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Abstract

Open-source large language models (LLMs)
have gained significant strength across diverse
fields. Nevertheless, the majority of studies
primarily concentrate on English, with only
limited exploration into the realm of multilin-
gual abilities. In this work, we therefore con-
struct an open-source multilingual supervised
fine-tuning dataset. Different from previous
works that simply translate English instructions,
we consider both the language-specific and
language-agnostic abilities of LLMs. Firstly,
we introduce a knowledge-grounded data aug-
mentation approach to elicit more language-
specific knowledge of LLMs, improving their
ability to serve users from different coun-
tries. Moreover, we find modern LLMs possess
strong cross-lingual transfer capabilities, thus
repeatedly learning identical content in various
languages is not necessary. Consequently, we
can substantially prune the language-agnostic
supervised fine-tuning (SFT) data without any
performance degradation, making multilingual
SFT more efficient. The resulting UltraLink
dataset comprises approximately 1 million sam-
ples across five languages (i.e., En, Zh, Ru,
Fr, Es), and the proposed data construction
method can be easily extended to other lan-
guages. UltraLink-LM, which is trained on the
UltraLink dataset, outperforms several repre-
sentative baselines across many tasks. !

1 Introduction

Thanks to the collaborative efforts of the active
large language models (LLMs) community, open-
source LLLMs are becoming increasingly power-
ful (Touvron et al., 2023a,b; Jiang et al., 2023),
even outperforming some representative closed-
source counterparts (OpenAl, 2023; Anil et al.,
2023) in some specific tasks (Wei et al., 2023b).
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Figure 1: To equip large language models with not only
language-specific knowledge but also language-agnostic
expertise, we construct the UltraLink dataset for mul-
tilingual SFT. For each language, UltraLink consists
of four subsets, encompassing chat data with language-
specific content, chat data with language-agnostic con-
tent, math data, and code data.

These accomplishments are closely related to the
contribution of open-source supervised fine-tuning
(SFT) data (Ding et al., 2023; Anand et al., 2023;
Peng et al., 2023; Wang et al., 2023; Kim et al.,
2023; Xu et al., 2023), which plays a pivotal role in
eliciting the instruction-following ability of LLMs
and aligning the model behaviour with human pref-
erences. Nevertheless, the focus of existing works
is primarily on the construction of English SFT
data, resulting in a comparatively limited availabil-
ity of multilingual SFT resources.

To mitigate the challenge of data scarcity, some
researchers suggest translating English SFT data
into multiple languages. Lai et al. (2023) utilize
ChatGPT? to translate the two essential compo-
nents, instructions and responses, from Alpaca-
style (Taori et al., 2023) English data to other lan-
guages. Chen et al. (2023) propose to translate

Zhttps://chatgpt.com/
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both the Alpaca and the ShareGPT? data. While di-
rectly translating English SFT data can effectively
support multilingual SFT, there are still two major
drawbacks associated with this approach:

* Low cultural diversity and imprecise transla-
tions caused by cultural differences: trans-
lation of English data may not adequately
encompass topics specific to non-English
regions (e.g., subjects related to Russian
culinary culture), leading to a deficiency
in language-specific knowledge for LLMs.
Moreover, for certain instructions (e.g., what
are the most important holidays of
the year?), the answers vary in different cul-
tural backgrounds, so directly translating all
English conversations may result in numerous
distorted translations.

* Linearly increased data volume: the total vol-
ume of translated SFT data linearly increases
with the number of languages. However, the
translations across different languages are se-
mantically equivalent, making the model re-
peatedly learn the same content.

We believe that a good multilingual LLM should
not only possess language-specific knowledge but
also be equipped with language-agnostic skills. Fig-
ure 2 gives an example of the two types of instruc-
tions. We thus propose a new approach to bet-
ter construct multilingual SFT data, applicable to
any language. Compared to conversation trans-
lation (Lai et al., 2023; Chen et al., 2023), our
advantages can be illustrated as follows:

* Higher cultural diversity and less distorted
translations: for language-specific data, we
propose a knowledge-grounded data augmen-
tation method. Concretely, Wikipedia is em-
ployed* as a data source for each language to
provide more language-specific contexts. For
language-agnostic chat data (e.g., the second
example in Figure 2), we propose a two-stage
translation mechanism. Given high-quality
English SFT data, we first filter out the con-
versations that are specific to certain regions.
Then we translate the remaining language-
agnostic data.

* Pruned data volume: for language-agnostic
skills like math reasoning and code generation,

3https://sharegpt.com
*https://www.wikipedia.org

1. Language-Specific Instructions

What are some common tea traditions or
etiquette observed in England?

2. Language-Agnostic Instructions

How do you approach learning a new skill or
acquiring knowledge, and what strategies
have you found to be effective in your
learning process?

Figure 2: Examples of instructions with language-
specific and language-agnostic content.

through our experiments, we find that it is
unnecessary for the model to repeatedly learn
identical problems, thanks to the strong cross-
lingual transfer capabilities of modern LLMs.
We can thus significantly prune the amount
of math and code SFT data for non-English
languages without compromising the model
performance.

We apply the aforementioned approach to four
non-English languages, including Chinese, Rus-
sian, French, and Spanish. Note that our method
can also be easily extended to other languages. Fi-
nally, we train a SFT LLM on the proposed Ultra-
Link dataset, which outperforms several represen-
tative open-source multilingual LLMs, demonstrat-
ing the effectiveness of our dataset.

2 Data Curation

Automatically generating SFT data is now an im-
portant research topic for LLMs (Taori et al., 2023;
Wang et al., 2023; Ding et al., 2023). For multilin-
gual SFT, it is crucial to consider the influence of
cultural diversity on language-specific data, while
also integrating language-agnostic universal data
that is related to the general abilities of LLMs (i.e.,
math reasoning). In this work, we propose a data
construction framework consisting of two pipelines,
as shown in Figure 3.

2.1 Language-Specific Data Curation

The cultures around the world are vibrant and di-
verse, reflecting the lifestyles and perspectives of
people from various countries and regions. To bet-
ter cater to diverse users, the cultural diversity of
multilingual LLMs should be improved. In this as-
pect, we propose a knowledge-grounded data aug-
mentation method, leveraging language-specific
data sources to provide intricate and varied cultural
backgrounds. Our method mainly contains two
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Figure 3: The proposed data augmentation method consists of two pipelines. The upper pipeline illustrates the
generation of language-specific chat data. Dialogues are generated by LLMs, conditioning on language-specific
knowledge extracted from Wikipedia. The language-agnostic pipeline aims to leverage existing high-quality English
SFT data, using a two-stage translation mechanism to mitigate translation errors stemming from cultural differences.

steps: (1) preparing and sampling knowledge from
data sources as cultural backgrounds, and (2) steer-
ing LLMs to generate informative conversations
given the provided cultural backgrounds.

2.1.1 Knowledge Preparation

For each language, we utilize Wikipedia dumps®
as the data source, encompassing a diverse array of
topics closely related to the respective culture. We
first use an open-source extraction toolkit® to pre-
process the raw dumps and get text descriptions for
each entry. Then we use the language identification
model provided by fastText (Joulin et al., 2017)
to remove contents that are not in the expected
language. For Chinese, we also use OpenCC’ to
convert traditional Chinese texts into simplified
Chinese. Finally, we filter out documents that are
shorter than 1K tokens or longer than 10K tokens.
The number of tokens is calculated by tiktoken®.

Given that most LLMs have a limited context
length, we divide the whole text into segments
whose lengths are between 1K and 2K. We do
not split whole sentences when performing text
segmentation. The preprocessed texts are used as
contexts for the following dialogue generation pro-

Shttps://dumps.wikimedia.org

6https ://github.com/attardi/wikiextractor
"https://github.com/BYVoid/OpenCC
8https://github.com/openai/tiktoken

cedure.

2.1.2 Dialogue Generation

To automatically generate multi-turn dialogues, we
designed a question generator and an answer gener-
ator, which are both based on GPT-3.5. When gen-
erating the dialogue, both the question and answer
generators are conditioned on a provided text seg-
ment as the cultural background. The used prompts
can be divided into four parts: system prompt, prin-
ciples, cultural background, and dialogue history.
The prompt structure is shown in Figure 4.

{system prompt} {principles}
<document> {cultural background} <\document>

Figure 4: Structure of the prompts used for dialogue gen-
eration. The provided cultural background is enclosed
within a pair of separators.

The system prompt is used to describe the task
(i.e., generating the initial question). The
principles provide some detailed suggestions for
the LLM, which are found important for improv-
ing the quality of the generated data. The cultural
background is the preprocessed text segment that
contains language-specific knowledge. The dia-
logue history provides the historical questions and
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Average Length

Dataset Dialogues Turns

Question Answer Turn
Okapi Dataset (Lai et al., 2023) 207K 207K 28.64 95.72 124.36
Guanaco Dataset (Attardi, 2023) 1173K 1173K 77.58 83.31 160.89
Multialpaca (Wei et al., 2023a) 132K 132K 39.86 83.71 123.57
Phoenix SFT data (Chen et al., 2023) 464K 893K 165.27 200.07 365.34
UltraLink (Ours) 1032K 1623K 87.86 290.35 378.21

Table 1: Comparison between UltraLink and existing open-source multilingual SFT datasets.

answers, which are set to an empty string when
generating the initial question.

Generating the Initial Dialogue The principles
used to generate the first question are shown in Fig-
ure 5. We ask the involved LLM (i.e., GPT-3.5)
to understand the provided cultural background
and then propose a related question that can be an-
swered according to the cultural background. For
the generation of answers, we provide only a con-
cise description of the principles in Figure 6 due to
space limitations. For each language, the principles
are translated by humans into the target language.
We only show the English version of the prompt to
understand the method better.

7

1. Pose "why" and "how" questions: given
the provided document, ask why something
happens or how it occurs. The questions
should guide respondents to engage in more

in-depth analysis and explanation, rather
than simply stating facts.
2. Compare and contrast: if the text

mentions a phenomenon or viewpoint, you
can try comparing it with other similar
situations and then pose questions to
explore the similarities and differences
between them, as well as potential impacts.
3. Predict future developments: if the
text refers to a trend or direction of
development, you can pose questions to
discuss possible changes in the future or
express opinions and predictions about a
particular trend.

4. Stimulate reflection and discussion:
Pose open-ended questions to encourage
respondents to delve into deeper reflection
and discussion.

Figure 5: Principles for generating the initial question.

Generating Subsequent Dialogues After gener-
ating the initial question and answer, we iteratively
produce subsequent dialogues. To improve the di-
versity of constructed dialogues, we propose two
types of subsequent questions. At each turn, we ran-
domly decide whether to present an in-depth ques-

Understand the content.
Logically reason about details.
Compare relevant situations.
Discuss future trends.

Engage in deeper discussion.

g wNn =

Figure 6: A brief description of the principles for gener-
ating the initial answer.

tion for a more detailed exploration of the same
topic or to generate an expansive question to delve
into other subjects. The principles used to ask an
in-depth question are shown in Figure 7, while the
principles used to ask an expansive question are
shown in Figure 8. Note that when generating sub-
sequent dialogues, the cultural background is also
provided to the model.

r

Understand the context.
Uncover implicit information.
Challenge existing viewpoints.
Extend the topic.

Pose open-ended questions.
Delve into more complex logic.

o Ul wN =

Figure 7: A brief description of the principles to ask an
in-depth following question.

Abstract the theme.

Turn into overarching topics.
Considering temporal and spatial span.
Connect to related fields.

Take a global perspective.

g w N =

Figure 8: A brief description of the principles to ask an
expansive following question.

Using the aforementioned approach, we auto-
matically construct language-specific multi-turn
conversations in four languages. The details of
constructed data will be illustrated in Section 3, in-
cluding the average length and some other statistics.
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Note that the proposed knowledge-grounded data
augmentation approach can also be applied to any
other language.

2.2 Language-Agnostic Data Curation

In addition to language-specific abilities, the gen-
eral abilities that are language-agnostic are also
essential for LLMs. As numerous high-quality En-
glish SFT datasets already encompass a broad spec-
trum of general abilities, we suggest employing a
two-stage translation mechanism to maximize the
utility of existing English resources. Our goal is
to reduce translation errors caused by cultural dif-
ferences since some questions can not be directly
translated into other languages (e.g., write an
English poem where each sentence starts
with the letter “A"). In the first stage, we
introduce a multi-criteria mechanism to filter out
English-specific conversations that are difficult to
translate accurately into other languages. Then we
use GPT-3.5 to translate the remaining language-
agnostic data. In this study, we consider three key
components of general abilities for LLMs: chat,
math reasoning, and code generation. For chat,
we use ShareGPT as the English chat data, which
consists of multi-turn dialogues between human
users and ChatGPT. For math reasoning, we use
MetaMath (Yu et al., 2023) as the English math
data. For code generation, we use the Magicoder
dataset (Wei et al., 2023b) as the English code data.

2.2.1 Multi-Criteria Filter

The criteria employed to filter out English-specific
conversations are outlined in Figure 9. Our goal is
to retain only conversations whose topics can be
discussed in any cultural background. GPT-3.5 is
utilized to ascertain whether a conversation con-
tains information relevant to the specified features.
For instance, the conversations that include English
jokes will be removed before translation.

2.2.2 Translator

After the filtering process, the remaining conversa-
tions undergo the translation procedure, wherein
they are translated into four languages using GPT-
3.5-turbo to maintain fluency and accuracy. We
also provide some translation principles to help
GPT-3.5 better perform the translation, which is
shown in Figure 10.

1. Full name of xhumanx.
2. Country, region, state, province, city,

address.

3. Conventions, politics, history, and
religion.

4. Poetry, rhymes, myths, tales, jokes,
and slang.

5. Food, cloth, furniture, construction.
6. Organization, company, product, brand.

Figure 9: Criteria used to identify English-specific con-
versation. We only provide a brief version with a de-
tailed explanation due to space limitations.

1. Ensure the completeness and consistency
of content during the translation process,
without adding or deleting any information.
2. Ensure that the translated text is
fluent and natural, using the most common
expressions in the target language whenever
possible. Use officially prescribed
translations for professional terms and
adhere to the target-language expression
conventions.

3. If certain terms are not in natural
language but are mathematical symbols,
programming languages, or LaTeX language,
please directly copy the original text.

4. If there are no equivalent translation

terms for certain vocabulary, please
directly copy the original text.
5. For citations and references, please

directly copy the original text.

Figure 10: Translation principles.

2.3 Data Pruning

English math and code datasets are frequently ex-
tensive, exemplified by MetaMath (Yu et al., 2023)
with 395K training examples and Magicoder (Wei
et al., 2023b) comprising 186K training examples.
Assuming the English data consists of IV training
examples, the overall multilingual dataset would
encompass k x N examples if we translate all the
English training examples into other languages,
where k is the number of languages. The linear in-
crease in data volume will result in higher training
costs during SFT. As math and code problems are
not closely tied to the cultural backgrounds of dif-
ferent countries, LLMs may have the capability to
transfer English math and code abilities into other
languages with only limited training examples. In
other words, it may not be necessary for LLMs to
learn all translated math and code problems. To
verify the assumption mentioned above, we con-
duct experiments on Chinese math and code tasks.
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For comparison, we fine-tune Llama-2-7b (Tou-
vron et al., 2023b) in the following two different
ways:

* From En SFT Model: we first use English
math or code data to fine-tune the base model,
and then use different amounts of Chinese
data to further tune the model.

* From Base Model: we directly use Chinese
math or code data to fine-tune the base model.

55
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Figure 11: Performance on MGSM-Zh with different
numbers of Chinese mathematical training examples.
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Figure 12: Performance on HumanEval-Zh with differ-
ent numbers of Chinese code training examples.

Figure 11 and 12 show the performances of the two
types of models. Surprisingly, the involved LLM
exhibits strong cross-lingual transfer capabilities.
For instance, utilizing only 2K Chinese mathemat-
ical training examples can yield a score of 45.6
when fine-tuning from the English SFT model. In
contrast, directly fine-tuning the base model with
an equivalent amount of Chinese data results in
a significantly lower score of 22.0, highlighting
the superior performance achieved through trans-
fer from the English SFT model. In the Chinese
code generation task, we observe a similar trend,
wherein transfer learning from the English SFT
model substantially enhances the performance of
the model.

Moreover, we find that using more Chinese SFT
data does not consistently lead to improved per-
formance. For the math task, using 32K Chinese
training examples achieves the best result. For the
code task, the peak performance is attained with
16K Chinese code generation examples. Hence,
we incorporate only 32K mathematical training ex-
amples and 16K code training examples for each
non-English language in the UltraLink dataset.

Lang. Lang.Spec. Lang.Agno.
Chat Chat Math Code
En I0K 67K 395K 186K
Zh 36K 11K 32K 16K
Ru 37K 11K 32K 16K
Fr 30K 11K 32K 16K
Es 34K 11K 32K 16K
UltraLink 147K 112K 523K 250K
w/o En 137K 45K 128K 64K

Table 2: Scales of different components in UltralLink,
which are measured by the number of dialogues.

2.4 Data Overlap Strategy

UltraLink consists of four parts, including the
language-specific chat part, the language-agnostic
chat part, the code part, and the math part. It is
worthwhile to design different strategies for them
because of their intrinsic features.

For language-specific data, we utilize respective
Wikipedias to prevent overlap, recognizing that dif-
ferent languages often focus on distinct frequently-
discussed topics. The content of language-agnostic
chat data is shared across languages to capture gen-
eral knowledge. For code and math data, as there
is no prior indication that certain languages favour
specific code or math topics, we randomly selected
examples for each language.

2.5 Data Quality Ensurance

It is important to ensure the quality of the data
generated by LLM. We deal with this issue from
the following aspects. Firstly, We primarily filter
Wikipedia articles based on length, as longer texts
often contain more detailed information, providing
GPT with a comprehensive context for generating
accurate dialogue data. Additionally, we attach a
paragraph split from Wikipedia to each QA gen-
eration to improve answer quality. For instance,
answers generated by GPT with a Wiki paragraph
in an autobiography context show high relevance
and can accurately describe when events occurred,
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ensuring correctness. We also leverage the ten-
dency of longer inputs to elicit longer responses
to obtain comprehensive answers. To prevent the
negative impact of truncation on LLM, we filter out
truncated responses from the API based on the win-
dow size of the used LLM. As for the quality check
of UltraLink, the pass rate for manual inspection is
96%, and the pass rate for answers is 99%.

3 Dataset Statistics

3.1 Data Distribution

Table 2 presents the scale of each component in
UltraLink, encompassing five languages. Each lan-
guage contributes four types of SFT data: chat data
with language-specific knowledge, chat data with
language-agnostic knowledge, math data, and code
data. The quantities of language-agnostic segments
are approximately equal for the four non-English
languages.

3.2 Comparison with Existing Datasets

Before us, there are some existing multilingual
SFT datasets, where we select four representa-
tive datasets for comparison, including the Okapi
dataset (Lai et al., 2023), the Guanaco dataset (At-
tardi, 2023), Multialpaca (Wei et al., 2023a), and
the Phoenix SFT data (Chen et al., 2023). We
conduct a comparison based on the number of dia-
logues, the number of conversation turns, and the
average lengths across the respective datasets. As
shown in Table 1, we find that UltralLink contains
fewer dialogues than the Guanaco dataset, but the
latter only contains single-turn conversations. Only
the Phoenix SFT data and UltraLink include multi-
turn conversations.

We use the number of tokens estimated by
tiktoken as the length for each question and an-
swer. The question token length does not include
the document. On average, UltraLink exhibits the
longest average length per turn (i.e., 378.21 tokens),
considering both questions and their corresponding
answers. Compared to UltraLink, the Phoenix SFT
data has longer questions (165.27 vs. 87.86), but its
answers are shorter (200.07 vs. 290.35). For each
language, we also estimate the average lengths of
questions and answers, and the results are shown
in Figure 13. Across all languages, the answer is
significantly longer than the question.

The primary distinctions between our dataset and
existing multilingual SFT datasets can be clarified
from the following aspects:

600

Il Question Length
Il Answer Length

450

300

150

Zh Ru Fr Es

Figure 13: Number of tokens for each language in Ul-
traLink.

» Think from two dimensions: Our dataset
takes into account both language-specific and
language-agnostic aspects, filling a gap left
by previous works, which can facilitate the
development of more versatile and effective
language models.

* Not just translation: Our dataset is grounded
by Wikipedia, which ensures a higher degree
of correctness and significantly reduces the
occurrence of misconceptions. This feature is
particularly beneficial for tasks that require a
solid grounding in factual information. The
extracted text from Wikipedia can provide
more cultural backgrounds, improving the cul-
tural diversity of the resulting dataset.

* Focus on generation: Unlike many exist-
ing datasets that are primarily designed
for question-answering tasks, our dataset is
geared towards knowledge infusion and the
generation of extended text. This unique fo-
cus makes it a valuable resource for advancing
research in these areas.

4 Experiment

4.1 Setup

Baselines For thorough comparison, we select
several representative multilingual baselines in
our experiments, including Bloomz-7b1-mt (Big-
Science, 2023), Phoenix-inst-chat-7b (Chen et al.,
2023), PolyLM-Multialpaca-13b (Wei et al.,
2023a), PolyLM-Chat-13b (Wei et al., 2023a),
Chimera-inst-chat-13b (Chen et al., 2023), Okapi-
7b (Lai et al., 2023), Guanaco-7b (Attardi, 2023),
Guanaco-13b (Attardi, 2023), and Aya-101 (Ustiin
et al., 2024). Okapi-7b is fine-tuned by ourselves
based on Llama-2-7b using the Okapi dataset. Be-
sides, the Aya-5-reimplement is fine-tuned in this
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Model Backbone SFT Data En Zh Es Ru Fr Avg.
OMGE(val (Chat)
Guanaco-13b Llama-2-13b Guanaco Dataset 20.8 7.7 13.5 10.8 10.3 12.5
Aya-101 mt5-xx1 Aya SFT Dataset 1.4 1.4 2.2 4.3 2.3 2.3
Aya-5-reimplement ~ Llama-2-13b ~ Aya SFT Dataset 1.2 0.4 0.8 1.1 0.1 0.7
UltraLink-LM Llama-2-13b  UltraLink 26.8 19.2 202 294 246 24.0
Multilingual HumanEval (Code)
Guanaco-13b Llama-2-13b Guanaco Dataset 18.3 159 9.8 8.5 14.6 12.2
Aya-101 mt5-xx1 Aya SFT Dataset 0.6 0 0 0 0 0.1
Aya-5-reimplement ~ Llama-2-13b  Aya SFT Dataset 6.1 9.75 6.1 8.5 43 7.0
UltraLink-LM Llama-2-13b  UltraLink 604 439 409 494 39.6 46.8
MGSM (Math)
Guanaco-13b Llama-2-13b Guanaco Dataset 13.6 10.8 11.2 6.4 5.2 8.4
Aya-101 mt5-xxl Aya SFT Dataset 8.8 4.0 6.0 8.0 9.2 7.2
Aya-5-reimplement  Llama-2-13b ~ Aya SFT Dataset  28.8 5.6 18.0 17.2 19.2 17.8
UltraLink-LM Llama-2-13b UltraLink 70.4 56.0 70.4 64.8 63.6 63.7
Multilingual MMLU
Guanaco-13b Llama-2-13b Guanaco Dataset 50.6 36.6 44.4 38.3 43.8 42.7
Aya-101 mt5-xxl Aya SFT Dataset 8.8 4.0 6.0 8.0 9.2 7.2
Aya-5-reimplement  Llama-2-13b ~ Aya SFT Dataset  51.5 38.7 449 40.8 452 44.2
UltraLink-LM Llama-2-13b UltraLink 54.2 42.7 49.0 44.4 48.3 47.7
Multilingual Hellaswag
Guanaco-13b Llama-2-13b Guanaco Dataset 74.5 434 60.6 51.8 58.4 57.7
Aya-101 mt5-xx1 Aya SFT Dataset ~ 75.5 50.5 62.7 54.7 61.3 60.9
Aya-5-reimplement ~ Llama-2-13b ~ Aya SFT Dataset ~ 76.7 48.9 62.6 538 61.1 60.6
UltraLink-LM Llama-2-13b UltraLink 71.5 52.8 64.8 56.1 63.5 62.9
Multilingual ARC
Guanaco-13b Llama-2-13b Guanaco Dataset 60.8 394 6.5 13.8 17.7 27.6
Aya-101 mt5-xx1 Aya SFT Dataset ~ 73.1 519 433 454 558 53.9
Aya-5-reimplement ~ Llama-2-13b ~ Aya SFT Dataset  64.0 474 22.1 333 453 42.4
UltraLink-LM Llama-2-13b UltraLink 76.0 50.0 474 51.3 58.9 56.7

Table 3: Performance of the involved multilingual SFT LLMs on 6 benchmarks.

work based on Llama-2-13b, using the same lan-
guages as UltraLink. The training examples are
from Aya Dataset and Aya Collection (Singh et al.,
2024). The other baselines are downloaded from
Hugging Face Hub’.

Training details Based on Llama-2-13b (Tou-
vron et al., 2023a), UltraLink-LM is fine-tuned
with the constructed UltraLink dataset for 3 epochs.
We use the cosine learning rate schedule and the
peak learning rate is set to 2e-5. The warm-up ra-
tio is set to 0.04. Each mini-batch contains 128
training examples in total. The maximum sequence
length is 4096. We train the model using 32 A100
GPUs for about 140 hours. Aya-5-reimplement
uses the same training setting as UltraLink-LM.

*https://huggingface.co

Evaluation We examine the model performance
in two categories of tasks, Natural Language Gen-
eration (NLG) and Natural Language Understand-
ing (NLU). The NLG evaluation consists of three
tasks, including chat, math reasoning, and code
generation. For chat, we use OMGEval (Liu et al.,
2023) for evaluation, which is a multilingual ver-
sion of the widely-used English benchmark Al-
pacaEval (Li et al., 2023). OMGEval is not a
mere translated version of AlpacaEval. Instead,
it localizes the English questions according to the
cultural backgrounds of each language. We em-
ploy MGSM (Shi et al., 2023) to evaluate math
reasoning abilities, which is also a multilingual
benchmark. Since there are no existing multilin-
gual test sets for code generation, we use GPT-
3.5 with carefully designed prompts to translate
HumanEval (Chen et al., 2021) into other lan-
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guages, which serves as the multilingual bench-
mark to evaluate the code abilities of LLMs. In
terms of NLU tasks, we use 3 different bench-
marks, MMLU, Hellaswag, and ARC. We use the
Okapi (Lai et al., 2023) version of the multilingual
evaluation dataset.

We use the UltraEval toolkit!? for model infer-
ence and evaluation, which supports a wide range
of open-source models.

4.2 Results

Table 3 describes the results of Guanaco-13b, Aya-
101, Aya-5-implement, and UltraLink-LM. The de-
tailed results of all baselines can be found in the
Appendix (Table 5 and Table 6). In terms of general
chat abilities, our model achieves the best average
results, which implies the superiority of the pro-
posed UltraLink dataset.

For the code generation task, previous multi-
lingual SFT datasets did not take into account
the multilingual code abilities, which we think is
very important in many real-world scenarios. Our
model achieves a score of 60.4 in the English Hu-
manEval benchmark, surpassing even CodeLlama-
34b-Python (Roziere et al., 2024).

In the math reasoning task, our model consis-
tently outperforms all other baselines across all
five languages. The performance of UltraLink-LM
in both math and code tasks underscores the ef-
fectiveness of our method in enabling multilingual
LLMs to acquire general abilities.

Within the scope of NLU tasks, UltraLink,
though not specifically optimized for short-answer
datasets, exhibits an appreciable performance supe-
riority. This outcome illustrates the inherent poten-
tial that lies within the dataset used.

5 Related Work

Supervised Fine-tuning SFT is now a crucial
part of constructing a powerful LLM. SODA (Kim
et al.,, 2023) constructs high-quality social dia-
logues by contextualizing social commonsense
knowledge from a knowledge graph. Using the
technique of self-instruct (Wang et al., 2023), Al-
paca (Taori et al., 2023) is one of the pioneers
to leverage ChatGPT to collect SFT data. Ultra-
Chat (Ding et al., 2023) utilizes ChatGPT to gener-
ate topics in a tree-style structure for the construc-
tion of large-scale dialogues. With these efforts,

Yhttps://github.com/OpenBMB/UltraEval

English SFT resources are becoming increasingly
rich and effective.

Multilingual SFT Datasets To enhance the
global utility of LLLMs, numerous multilingual SFT
datasets have been created. Lai et al. (2023) em-
ploy ChatGPT to translate Alpaca into various lan-
guages. Chen et al. (2023) combine ShareGPT with
Alpaca and then translate the two datasets. Attardi
(2023) and Wei et al. (2023a) extend tasks from
Alpaca by introducing filters and rewrites of seed
tasks in different languages, generating datasets
through multiple iterations.

6 Conclusion

In this work, we propose a knowledge-grounded
data augmentation method and a two-stage transla-
tion mechanism to construct language-specific and
language-agnostic multilingual SFT data, respec-
tively. Experiments demonstrate that the proposed
dataset is effective for multilingual LLMs.

7 Limitations

In the paper, our proposed data construction frame-
work is only applied to four language types. Nev-
ertheless, the framework can be easily extended
to other languages. We leave it to the future work
to include more languages. Moreover, due to con-
straints imposed by the base model, the multilin-
gual capability still faces several limitations. No-
tably, the model exhibits significantly better per-
formance in English across many tasks. There is a
pressing need to continue constructing high-quality
pre-training multilingual datasets, to unlock the full
potential of multilingual abilities in LLMs.
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A Data Mixing Strategy

The method of mixing the data of different lan-
guages could impact the performance of LLM. Af-
ter getting the volume of different languages, we
test three data mixing strategies, including sequen-
tial, mixed, and zh-only strategies, to fine-tune the
base model. We choose MiniCPM-2.4B!! as the
backbone to reduce training costs. “Sequential”
means the model is trained on English data first,
and then trained on Chinese data. “Mixed” rep-
resents that the English and Chinese data are ran-
domly mixed during the training process. “Zh-only”
stands for fine-tuning the model only with Chinese
data. The evaluation is conducted on the Chinese
HumanEval test set

Data Mixing Strategy HumanEval-Zh

Sequential 40.8
Mixed 44.9
Zh-only 32.7

Table 4: The results of different data mixing strategies,
evaluated on the Chinese code generation task.

Table 4 shows the results, indicating that mixing
multilingual SFT data can result in the best per-
formance. We thus employ the “Mixed” strategy
when training UltraLink-LM.

B Evaluation Results

This section details the full experimental results of
all the baselines on the 6 examined benchmarks.

"https://github.com/OpenBMB/MiniCPM.
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OMGE(val (Chat)

Model Backbone SFT Data

En Zh Es Ru Fr  Avg.
Bloomz-7b1-mt Bloomz-7bl xP3mt 0.0 0.9 0.1 0.5 0.3 0.4
Phoenix-inst-chat-7b Bloomz-7b1 Phoenix SFT data 6.9 13.3 7.4 2.9 8.1 7.7
PolyLM-Multialpaca-13b PolyLM-13b Multialpaca 34 5.0 2.1 5.1 22 3.6
PolyLM-Chat-13b PolyLM-13b Closed-source 7.7 14.0 6.1 5.5 4.8 7.6
Chimera-inst-chat-13b Llama-13b Phoenix SFT data 15.5 9.7 11.8 13.7 13.8 12.9
Okapi-7b Llama-2-7b Okapi Dataset 8.8 6.2 5.0 12.1 8.7 8.2
Guanaco-7b Llama-2-7b Guanaco Dataset 4.6 3.8 0.4 1.8 1.2 2.4
Guanaco-13b Llama-2-13b Guanaco Dataset 20.8 7.7 13.5 10.8 10.3 12.5
Aya-5-reimplement Llama-2-13b Aya SFT Dataset 1.2 0.4 0.8 1.1 0.1 0.7
Aya-101 mt5-xx1 Aya SFT Dataset 1.4 14 2.2 4.3 2.3 2.3
UltraLink-LM Llama-2-13b UltraLink 26.8 19.2 20.2 29.4 24.6 24.0
Model Backbone SFT Data Multilingual HumanEval (Code)

En Zh Es Ru Fr Avg.
Bloomz-7b1-mt Bloomz-7b1 xP3mt 8.5 7.3 6.1 8.5 6.1 7.3
Phoenix-inst-chat-7b Bloomz-7b1 Phoenix SFT data 11.0 10.4 8.5 1.2 134 12.2
PolyLM-Multialpaca-13b PolyLM-13b Multialpaca 8.5 7.3 6.1 6.1 6.1 6.8
PolyLM-Chat-13b PolyLM-13b Closed-source 10.4 7.9 6.1 7.3 8.5 8.1
Chimera-inst-chat-13b Llama-13b Phoenix SFT data 14.6 13.4 14.6 12.8 14.0 139
Okapi-7b Llama-2-7b Okapi Dataset 12.2 11.0 8.5 8.5 8.5 9.8
Guanaco-7b Llama-2-7b Guanaco Dataset 9.2 6.7 11.0 9.8 12.8 9.9
Guanaco-13b Llama-2-13b Guanaco Dataset 18.3 159 9.8 8.5 14.6 12.2
Aya-5-reimplement Llama-2-13b Aya SFT Dataset 6.1 9.75 6.1 8.5 43 7.0
Aya-101 mt5-xxl Aya SFT Dataset 0.6 0 0 0 0 0.1
UltraLink-LM Llama-2-13b UltraLink 60.4 43.9 40.9 49.4 39.6 46.8
Model Backbone SFT Data MGSM (Math)

En Zh Es Ru Fr Avg.
Bloomz-7b1-mt Bloomz-7b1 xP3mt 2.8 1.6 2.0 0.4 2.8 1.7
Phoenix-inst-chat-7b Bloomz-7b1 Phoenix SFT data 3.2 3.2 2.8 3.2 32 3.1
PolyLM-Multialpaca-13b PolyLM-13b Multialpaca 1.2 2.8 1.6 2.8 24 24
PolyLM-Chat-13b PolyLM-13b Closed-source 10.8 6.4 4.8 4.4 5.6 53
Chimera-inst-chat-13b Llama-13b Phoenix SFT data 14.0 11.6 10.0 12.0 12.8 11.6
Okapi-7b Llama-2-7b Okapi Dataset 4.0 2.4 3.6 4.4 4.8 3.8
Guanaco-7b Llama-2-7b Guanaco Dataset 4.0 1.6 3.2 2.8 4.4 3.0
Guanaco-13b Llama-2-13b Guanaco Dataset 13.6 10.8 11.2 6.4 52 8.4
Aya-5-reimplement Llama-2-13b  Aya SFT Dataset 28.8 5.6 18.0 17.2 19.2 17.8
Aya-101 mt5-xxl Aya SFT Dataset 8.8 4.0 6.0 8.0 9.2 7.2
UltraLink-LM Llama-2-13b UltraLink 70.4 56.0 70.4 64.8 63.6 63.7

Table 5: Performance of the involved multilingual SFT LLMs on NLG tasks.
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Multilingual MMLU

Model Backbone SFT Data

En Zh Es Ru Fr  Avg.
Bloomz-7b1-mt Bloomz-7bl xP3mt 35.9 33.6 34.7 25.9 35.1 33.0
Phoenix-inst-chat-7b Bloomz-7b1 Phoenix SFT data 38.5 35.6 36.5 25.8 36.9 34.7
PolyLM-Multialpaca-13b PolyLM-13b Multialpaca 26.7 25.6 25.0 24.7 25.5 25.5
PolyLM-Chat-13b PolyLM-13b Closed-source 29.3 28.3 25.8 26.2 27.3 27.4
Chimera-inst-chat-13b Llama-13b Phoenix SFT data 48.1 31.9 40.8 37.2 41.8 40.0
Okapi-7b Llama-2-7b Okapi Dataset 8.8 6.2 5.0 12.1 8.7 8.2
Guanaco-7b Llama-2-7b Guanaco Dataset 28.9 25.0 27.1 26.2 27.4 26.9
Guanaco-13b Llama-2-13b Guanaco Dataset 50.6 36.6 44.4 38.3 43.8 42.7
Aya-5-reimplement Llama-2-13b Aya SFT Dataset 51.5 38.7 449 408 45.2 44.2
Aya-101 mt5-xx1 Aya SFT Dataset 39.9 40.7 41.4 40.0 41.2 40.6
UltraLink-LM Llama-2-13b UltraLink 54.2 42.7 49.0 44.4 48.3 47.7
Model Backbone SFT Data Multilingual Hellaswag

En Zh Es Ru Fr Avg.
Bloomz-7b1-mt Bloomz-7bl xP3mt 61.1 47.5 48.6 33.1 46.2 47.3
Phoenix-inst-chat-7b Bloomz-7b1 Phoenix SFT data 56.8 49.1 54.3 32.5 532 49.2
PolyLM-Multialpaca-13b PolyLM-13b Multialpaca 66.0 49.8 51.3 46.4 50.7 52.8
PolyLM-Chat-13b PolyLM-13b Closed-source 66.6 48.9 52.1 45.6 51.3 52.9
Chimera-inst-chat-13b Llama-13b Phoenix SFT data 65.8 432 52.6 45.9 50.7 51.6
Okapi-7b Llama-2-7b Okapi Dataset 63.7 44.6 51.0 45.9 49.6 50.9
Guanaco-7b Llama-2-7b Guanaco Dataset 65.3 37.1 437 35.0 42.4 44.7
Guanaco-13b Llama-2-13b Guanaco Dataset 74.5 434 60.6 51.8 584 57.7
Aya-5-reimplement Llama-2-13b Aya SFT Dataset 76.7 48.9 62.6 53.8 61.1 60.6
Aya-101 mt5-xxl Aya SFT Dataset 75.5 50.5 62.7 54.7 61.3 60.9
UltraLink-LM Llama-2-13b UltraLink 77.5 52.8 64.8 56.1 63.5 62.9
Model Backbone SFT Data Multilingual ARC

En Zh Es Ru Fr Avg.
Bloomz-7b1-mt Bloomz-7b1 xP3mt 77.5 57.8 60.6 35.6 60.7 58.4
Phoenix-inst-chat-7b Bloomz-7b1 Phoenix SFT data 70.0 47.2 41.2 30.2 514 48.0
PolyLM-Multialpaca-13b PolyLM-13b Multialpaca 31.1 25.5 21.5 28.0 29.0 27.0
PolyLM-Chat-13b PolyLM-13b Closed-source 293 12.3 26.5 24.4 27.0 239
Chimera-inst-chat-13b Llama-13b Phoenix SFT data 66.2 31.2 453 42.3 322 434
Okapi-7b Llama-2-7b Okapi Dataset 59.8 39.9 38.0 38.8 429 43.9
Guanaco-7b Llama-2-7b Guanaco Dataset 36.1 25.6 27.3 25.8 27.6 25.5
Guanaco-13b Llama-2-13b Guanaco Dataset 60.8 394 6.5 13.8 17.7 27.6
Aya-5-reimplement Llama-2-13b  Aya SFT Dataset 64.0 474 221 333 453 42.4
Aya-101 mt5-xx1 Aya SFT Dataset 73.1 51.9 433 45.4 55.8 53.9
UltraLink-LM Llama-2-13b UltraLink 76.0 50.0 47.4 51.3 58.9 56.7

Table 6: Performance of the involved multilingual SFT LLMs on NLU tasks.
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