorithms,
such as Depth-First Search (DFS) and Breadth-
First Search (BFS). However, the computation of
the constraints 4 and 5 is tricky. Mathematically,
they can be written as

p(tj+1|G′∪{tj , . . . , t1}) > p(tj+1|G′), (1)

p(t∗|G) > p(t∗|G′), (2)

where G′ ≡ G \ γ denotes the rest of G in which
the path γ is removed, p(tj+1|G′ ∪ {tj , . . . , t1})
is the predictive probability of the next triple tj+1

given G′ and the triples preceding tj+1 in the path
γ. The other terms in (1) and (2) are defined in a
similar manner. Intuitively, each term computes the
probability of a triple (the predicted triple t∗ or a
triple that is part of the path γ) under the simulation
of what if certain triples from the path γ had not
been part of G during training. We consider both
the influence of the path γ on the predictive triple
t∗ (Constraint 5, Eq. (2)), and the influence of other
triples on the next one (Constraint 4, Eq. (1)).

As the conditions of each prediction is different
(i.e. DFS/BFS returns different paths), the probabil-
ity needs to be computed for each prediction and ex-
planation path individually. To be fully faithful, we
would have to retrain a new KGC model for each
‘what if ’ analysis. But the computational cost for
this is prohibitively expensive. To address the prob-
lem, we introduce an approximate approach, which

is based on gradients of training triples (Lawrence
et al., 2021). In our work, we take a step further to
identity influential paths, instead of single training
triples, for a test triple. Concretely, we approximate
the ’what if ’ analysis as follows.

First we train the differentiable KGC model with
entire training triples G, and during training em-
ploy GR to compute changes of embedding vectors
caused by each training triple. Formally, a triple
t = (s, r, o) causes a change in the embedding
vector xs of its subject, which is approximated by

δ(xs|t) =
∑N

i=1
ηi∇xsLi(t), (3)

where i denotes the i’th training iteration, and ηi
is the learning rate. Li(t) specifies the loss of the
triple t at the i’th iteration, while ∇xsLi(t) means
the derivative of the loss over xs. The changes
δ(xr|t) and δ(xo|t) of the object and relation em-
bedding vectors xo and xr are computed in an
equivalent manner. The approximation error of
the approach has been linked to stability theory
(Hardt et al., 2016) and bound by Lawrence et al.
(2021).

Second, given the influence of each training
triple t, we can now approximate what would hap-
pen if a path had been removed from the training
data without retraining the model. By removing
the influence of an explanation path, we can simu-
late the probability of any triple that we would
have had if the triple had not been part of the
training data. Based on this, we can approximate
the terms of Eqs. (1) and (2). In particular, for
the predictive probability p(tj+1|G′) of the triple
tj+1 = (sj+1, rj+1, oj+1), we approximate the
new embedding vectors x̄sj+1 and x̄oj+1 condi-
tioned on the training set G′ ≡ G \ γ by

x̄sj+1 = xsj+1 + δ(xsj+1 |tj) (4)

x̄oj+1 = xoj+1 + δ(xoj+1 |tj+2) (5)
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and the vector of the relation rj+1 is updated by

x̄rj+1 = xrj+1 +
∑ℓ

i=1 δ(xri |ti)1(rj+1 = ri), (6)

where the indicator function 1(x = y) is one if
the condition x = y is true and zero otherwise.
Intuitively, this means that we update subject sj+1

by removing the influence of the connected triple
tj (analogous for the object oj+1). The relation
rj+1 is updated only if the same relation appears
again in the explanation path.

After the influence of the path has been
updated, the predictive probability p(tj+1|G′)
can be computed with the score function
ϕ(x̄sj+1 , x̄rj+1 , x̄oj+1) of the KGC method. The
other predictive probabilities in Eqs. (1) and (2)
can be calculated in a similar manner.

Finally, putting the constraints 4 and 5 together,
we score an explanation path γ for a test triple t∗:

1

L

[∑L

j=2
p(tj |G′ ∪ {tj−1, . . . , t1}) + p(t∗|G)

−
∑L

j=2
p(tj |G′)− p(t∗|G′)

]
. (7)

The score function (7) measures the importance of
the candidate paths between the subject and object
of the test triple t∗, and identifies the ones which
most likely increase the likelihood of t∗ as expla-
nation paths.5 Our method generates path-based
explanations using predictive probabilities of the
involved triples. Along the path, the existence of
each current triple has the potential to increase the
likelihood of the next triple. When the entire path
exists, the likelihood of the test triple is ultimately
improved.6

3.4 Faithfulness vs. Plausibility

Faithfulness and plausibility represent two pivotal
principles in XAI. Faithfulness demands explana-
tions accurately reflect the model’s reasoning pro-
cess, while plausibility necessitates alignment with
human reasoning. Our GradPath method aims to
find a balance between faithfulness and plausibility.

On one hand, GradPath leverages the gradi-
ents of training triples to identify influential paths.
These gradients, collected during training using

5Particularly it is the explanation path where its removal
during the ‘what if’ analysis caused the largest drop in likeli-
hood of t∗ we want to explain - i.e. the explanation path had
the largest contribution to raising the likelihood of t∗.

6If the new likelihood is instead lowered, then the explana-
tion path could be served as an ‘anti-explanation’.

GR (Lawrence et al., 2021), reflect the true reason-
ing process of KGC models, thereby guaranteeing
some level of faithfulness in the explanations. On
the other hand, GradPath’s path-based explanations
are designed to mimic human reasoning over a
knowledge graph, enhancing plausibility compared
to explanations based solely on individual training
triples (see Fig. 2 vs. Fig. 1). It is worth noting
that this improved plausibility may come with a
potential reduction in faithfulness.

The reason is as follows: Given the computa-
tional complexity of generating influential paths
(see Sec. 3.3 for details), approximations are uti-
lized. While these approximations stem from GR,
the bounds of GR’s approximation errors do not
inherently apply to GradPath. GradPath removes
a sequence of training triples around the predicted
one, which may alter the embedding space of the
predicted entities due to potentially accumulated
approximation errors. We acknowledge the po-
tential decrease in faithfulness, prioritizing expla-
nations that are plausible for human users while
maintaining a certain level of faithfulness.

4 Evaluation of Plausibility

GradPath is designed to improve plausibility of
explanations, which necessarily leads to a question:
How do we evaluate plausibility? To address this,
we present a human-centric evaluation framework
to assess plausibility in a rigorous manner.

Plausibility refers to how convincing explana-
tions are for users (Jacovi and Goldberg, 2020).
In analogy to, for instance, accuracy in classifica-
tion, there is lack of solid and deterministic ground
truth to automatically compute a single score as
a measurement of plausibility. The measurement
of plausibility is intrinsically based on human per-
ception. Thus, we design a comprehensive human
evaluation study to quantify plausibility.

4.1 Purpose Factor

In the human evaluation of XAI, a commonly used
method is human simulatability, which measures
the extent to which explanations can assist users in
predicting the output of the model (Yin and Neubig,
2022; Hase and Bansal, 2020; Lage et al., 2019;
Doshi-Velez and Kim, 2017). However, human
simulatability is an artificial construct and does not
gauge the actual use cases of explanations, such
as what a user would do with an explanation in a
real-world setting.
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Here, we aim to shift the focus to the purpose fac-
tor of human users with XAI, which is the specific
objective why explanations are needed by users.
Imagine that a doctor interacts with an AI-driven
diagnosis system. The doctor wants to know if
an AI prediction is true or false, such that she can
use it for her task of prescribing treatments for a
patient. Therefore the role of the explanations is
to help the doctor to solve her question: Is the
AI-driven prediction correct? If the explanations
match the mental model of the doctor and/or the
doctor can easily follow the logical reasoning of the
explanations, then she likely trusts the prediction.
Considering this ultimate goal, evaluations where
humans simulate AI behavior do not align with the
intended purpose of the users.

We therefore investigate in the human evaluation:
Can testers assess correctness of predicted triples
with help of explanations? In particular, we ask the
following questions to each tester:

• Is the predicted triple correct? (Two scales,
see below)

• How confident is the assessment? (Scale: 5
point Likert)

• Is an explanation helpful? (Scale: yes and no)
For the first question, we employ two distinct scales.
The first scale comprises three options: yes, no, and
not-sure, used for in-house evaluations conducted
by testers possessing a ML background or with ac-
cess to support in case of queries. The second scale
offers a more detailed range of 5 options (shown
in Fig. 4), used for crowdsourcing evaluations to
mitigate potential misunderstanding. The testers’
feedback about the question is processed as follows.
If a tester’s judgement coincide with the ground
truth then the feedback is recorded as 1 otherwise
0. For the feedback of not-sure, it is recorded as 0.

The suggested human evaluation method is re-
lated to the decision-making-based approach, such
as the one proposed by Alufaisan et al. (2021), but
differs slightly. While the decision-making-based
evaluation focuses on the success of human users
in making correct predictions based on explana-
tions, our method shifts to a more purpose-driven
evaluation. It asks testers to judge the correctness
of predictions by comparing the explanations with
their prior knowledge and reasoning.

4.2 Human-Related Concerns
Human evaluation collects subjective ratings from
individual testers to assess the plausibility of the
explanations. To have reliable feedback, the fol-

Figure 4: The online evaluation platform developed to
collect feedback from testers regarding the explanations.
(1) Displays the prediction. (2) Shows the explanations
and prompts testers to evaluate their helpfulness. (3)
Visualizes the prediction and explanations in a graph
format for easier comprehension. (4) Asks testers to
assess the correctness of the prediction and their con-
fidence in it (refer to Appendix A.5 and A.6 for more
information).

lowing concerns need to be addressed (Hase and
Bansal, 2020; Gajos and Mamykina, 2022).

Balance: Predictions are balanced. Namely, the
correctly and erroneously predicted triples should
be of similar number, and randomly ordered, such
that testers cannot simply guess their correctness.

Diversity: Testers may remember information
or knowledge of previous test triples, which means
the earlier predictive triples judged by a tester may
influence their judgment on later ones. Thus, we
propose that the predictions should be distinct from
each other.

Furthermore, confounders need to be investi-
gated, which are other factors potentially influenc-
ing user feedback besides the XAI method itself.
In addition, human-understandability of bench-
mark data used in an evaluation is also essential.
The details are reported in Appendix A.3 and A.4.

4.3 Quantification of Plausibility
To quantify the plausibility of explanations, we
suggest the following metrics, based on Zhou et al.
(2021) and interviews with testers in the initial
survey:

• Accuracy rate of assessment
• Number of helpful explanations for a triple
• Time cost for a tester to assess a prediction
• Confidence level of assessment

These metrics are abbreviated as Acc, helpExpl,
Time, and Confidence, respectively, in the experi-
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ments. The accuracy rate metric appears to be a
good measure of plausibility since it is based on
well-defined ground truth (the correctness of predic-
tions). This metric could be less influenced by the
diversity of testers (e.g., fast/slow thinking modes).
The empirical analysis in Sec. 5 also demonstrates
its effectiveness.

Regarding the metric number of helpful explana-
tions,7 there are two divergent opinions. On one
side, more explanations may not be necessary if a
single explanation explicitly explains a prediction.
On the other side, more explanations are always
beneficial as predictions can be explained from dif-
ferent perspectives, and users have different needs
and interests. There would not be one single perfect
explanation that satisfies everyone. We believe that
combining this metric with others can provide more
insights. For example, together with the accuracy
rate of assessment, we can demonstrate if more
explanations may improve users’ assessments.

Another disputable metric is the time cost of
assessment. Ideally, testers use less time for as-
sessment if explanations are plausible. However,
in practice, we found after interviewing the testers
that they often skip a prediction when the expla-
nations (e.g., the explanation in Fig. 1) are mean-
ingless. Conversely, only when the explanations
(e.g., Fig. 2) appear reasonable do they explore
them carefully. Therefore, both too little and too
much time can indicate bad explanations, whereas
good explanations occupy the space in between.

To assess whether the observed differences in
feedback are genuine or merely due to random vari-
ation, we employ the non-parametric significance
test Brunner-Munzel (Brunner and Munzel, 2000).
This test is preferred over the commonly used t-
test, as it does not assume normality of the data
(see Appendix A.2 for further discussion).

5 Experiment Settings and Results

Following the human-centric evaluation frame-
work outlined in Sec. 4, we investigated plausi-
bility of GradPath with two human-understandable
benchmark datasets: Kinship (Hinton, 1990) and
CoDEx (Safavi and Koutra, 2020) (see details of
the datasets in Appendix A.4). An online evalu-
ation platform was developed to collect feedback
from testers, as illustrated in Fig. 4. We conducted

7The metric number of helpful explanations (shortened
as helpExpl) is collected based on the tester’s answer to the
question, “Is an explanation helpful?” Fig. 4 illustrates how
the evaluation platform collects feedback from the testers.

a comparison between our human-centric method
GradPath and the algorithmic explanation method
Gradient Rollback (GR) (Lawrence et al., 2021)
to investigate whether GradPath can offer more
plausible explanations.

5.1 Experiment Settings
Kinship. We first utilized the kinship dataset (Hin-
ton, 1990) because of its easy human understand-
ability. Although the dataset is small in size, it
presents key challenges found in commonly used
knowledge graphs, such as multiple relations and
1:n relations between entities. We employed Com-
plex (Trouillon et al., 2016) as the knowledge graph
completion (KGC) method to be explained due to
its popularity and strong performance. The param-
eters were set as follows: embedding dimension
is 10, learning rate is 0.001, number of negative
samples is 13, batch size is 1, epochs is 100, and
optimizer is Adam. Gradient Rollback (GR) pre-
sented the top 5 important training triples as expla-
nations. Our method utilized the top-1 path-based
explanation (ranked by our score), where a path is
of length less than four. Five-fold cross-validation
was employed to compute predictions and explana-
tions for all triples. We invited 30 coworkers8 for
in-house evaluation and received feedback from 23
of them. In addition, we recruited 105 lay testers9

via Amazon Mechanical Turk (AMT) for crowd-
sourcing evaluation. The details of the settings are
discussed in Appendix A.6 and A.7. For the ques-
tion “Is the predicted triple correct?” we utilized a
scale of 3 options for the in-house evaluation and a
scale of 5 options for the crowdsourcing evaluation,
as detailed in Sec. 4.1.

We conducted both in-house and crowdsourc-
ing evaluations for the following benefits: (1) The
coworkers intended to be well-engaged, provid-
ing high-quality feedback and can be further in-
terviewed for detailed comments. (2) The crowd-
sourcing evaluation helped us obtain feedback from
general users without a background in ML. The
results shed light on their understanding of expla-
nations. (3) By comparing the two evaluations, we
could investigate the influence of tester diversity
and explore the reliability of the metrics.

CoDEx. We further evaluated GradPath with
CoDEx (Safavi and Koutra, 2020), which is a more
complex and recent KGC dataset extracted from

8They have a good background in machine learning, but
are not familiar with XAI and know nothing about our work.

9Each tester is an individual without ML background.
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Figure 5: Human evaluation results of the Kinship data
with in-house testers possessing a good ML background
(top) and crowdsourced lay testers (bottom). GradPath
provided more plausible explanations in both cases for
testers to assess the correctness of the predictions.

Wikidata and Wikipedia. We employed DistMult
(Yang et al., 2015) as another popular and effec-
tive KGC method to be explained. The parame-
ters were set as follows: embedding dimension is
1024, learning rate is exponential decay with an
initial value of 0.3, number of negative samples is
20, batch size is 1, epochs is 500, and optimizer
is Adam. GR reported the top 10 training triples
as explanations. Our method selected the top N
paths as explanations, where N varied dynamically
to ensure that the cumulative number of training
triples is not larger than 10. Here, we followed
Miller’s law, which suggests that people can absorb
at most 9 pieces of information (Miller, 1956). We
recruited 105 lay testers via Amazon Mechanical
Turk (AMT) (details in Appendix A.6). More infor-
mation about the settings of the human evaluation
can be found in Appendix A.8.

5.2 Results with Kinship Data

Fig. 5 presented the Kinship results regarding the
metrics defined in Sec. 4.3. GradPath outperformed
GR in all four metrics in both in-house and crowd-
sourcing evaluations. The in-house evaluation re-
vealed GradPath provided more plausible explana-
tions (helpExpl: 1.64 vs. 0.55), allowing testers to
more accurately assess the correctness of predic-
tions (Acc: 83% vs. 35%).10 The crowdsourcing
AMT evaluation reported similar trends. Interest-
ingly, the in-house testers used less time than the
crowdsourced lay testers. It might be because of
good ML background of the in-house testers. The
two human evaluations demonstrated that Grad-
Path prioritizes user needs in its design, resulting

10To gain further insights into the plausibility of the gener-
ated explanations, we analyzed testers’ assessments in more
details (see Appendix A.9).

Figure 6: Human evaluation results of the CoDEx data
with crowdsourced lay testers. GradPath provided more
plausible explanations for testers to assess the correct-
ness of the predictions.

in explanations that are more plausible for users to
assess the correctness of the predicted triples.

To demonstrate the observed differences are sta-
tistically significant and not due to chance, we con-
ducted the Brunner-Munzel (BM) test and reported
the results in Table 1. Overall, the differences be-
tween GradPath and GR were significant in both
in-house and crowdsourcing evaluations. The p-
values for the metrics Acc, time, and helpExpl were
much lower than the threshold α = 0.05 in both
evaluations, revealing strong statistical significance
of the differences between GradPath and GR.

The results also indicated that the testers were
confident, with a confidence metric of 1.71 for GR
and 1.77 for GradPath (the upper bound being 2),
showing no significant differences (p-values above
0.4). Upon analyzing the testers’ responses, we
observed that they primarily evaluated predictions
when confident in their assessments; otherwise,
they responded with “not sure” to the question “Is
the predicted triple correct?”

5.3 Results with CoDEx Data

The results for CoDEx are reported in Fig. 6. Again,
GradPath provided more plausible explanations
for testers to assess the correctness of the predic-
tions. With the path-based explanations generated
by GradPath, the testers can judge the correctness
of the predicted triples more accurately (58.0%
vs. 44.7%) with less time (11.79 vs. 14.6 sec.)

To investigate the significance of the observed
differences, the results of the BM test are reported
in Table 1. The p-values 0.0000 for Acc and 0.0391
for helpExpl showed strong statistical significance
of the differences between GradPath and GR. The
metric Time is not statistically significant for this
dataset, which could be due to the more complex
nature of the dataset.

The significance test also revealed that the metric
Acc, i.e. Accuracy rate of users assessing the cor-
rectness of predictions, can be a good measurement
for human evaluation of plausibility. As discussed
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helpExpl Acc Confidence Time
Kinship
In-House

0.0000 0.0000 0.4346 0.0000

Kinship
AMT

0.0299 0.0121 0.4335 0.0007

CoDEx
AMT

0.0391 0.0000 0.9189 0.1648

Table 1: P-values of the BM test: the smaller the value,
the more significant the difference between the human
feedback on the two explanation methods.

in Sec. 4.3, the metric Acc is based on well-defined
ground truth, correctness of predictions, and thus
can be more resistant against the diversity of the
testers (e.g. fast or slow thinking mode). Moreover,
the experimental results also show the metric con-
fidence might not be a good measurement in the
current question design. As there is an option of
“not sure” for the question of “Is the predicted triple
correct?”, the testers intended to assess when they
are confident of the answer. For future studies, we
would recommend excluding the “not sure” option.

Overall, the human evaluation results lead us
to conclude that GradPath can help testers more
accurately assess the correctness of predictions.

6 Conclusion

Explanations for AI should be plausible for hu-
mans. To this end, we propose a novel explanation
method, GradPath, to improve plausibility for KGC.
Moreover, a comprehensive human-centric evalu-
ation framework is introduced to evaluate plausi-
bility reliably. We evaluate our GradPath method
with three human evaluations using two benchmark
datasets. The evaluation results confirm that Grad-
Path indeed provides more plausible explanations
than previous methods. One future direction can
be to collect a new KGC dataset with the goal of
exploring XAI KGC for users, as we realize in the
human evaluations that datasets should exhibit a
high level of human understandability to enable
meaningful human evaluations, which is an area
where existing KGC datasets may have limitations
(see Sec. 7 and Appendix A.4).

7 Limitations

Explanation methods involve a trade-off between
faithfulness and plausibility. Faithfulness refers to
the degree to which an explanation method truly
represents the reasoning process of an AI model.
Plausibility considers how well a human user can
understand and use an explanation. There is a nat-

ural trade-off because a fully faithful explanation
is not human-understandable (e.g., providing the
weights and architecture of a neural network as an
explanation is fully faithful, but humans cannot un-
derstand it). Here, we specifically focus on increas-
ing plausibility. Therefore, our method may lose
some faithfulness compared to other KGC explana-
tion methods. Users of our method for real-world
applications should be aware of this and determine
whether this is an acceptable trade-off based on the
given use case.

In our current human evaluation studies, we
have employed two benchmark datasets to assess
the performance of the proposed method. We ac-
knowledge the importance of experimenting with a
broader range of datasets. However, our research
questions impose conditions on the suitability of
these datasets. Specifically, KGC benchmarks used
in human evaluations need to be understandable to
humans. Without this attribute, testers are unable
to effectively assess predictions and explanations,
which unfortunately excludes the majority of cur-
rently available KGC benchmarks. The two critical
criteria that need to be fulfilled are: (1) Entities
and relations must be readily understandable to hu-
mans. If the entities or relations are only numerical
values or lack a concise definition, humans cannot
judge whether a prediction is correct or an expla-
nation is meaningful. (2) Relations among entities
should allow human testers to engage in logical de-
ductions, facilitating reasoning. For example, the
relation types within the Kinship dataset include
strong logical connections, enabling testers to in-
fer kinship between entities based on the provided
training triples. Without such logical connections,
there might not be any suitable explanation that is
understandable to humans for that particular knowl-
edge graph. Based on these criteria, our review
of popular benchmarks revealed only two suitable
KGC benchmarks, both of which we employed in
this study. To generalize our results, it would be
important to extend our evaluation to additional
human-centric KGC benchmarks.

8 Ethics Statement

In light of the limitations mentioned above, users
of our explanation method should be aware that the
method may not be fully faithful due to approxima-
tions, especially when the explanation path is long.
Therefore, a per-use-case estimation is required to
determine if the approximation is acceptable. All
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interactions with human testers and data usage com-
ply with the General Data Protection Regulation
(GDPR) of the European Union.
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A Appendix

A.1 Discussion of Faithfulness and
Plausibility

The XAI community has introduced and explored
desired properties of explanations for AI. For
example, Lage et al. (2019) introduced human-
interpretability. Jacovi and Goldberg (2020) high-
lighted faithfulness. (Sokol and Flach, 2020) sug-
gested fact sheets to characterise XAI systems.
Phillips et al. (2021) proposed XAI principles, in-
cluding accuracy, meaningfulness and knowledge
limits. Although there is not yet a consensus regard-
ing the desired properties of XAI, the two aspects,
faithfulness and plausibility, have attracted signifi-
cant attention in the literature. Faithfulness refers
to how accurately explanations reflect a model’s
prediction process (Ribeiro et al., 2016; Jacovi and
Goldberg, 2020). Plausibility is how convincing
explanations are for human users (Jacovi and Gold-
berg, 2020).

From the descriptions, it is clear that faithfulness
demands correct reflection of the model’s reason-
ing process, while plausibility needs to align with
human reasoning. Faithfulness does not guarantee
plausibility, and vice versa (Lyu et al., 2024; Ja-
covi and Goldberg, 2020). Especially, when the
model’s reasoning process deviates from human’s,
XAI approaches must navigate a trade-off between
faithfulness and plausibility.

A.2 Significance Testing for Human
Evaluation

Given that human evaluations often recruit a lim-
ited number of testers for each setting due to high
costs, it becomes imperative to use significance
testing to demonstrate that observed differences
attribute to fixed effects rather than random vari-
ations. The commonly used significance tests in-
clude the t-test and its variants, the Wilcoxon test,
the Mann-Whitney U test, and the Brunner-Munzel
test (Hogg et al., 2015; Brunner and Munzel, 2000).
When choosing statistical tests for human feedback
data, it is crucial to consider the limitations and
assumptions inherent in these tests to derive robust
conclusions. For instance, the assumption of nor-
mally distributed data is standard in various t-tests,
but this assumption may not hold in Likert scale

data. Additionally, the two-sample independent
t-test assumes equal population variances, whereas
Welch’s t-test does not require such equality. There-
fore, it is essential to evaluate the applicability of
testing methods to ensure the significance of ob-
served differences in the data. We selected the
Brunner-Munzel test in our experiments because it
does not assume normality or equal population vari-
ances, making it robust and applicable to a broader
range of conditions.

A.3 Confounders
Besides the XAI methods themselves, other factors
can potentially influence human evaluation. First,
the engagement of testers will impact the evalu-
ation. Some testers may be highly engaged and
think slowly, while others might not exhibit the
same level of attentiveness. During experiments,
we found that checkpoint questions are an effective
way to identify well-engaged testers, particularly
when using crowdsourcing platforms like Amazon
Mechanical Turk (AMT).

Moreover, the engagement level of a tester
changes over time and often gradually decreases.
Therefore, it is important to limit the number of
predictions in the evaluation to maintain high tester
engagement.

Additionally, some predictions and explanations
can be more challenging, requiring testers to take
more time for assessment. To minimize deviations
caused by varying difficulty levels of predictions,
all testers should evaluate a similar set of predic-
tions in a similar order.

A.4 Human-Understandability of KGC
Benchmark Data

The KGC benchmark data used in human evalua-
tions must be understandable to testers. Otherwise,
they would have no means to assess predictions
and explanations. Additionally, testers recruited
for human evaluations are often laypeople, not pro-
fessionals in a particular field. Therefore, plain
datasets without domain-specific knowledge (such
as biology, chemistry, or healthcare) are preferred.

Unfortunately, many publicly available KGC
datasets are not designed for human understanding.
All datasets that we believe human understandable
can be found in Table 2. Here, our focus primarily
lies in ensuring that lay testers can understand the
triples. However, after experimental analysis with
the Kinship and CoDEx datasets, we realized that
merely understanding individual triples is insuffi-
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Dataset Description Entities Relations Triples Example Triples

Kinship
Relations among family
members

24 12 112
(Charlotte, niece, Arthur)

(Christopher, father, Victoria)

Countries
Geographical relations of
countries

271 2 1,159
(western_africa, locatedin,
africa) (slovakia, neighbor,

austria)

Movie-
Lens

User-movies networks 2625 5 100,000
(User757, 3, Transformers)
(User943, 1, Star Trek IV:

The Voyage Home)

CoDEx Relations from wiki 2034 42 36543
(David Evans, instrument,

guitar) (Gustav Struve,
citizenship, Germany)

YAGO3-
10

Person relations from wiki 123,143 37 1,089,040
(Glencore, isLocatedIn,
Rotterdam) (Ambareesh,

isPoliticianOf, India)

Table 2: Datasets with human understandable triples for human evaluation of explainable KGC.

cient. Datasets should exhibit a high level of hu-
man understandability to enable meaningful human
evaluations. To advance explainable KGC research,
it is imperative to curate new KGC datasets in a
human-centric manner (see also Sec. 7).

A.5 Human-centric Online Evaluation
Platform

Following the human evaluation study outlined in
Sec. 4, we developed an online system to evaluate
XAI KGCs in a human centric manner. Our sys-
tem considers the real needs and interests of human
users in collaboration with AI, enabling us to inves-
tigate the following questions: can testers assess
the correctness of a KGC prediction based on its
explanations? Which explanations are helpful for
testers? Fig. 4 illustrates how the evaluation plat-
form collects feedback from testers. Our system
works as an online website and can easily collabo-
rate with crowdsourcing platforms such as AMT to
recruit testers and distribute evaluation tasks.

A.6 Crowdworkers for Human Evaluation

To get feedback from general users about their eval-
uations on explanations, we recruited crowdwork-
ers from AMT. Fig. 7 presents the instructions to
the testers. Privacy and data usage strictly com-
ply with the General Data Protection Regulation
(GDPR) of the European Union, and testers are
informed before they participate in the evaluation.

A.7 Settings of Kinship Evaluation

Based on the evaluation framework designed in
Sec. 4, the settings of the test with the Kinship data

1
Each tester evaluates 14 predicted triples to
maintain good engagement.

2

The first two triples serve as practice to help
testers understand the system and the
questions. The feedback is not included in
statistical analysis.

3
Half of the triples are correctly or incorrectly
predicted to prevent dummy feedback.

4
Half of the triples are randomly selected for
either XAI method.

5 The predicted triples are randomly shuffled.

6
The same set of predicted triples is presented
to testers in the same order.

Table 3: Settings of human-centric evaluation for the
Kinship data.

are presented in Table 3. Among the randomly se-
lected test predictions, there are two simple predic-
tions, such as a prediction (Colin, is_son_of, James)
associated with an explanation (James, is_father_of,
Colin), which serve as checkpoints to gauge tester
engagement. After excluding testers who simply
rejected or accepted all predictions or answered
the checkpoint questions incorrectly, there were 26
well-engaged crowdsourced testers remained.

A.8 Settings of CoDEx Evaluation

During the test, sensitive relation types related to
the person entities, such as medical conditions,
religion, and ethnic group, are removed from the
data to comply with the General Data Protection
Regulation (GDPR) of the European Union. The
settings of the human evaluation with the CoDEx
data are presented in Table 4. To investigate the
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Figure 7: Instructions for crowdworkers recruited from Amazon Mechanical Turk (AMT) with a privacy notice that
strictly adheres to General Data Protection Regulation (GDPR) of the European Union.

1
Each tester evaluate 26 predicted triples to
maintain good engagement.

2

The first two triples serve as practice to help
testers understand the system and questions.
The feedback is not included in the statistical
analysis.

3
Half of the triples are correctly or incorrectly
predicted to avoid dummy feedback.

4
Half of the triples are randomly selected for
either XAI method.

5
The order of the predicted triples are
randomly shuffled.

6
The same set of predicted triples are
presented to testers in the same order.

Table 4: Settings of human-centric evaluation for the
CoDEx data.

engagement of the testers, we set checkpoints with
three simple predictions, such as a prediction (Bel-
gium, has_diplomatic_relation_with, Malaysia)
associated with an explanation (Malaysia,
has_diplomatic_relation_with, Belgium). After
excluding the testers who simply rejected or ac-
cepted all predictions or answered the checkpoint
questions erroneously, there were 55 well-engaged
crowdsourced testers left.

A.9 Further Analysis of Testers’ Assessments
During the crowdsourcing evaluation conducted
with AMT, we detailed the options to Question 1 (Is
the predicted triple correct?) to mitigate potential
misunderstandings of the testers. As illustrated in
Fig. 4, these options include:

1. Yes, based on the explanations, I believe the
prediction is correct.

2. The explanations are not enough, but based
on the information, the prediction is likely
correct.

3. I can’t assess the prediction at all.
4. The explanations are not enough, but based

Dataset GR GradPath
Kinship 0.7756 0.6571
CoDEx 0.9773 0.8023

Table 5: Error Magnitudes in tester assessments: Mea-
sured by MAE (mean absolute error), ranging [0, 2].

on the information, the prediction is likely
wrong.

5. No, based on the explanations, I believe the
prediction is wrong.

To gain further insights into the plausibility of the
generated explanations, we conducted a more de-
tailed analysis of testers’ assessments, besides ac-
curacy rate. We considered nuances between the
options, such as distinguishing between Options
1 and 2, and Options 4 and 5. We set a tester’s
answer as 1, 0.5, 0, -0.5, -1 for the options 1 – 5,
respectively. The ground truth of a prediction is set
to be 1 if the prediction is correct, and -1 otherwise.
We computed mean absolute error (MAE) between
ground truth and testers’ answers. The results were
reported in Table 5. The experiments revealed that
the explanations generated by our GradPath method
resulted in smaller error magnitudes in tester as-
sessments compared to those generated by GR. The
MAE-based analysis provided additional insights
into correct and incorrect assessments, besides the
accuracy rate reported in Sec. 5. Taken together,
these experimental results highlighted the effec-
tiveness of our explanations in facilitating correct
assessments by testers.

12118


