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Abstract

Large Language Models (LLMs) frequently
hallucinate, impeding their reliability in
mission-critical situations. One approach to
address this issue is to provide citations to rel-
evant sources alongside generated content, en-
hancing the verifiability of generations. How-
ever, citing passages accurately in answers re-
mains a substantial challenge. This paper pro-
poses a weakly-supervised fine-tuning method
leveraging factual consistency models (FCMs).
Our approach alternates between generating
texts with citations and supervised fine-tuning
with FCM-filtered citation data. Focused learn-
ing is integrated into the objective, directing
the fine-tuning process to emphasise the factual
unit tokens, as measured by an FCM. Results
on the ALCE few-shot citation benchmark with
various instruction-tuned LLMs demonstrate
superior performance compared to in-context
learning, vanilla supervised fine-tuning, and
state-of-the-art methods, with an average im-
provement of 34.1, 15.5, and 10.5 citation F1

points, respectively. Moreover, in a domain
transfer setting we show that the obtained ci-
tation generation ability robustly transfers to
unseen datasets. Notably, our citation improve-
ments contribute to the lowest factual error rate
across baselines.

1 Introduction

Large language models (LLMs; Brown et al.,
2020) have showcased remarkable capabilities in
information-seeking tasks. However, concerns per-
sist regarding their trustworthiness, stemming from
their opaque nature and factual hallucinations in
their responses (Zhang et al., 2023; Mallen et al.,
2023). One proposed solution involves the produc-
tion of citations to retrieved text passages along-
side LLM-produced statements (Liu et al., 2023;
Rashkin et al., 2023). By integrating citations
into generated responses, readers can easily verify

* Work done while interning at Amazon Web Services.

Question: Who has the highest goals in world football?

Retrieved Passages:
[1] . . . Pelé’s 1281 goals are recognized by FIFA as the
highest total achieved by a professional footballer, al-
though the Soccer Statistic Foundation (rssf) recognizes
only 767 goals in official mode, occupying the third place
after Josef Bican (805) and Romario (772) . . .
[2] have beaten Gerd Müller’s record of 85 goals in a year,
the Football Association of Zambia . . .

Answer (LlaMA-2-Chat-70B): According to IFFHS In-
ternational Federation of Football History and Statistics,
Lionel Messi has the highest goals in world football with
1281 goals [1]. However, some sources, such as the Soccer
Statistic Foundation (rssf), recognize only 767 goals in of-
ficial mode, placing Messi in third place after Josef Bican
(805) and Romario (772) [2].

Figure 1: An ALCE-ASQA question with a generated
answer prompted via in-context learning. Two error
classes are common: information not supported by the
sources (red) and incorrect citation to the sources (blue).

LLMs statements. The ability to accurately pro-
duce citations enables LLMs to generate responses
more closely aligned with cited sources, alleviating
hallucinations (Gao et al., 2023b; Yue et al., 2023).

Despite its significance, accurate citation gen-
eration proves to be challenging. State-of-the-art
LLMs, such as ChatGPT (OpenAI, 2023), and com-
mercial generative chat engines, such as Bing Chat,
produce accurate citations only for less than 60%
of generated statements (Gao et al., 2023b; Liu
et al., 2023). Figure 1 illustrates typical citation er-
rors, including hallucinated statements or citations
associated with incorrect claims. Hence, there is
a necessity to train LLMs to generate citations ac-
curately. This paper focuses on teaching LLMs
to generate citations for retrieval-augmented long-
form question answering (LFQA), tackling two
main challenges: the scarcity of high-quality la-
beled data at scale and the risk of compromising
original language and generalization capacities dur-
ing fine-tuning for citation generation.
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To address these challenges, we present CaLF
(Citation Learning via Factual Consistency Mod-
els), a fine-tuning strategy that enables LLMs to
learn citation generation without sacrificing their
language capacities. As illustrated in Figure 2,
the cornerstone of our approach is factual consis-
tency models (FCMs; Kryscinski et al., 2020, inter
alia), initially introduced as a neural measure of
consistency between a claim and its context. We
use FCMs to gauge whether cited passages sup-
port a generated statement. Our method incorpo-
rates FCMs in two designs. Firstly, we propose
a weakly-supervised training strategy, where an
LLM generates diverse responses with citations,
an FCM filters high-quality citation data, and the
LLM is fine-tuned on the filtered data. Secondly,
we utilize focused learning to adjust the loss con-
tribution of each answer token based on its factual
relevance, as measured by an FCM. The intuition
is to have the LLM concentrate on tokens related to
factual knowledge during fine-tuning, minimizing
the impact on its original language capacities.

We evaluate CaLF on various LLMs, including
Llama2 (Touvron et al., 2023), Mistral-Instruct,
and MistralOrca (Jiang et al., 2023). On the ALCE
automatic few-shot citation evaluation benchmark
(Gao et al., 2023b), CaLF enhances citation met-
rics over the in-context learning and baseline fine-
tuning, with an average improvement of 34.1 and
15.5 F1, respectively, while maintaining fluency
and correctness. All LLMs trained via CaLF , out-
perform the state-of-the-art model Self-Rag (Asai
et al., 2024) and ChatGPT (OpenAI, 2023), with
an average improvement of 24.8 and 10.5 citation
F1 points, respectively. Domain transfer experi-
ments, testing citation quality on a dataset different
from the training dataset, highlight CaLF’s ability
to generalize across tasks and domains. Addition-
ally, on the FactScore biography generation bench-
mark (Min et al., 2023), CaLF demonstrates an im-
provement in factuality. Finally, human evaluation
results indicate that CaLF yields more preferable
answers compared to the fine-tuning baseline.

2 Related Work

LFQA with Citations To produce citations
alongside a response, the generation can be con-
ditioned on a few high-quality in-context exam-
ples with embedded citations (Gao et al., 2023b; Li
et al., 2023). In contrast, Gao et al. (2023a); Bohnet
et al. (2022) propose to edit an already generated

A: Tehre exist 
multiple aa 
approach
for the aareason 
that
the cheifaaa has 
b[1]

Focused
Learning

Q: Who played Galen
in the Planet of the
Apes?

Retrieved Documents

A: In the 1968 
film Planet of the 
Apes, Galen was 
played by Wright 
King [2]...
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Figure 2: A schematic view of our iterative citation
fine-tuning method CaLF. It uses a factual consistency
model to: i) create weakly supervised training instances
by filtering diversely sampled responses, ii) adjust the
loss contribution of each answer token according to its
Shapley relevance for factual consistency prediction.

response post-hoc to attribute to retrieved sources,
causing computational overhead during inference.
Alternatively, proprietary work has explored human
preference learning for citation production (Menick
et al., 2022; Thoppilan et al., 2022; Nakano et al.,
2021). Reinforcement learning from human feed-
back is expensive and typically more brittle than
supervised fine-tuning. Very recently, Asai et al.
(2024) incorporate critique tokens, which serve as
a feedback and citation mechanism, into GPT-4 ob-
tained instruction-tuning data. These tokens allow
for flexible retrieval-augmented generation with
citations. In contrast to previous work, CaLF incor-
porates openly available FCMs as critique models
into the fine-tuning process of already instruction-
tuned LLMs while not modifying inference, main-
taining efficiency.

Factual Consistency Models FCMs assess
whether all the factual information in a claim is
consistent w.r.t to the information conveyed in its
grounding text. The task shares strong similarities
to natural language inference (NLI) (Bowman et al.,
2015; Dagan et al., 2005). However, in contrast to
NLI, factual consistency is not evaluated on subjec-
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tive or opinionated statements. Work that explores
FCMs for improving the generation is mainly con-
strained to summarization. Aharoni et al. (2023)
filter samples from a large-scale dataset accord-
ing to an FCM while Muller et al. (2023) use an
FCM to rerank and select source passages for cross-
lingual summarization. Tian et al. (2023) incorpo-
rate FCMs to improve factuality via direct prefer-
ence optimization (Rafailov et al., 2023). Instead
of using FCMs, Deng et al. (2023) improve the
factuality of generations by measuring the cosine
similarity between a token’s embedding and rele-
vant knowledge to adjust a token’s loss contribution.
Our work is the first to explore the use of model
explainability mechanisms, namely Shapley values
(Shapley, 1953), for incorporating FCMs directly
into the fine-tuning process of an LLM.

3 Preliminaries

Task description. Given an information-seeking
question q, such as shown in Figure 1, the task is
to generate a long-form answer ŷ = {s1, · · · , sn},
consisting of sentences si, conditioned on passages
P retrieved from a knowledge base. A long-form
answer with citations needs to ensure that one or
multiple relevant passages Ci ⊆ P are cited in each
generated sentence si (indicated by brackets with
a passage index, e.g. “[1]” for p1), such that the
generated information in si follows from the cited
passages Ci. This task definition strictly requires
all facts to originate from the retrieved passages,
ensuring that ŷ is fully verifiable by P . We fur-
ther assume the availability of few-shot training
samples (q, P, y) ∈ D to learn citation production.

Generation with LLMs. In this work, we are
interested in using LLMs to generate long-form
answers with citations. An answer ŷ is generated
autoregressively, computing the next token distri-
butions conditioned on the question q, retrieved
passages P , and the answer generated so far ŷ<t:∏|ŷ|

t=1 pθ(ŷt | q, P, ŷ<t), with θ being the parame-
terization of the LLM. Consequently, a model is
updated on a gold answer y by minimizing the neg-
ative log-likelihood loss (NLL):

LNLL = − 1

| y |

|y|∑

t=1

log pθ(yt | q, P, y<t), (1)

Factual Consistency Models. An FCM ϕ mea-
sures the factual consistency between a sentence
si and a collection of citations Ci: o = ϕ(si, Ci),

with o ∈ {0, 1} being the binary consistency pre-
diction of the FCM. While FCMs are often mod-
elled via modified NLI models that output a binary
prediction directly (Gekhman et al., 2023; Utama
et al., 2022), AlignScore (Zha et al., 2023) pro-
duces a single calibrated continuous value o =
pϕ(consistent | si, Ci) ∈ [0, 1]. In our scenario,
such a scalar is beneficial for computing Shapley
values and for controlling the consistency’s strict-
ness. We refer to Mosca et al. (2022) for back-
ground on Shapley values and the SHAP frame-
work in the context of NLP.

4 Citation Learning via FCMs

CaLF is a fine-tuning strategy for producing long-
form answers with citations. CaLF’s main as-
sumption is that an FCM ϕ can be leveraged as
a supervision signal to improve citation quality of
an LLM F via an iterative training procedure, as
illustrated in Figure 2 and Algorithm 1. CaLF al-
ternates between two modes in each iteration k.
First, it generates weakly-supervised training data
D̂k to enrich the training corpus by sampling di-
verse answers from a fine-tuned LLM Fk−1 and
filters them via the FCM ϕ (Sec. 4.1). Second, it
fine-tunes the LLM Fk−1 on D̂k +D with a modi-
fication of the NLL objective, which re-weights the
loss contribution of individual tokens according to
their importance for ensuring factual consistency,
as measured by the FCM ϕ (Sec. 4.2). The number
of iterations is determined dynamically by stopping
when the proportion of filtered examples over the
candidates does not improve between iterations or
once the maximum number of iterations is reached.

4.1 Answer Generation for Training

To generate weakly supervised training data
(x, P, ŷ) ∈ D̂k with answer ŷ containing citations
to passages P , we assume the availability of a col-
lection of information-seeking questions x ∈ X
and a list of atomic facts A expected in an answer
to x. For questions X , an LLM generates a col-
lection of answer candidates Ŷ , conditioned on
retrieved passages P , selected by an out-of-the-
box retrieval system R. As indicated in Algorithm
1, we produce answer candidates using either the
fine-tuned model Fk−1 from the previous iteration,
or, in the case k = 0, we use in-context prompt-
ing with the few-shot examples D. We focus on
the generation of diverse answer candidates to en-
rich the weakly supervised training data. First, we
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Algorithm 1 The training procedure of CaLF.
Input: LLM F ; FCM ϕ; Retriever R; questions X and an-

swer facts A; few-shot examples D; Iterations K.
Output: Fine-tuned LLM FK ; Citation Data D̂K .
1: U0 ← {⊕si∈y(Norm(SHAPϕ(si))) | (x, P, y) ∈ D}
2: W0 ← {Align(U, Tϕ(ŷ), TF (ŷ) | U ∈ U0}
3: P ← {R(x,KB) | x ∈ X}
4: k ← 0

5: while k ≤ K and |D̂k−1|
|Ŷk−1|

≥ | D̂k−2

Ŷk−1
| do

6: if k = 0 then ▷ Data Generation (§4.1)
7: Ŷk ← Diverse Sampl.IC(F ,X , P,D)
8: else
9: Ŷk ← Diverse Sampl.(Fk−1,X , P )

10: end if
11: D̂k ← {(x, P, ŷ) | ŷ ∈ Ŷk ∧Q(ŷ, A, P ) = 1}
12: Uk ← { ⊕

si∈ŷ
Norm(SHAPϕ(si))) | (x, P, ŷ) ∈ D̂k}

13: Wk ← {Align(Tϕ(ŷ), TF (ŷ) | U ∈ Uk}
14: Fk ← Update F via FL ▷ Focused Learning (§4.2)
15: ∇LFL(D + D̂k,W0 +Wk)
16: k ← k + 1
17: end while

use sampling strategies such as nucleus sampling
(Holtzman et al., 2020), temperature scaling (Guo
et al., 2017), and diverse beam search (Vijayaku-
mar et al., 2018). Second, we consider citation
replacements in answer sentences si in ŷ to diver-
sify the answer candidates beyond the output of
the LLM. Specifically, for generated citations Ci

in a sentence si, we generate two citation replace-
ments, sampled according to the passage probabil-
ity measured via the retriever R since the direct
computation of ϕ(si, Ci) over all citation options
is infeasible.

Each answer candidate ŷ ∈ Ŷ is subsequently
filtered via an answer quality assurance function
Qϕ : ŷ → {0, 1}, measured via the FCM ϕ, to
obtain D̂t with weakly-supervised cited answers ŷ:

Q =





1 if Citation-Recall(ŷ, C, ϕ) > Θ

∧ Citation-Precision(ŷ, C, ϕ) > Θ

∧ Correctness(ŷ, A, ϕ) > Θ

0 else,

with C being the citations assigned to sentences in
ŷ, and Θ being a dynamically determined quality
threshold that adjusts such that the size D̂t is above
a minimum viable size. Citation-Recall(ŷ, C) =
1
n

∑
si∈ŷ ϕ(si, Ci) measures the factual cov-

erage of citations, Citation-Precision(ŷ, C) =
1
|C|

∑
Ci∈C

1
|Ci|

∑
ci,j∈Ci

max(ϕ(si, ci,j), 1 −
ϕ(Ci\{ci,j},si)) measures the relevance of ci-
tations, and Correctness(ŷ, A) measures the
proportion of facts A covered in ŷ. These defini-

tions largely align with the ones in the benchmark
of Gao et al. (2023b) for evaluating citations.

And in the 1974 American 
science fiction tv series Planet 
of the Apes, Galen was played 
by Roddy McDowall [1].
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Figure 3: The computation of relevance weights W
for rescaling the loss according to Eq. 2. We first use
SHAP to measure the token importance for predicting
ϕ(si, Ci) = oi. We adjust for differences in scale of
Wϕ,i for sentences si and differences in tokenization
between the FCM and the LLM.

4.2 Focused Learning for Factual Consistency

To emphasize the learning of producing citations,
we measure the relevance for each token in an
answer for ensuring the factual consistency be-
tween y and the retrieved passages P . We sub-
sequently modify the NLL loss computation (see
Eq. 1) for the instruction-tuning of the LLM F by
re-weighting the loss contribution of the t−th token
according to relevance weights wt ∈ W :

LFL = − 1

| y |

|y|∑

j=1

wtlog pθ(yt | q, P, y<t). (2)

In contrast to NLL where the loss is computed as
the arithmetic mean over the token-level loss, our
focused learning loss LFL emphasizes tokens which
are considered of higher importance for ensuring
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factual consistency between a generated statement
and the cited passages according to an FCM ϕ.

The mechanism for obtaining the relevance
weights W is illustrated in Figure 3. We first com-
pute and normalize Shapley values for the factual
consistency prediction between y and its cited pas-
sages using the FCM ϕ, obtaining U . These normal-
ized relevance values for the tokens of the FCM are
subsequently mapped to tokens of the LLM F via
an alignment algorithm. As seen in Figure 3, given
a generated statement such as “In the 1968 film
Planet of the Apes, Galen was played by Wright
King.”, the relevance weights W consider factual
tokens such as Wright and King more important
than of and was, emphasizing units of information
important for factually accurate citation.

Computation of Token Relevance. We first
compute relevance weights U over the FCM ϕ
by computing Shapley values for the factual con-
sistency prediction between an answer’s sentence
si and its citations Ci: oi = ϕ(si, Ci). Shap-
ley values assign importance scores wt to each
feature (here token) in si concerning prediction
oi. Since Shapley values distribute the prediction
score oi along all the tokens of sentence si, the
value of oi and the length of si impacts the scale
of assigned values, as shown in Figure 3, poten-
tially biasing the loss towards shorter sentences
and amplifying idiosyncrasies of the FCM. Thus,
we normalize the assigned Shapley values for each
sentence via min-max normalization Norm(Ui):
{ ut−min(Ui)

max(Ui)−min(Ui)
| ut ∈ Ui}, with Ui being token

weights for sentence si. Thus, the token with the
highest and lowest Shapley value is assigned a rel-
evance score of 0 and 1, respectively.1 The com-
putation of weights U for a given response y can
subsequently be summarized as:

U = ⊕n
i=1Norm(SHAPϕ(si)) (3)

with ⊕ being a concatenation operator. Since ci-
tation tokens do not bear any semantic meaning
themselves, they are excluded from the computa-
tion of ϕ(si, Ci) and are thus not yet contained in
U . Therefore, we further insert a weight of 1 for
each citation token of y into U .

Feature Importance Mapping. Since the ob-
tained relevance weights U are specific to the to-
kenizer used for ϕ, an LLM that uses a different

1The exploration of alternative normalization functions is
left to future work.

tokenization may not directly apply U to re-weight
the loss LFL (c.f. Eq. 2). To this end, we define
an alignment function that maps the FCM token
weights U to LLM token weights W for the same
sequence y. The alignment function first maps
the shortest possible token span yϕ,l:l+m from the
FCM’s tokenizer Tϕ to the span yF ,p:p+q from the
LLM’s tokenizer TF , with j, l ≥ 1.2 The relevance
score for each LLM token in yF ,p:p+q is computed
as the average relevance score over the aligned
FCM span yϕ,l:l+m: Wp:p+q = {

∑
l≤t<m(ut)

|yϕ,l:l+m| | yt ∈
yF ,p:p+q} In the example of Figure 3, the weight
for the LLM’s token McDowall is computed as the
average over the weights for the three aligned FCM
tokens (McD, ow, all). Further, since both LLM
tokens K and ing are aligned to the single token
King of the FCM, both tokens are set to the same
relevance weight according to our algorithm.

5 Evaluation

Datasets & Metrics. We conduct experiments on
long-form QA datasets of the ALCE citation bench-
mark (Gao et al., 2023b), namely their version of
ASQA (Stelmakh et al., 2022) and ELI5 (Fan et al.,
2019). We further evaluate models on BIO (Min
et al., 2023). For our domain transfer experiments,
we further consider Hagrid (Kamalloo et al., 2023)
as a source for training. Since Hagrid’s answers are
generated by GPT-4 without annotations for fac-
tual coverage, we do not use it for evaluation as a
target. For training, ALCE contains | D |= 4 cited
gold instances. For Hagrid, we randomly sample 4
instances for CaLF. Details are in Appendix A.1.

We follow the official metrics and nomencla-
ture of Gao et al. (2023b) to measure correctness
(via EM Recall), fluency (via MAUVE (Pillutla
et al., 2021)), and citation F1 (via an NLI-trained
T5-11B model (Honovich et al., 2022)). We fur-
ther measure Rouge-L (Lin, 2004) and introduce
a more strict variation of their correctness met-
ric: passage-grounded correctness (Correct. in P),
which only considers information from responses
which are supported by the retrieved passages P .
Subsequently, this metric ignores factual content
produced by an LLM’s parametric memory if not
explicitly derivable from the retrieved passages, iso-
lating factual grounding from a model’s parametric
memory. We use FactScore (Min et al., 2023) to
evaluate the biographies of BIO. Detailed metric

2Note that we implement this mapping function tailored to
the specific tokenizers used by our models, see Appendix A.2.
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Method ALCE-ASQA ALCE-ELI5
Similarity Fluency Correct. Correct. Citation Similarity Fluency Correct. Correct. Citation
Rouge-L MAUVE EM Rec. in P F1 Rouge-L MAUVE EM Rec. in P F1

ChatGPT (Gao et al., 2023b) – 66.6 40.4 – 73.1 – 57.2 12.0 – 50.5
GPT-4 (Gao et al., 2023b) – 67.1 41.3 – 71.9 – 38.4 14.2 – 46.9
AGREE (Ye et al., 2024) – – 40.9 – 75.1 – – – – –
Self-RAG 7B (Asai et al., 2024) 35.7 74.3 30.0 – 67.3 16.9 32.6 9.7 5.4 27.6
BP, T5-3B (Fierro et al., 2024) – – 33.8 – 77.8 – – 5.2 – 60.9
Llamav2-7B-chat In-context 35.90.3 77.83.1 35.00.6 25.70.6 49.91.0 20.50.2 36.22.5 17.70.6 10.80.6 38.20.6

Few-shot FT 34.90.4 69.24.3 32.00.4 22.30.7 55.01.8 21.30.2 58.22.2 17.80.6 11.21.1 48.72.9
Ours 37.80.4 86.03.7 37.70.6 29.30.4 70.42.5 20.81.0 59.611.5 17.00.3 11.90.2 66.55.9

Mistral-Instr. 7B In-context 36.70.3 85.52.7 34.40.4 27.80.4 22.30.9 21.60.9 43.84.8 19.10.4 11.10.2 19.50.6
Few-shot FT 38.10.2 87.70.8 36.10.9 29.41.1 66.74.5 20.50.3 48.04.9 15.51.2 10.00.6 49.94.0

Ours 37.21.2 84.57.5 36.41.6 30.01.1 76.21.9 21.80.2 58.24.0 19.50.8 13.10.2 66.04.7
MistralOrca 7B In-context 38.70.1 54.71.8 40.20.3 31.90.2 55.60.8 20.90.1 29.30.8 20.80.4 12.50.5 43.30.5

Few-shot FT 38.41.8 78.614.7 38.43.8 29.94.7 62.63.6 19.41.9 60.513.6 17.31.8 10.91.2 57.76.5
Ours 40.30.2 84.03.3 41.71.2 34.50.5 81.52.5 20.41.5 62.74.6 18.42.1 13.10.7 73.14.2

Table 1: Main results on ALCE using only 4 training samples as D, measured across 3 random seeds. Fine-tuning via
CaLF substantially improves citation quality (Citation F1) and correct information grounded in passages (Correct.
in P ) over alternative training strategies and competitive baselines while maintaining factual coverage (EM Recall),
fluency (MAUVE), and recall-oriented similarity (ROUGE-L) to gold responses without citations.

descriptions (e.g. citation recall and precision) and
results are in Appendix A.3.

Experimental Setup. Following recommenda-
tions for weakly supervised learning (Zhu et al.,
2023) and few-shot learning (Alex et al., 2021), we
do not consider a validation set for hyperparameter-
tuning, representing real-world scenarios more ac-
curately. Due to computational constraints, we use
LoRA (Hu et al., 2022) for parameter-efficient fine-
tuning of CaLF and our fine-tuning baselines. We
use Alignscore as our FCM ϕ in all experiments
unless otherwise mentioned. A threshold is used to
map Alignscore’s output o into a binary prediction
for Q. Alignscore is substantially different from
the FCM model used for evaluating citations, us-
ing a different architecture and training data (c.f.
App. A.2). ASQA, Hagrid, and BIO use Wikipedia
as their underlying knowledge base while ELI5
uses CommonCrawl. We use the same retrievers as
Gao et al. (2023b) and Asai et al. (2024) to main-
tain comparability. Further implementation details
are in Appendix A.2.

Baselines. We compare CaLF on identical
instruction-tuned LLMs against both in-context
prompting and few-shot fine-tuning (Few-shot FT)
via Eq. 1, trained on D. In our domain transfer
experiments, the entire 335 training samples of Ha-
grid are used to train the fine-tuning baseline (FT).
Furthermore, we consider state-of-the-art models,
namely the most powerful in-context prompted
baselines from Gao et al. (2023b), ChatGPT
(gpt-3.5-turbo-0301) and GPT-4 (gpt-4-0613;
8K context window). Due to context length limi-

tations, in-context prompting uses 2 randomly sam-
pled instances. We further compare against the
best results of AGREE (Ye et al., 2024) which
use PaLM 2’s text-bison-001. Finally, we eval-
uate against open-source models, including Self-
RAG 7B (Asai et al., 2024), based on Llama2, and
Blueprint (BP) (Fierro et al., 2024), based on T5-
3B.

5.1 Main Results

Table 1 shows the main in-domain results, with
mean and standard deviation computed over three
seeds. CaLF improves citation F1 across datasets
and models by 34.1 and 15.5 points over both
in-context learning (In-context) and baseline fine-
tuning (Few-shot FT), respectively. Impressively,
all tested LLMs with CaLF outperform Self-RAG,
ChatGPT, and GPT-4 with an average improve-
ment of 24.8, 10.5, and 12.9 citation points, re-
spectively. Moreover, CaLF achieves high citation
scores while the overall quality of the response re-
mains high. We observe modest improvement in
correctness but substantial gains in grounded cor-
rectness, indicating that CaLF is better at including
verifiable facts in its responses than our baselines.
This contrasts observations for other models: GPT-
4 trades off improvements in correctness at the cost
of citation quality, resulting in ChatGPT having
overall higher citation scores than GPT-4. Notably,
CaLF improves on correctness over GPT-4 while
also producing higher-quality citations than Chat-
GPT, beating both models at their best-performing
metric. Similarly to GPT, BP produces accurate ci-
tations but has low correctness, especially on ELI5.
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Method
Source→Target

Similarity Fluency Correct. Correct. Citation Method
Source→Target

Similarity Fluency Correct. Correct. Citation

RougeL MAUVE EM Rec. in P F1 RougeL MAUVE EM Rec. in P F1

Self-RAG 7B 35.7 74.3 30.0 – 67.3 Self-RAG 7B 16.9 32.6 9.7 5.4 27.6
Llama2-7B-chat

Zero-Shot
→ASQA

36.1 47.5 35.6 27.1 31.0 Zero-Shot
→ELI5

20.0 26.5 15.3 9.7 24.4

Few-shot FT
ELI5→ASQA

37.2 74.0 37.7 31.6 64.9 Few-shot FT
ASQA→ELI5

17.1 20.8 11.4 6.8 32.9

Ours
ELI5→ASQA

37.1 75.7 36.1 30.4 73.1 Ours
ASQA→ELI5

21.3 35.0 18.2 11.0 36.5

MistralOrca-7B
Zero-Shot
→ASQA

39.0 78.9 39.5 31.6 5.7 Zero-Shot
→ELI5

21.3 35.0 22.2 12.6 10.4

Few-shot FT
ELI5→ASQA

39.7 90.1 38.5 31.4 71.7 Few-shot FT
ASQA→ELI5

20.9 41.1 19.7 10.6 40.4

Few-shot FT
Hagrid→ASQA

36.7 66.1 37.8 29.5 51.3 Few-shot FT
Hagrid→ELI5

21.3 58.1 20.9 12.7 32.3

Ours
ELI5→ASQA

40.1 86.6 40.0 33.2 79.5 Ours
ASQA→ELI5

21.2 31.3 20.4 12.5 57.3

Ours
Hagrid→ASQA

39.7 80.8 38.6 32.3 80.0 Ours
Hagrid→ELI5

21.1 32.3 20.2 12.9 54.6

Table 2: Results for our zero-shot domain transfer setting, when trained on a source dataset (D) and evaluated on a
different target dataset without any in-context instances. CaLF’s citation quality (Citation F1) and passage-grounded
correctness (Correct. in P ) is superior to all baselines, without additional inference costs.

Moreover, training via CaLF also leads to an over-
all improvement in ROUGE-L and MAUVE across
models over the fine-tuning baseline by an average
of 1.0 and 5.5, respectively.

5.2 Domain Transfer
We run domain transfer experiments to evaluate
the generalization of CaLF’s citation production,
by training an LLM with CaLF on a source dataset
and measuring performance on a different target
dataset. Table 2 shows our domain transfer results.
In every source-target configuration and across
instruction-tuned models, CaLF outperforms zero-
shot in-context learning, Few-shot FT, FT, and Self-
RAG in both citation quality and correctness. CaLF
(using MistralOrca-7B) exhibits small variability
regarding the training source D, with a citation F1

difference ∆∗→ASQA of 0.5 and ∆∗→ELI5 of 2.7,
respectively. While CaLF’s citation quality is com-
parable in-domain versus in a transfer setting on
ASQA (−∆3.9, see Table 1), we observe larger
differences on ELI5 (−∆11.9), since for ELI5 the
knowledge source and question scope greatly differ
from the Wikipedia-based source datasets.

5.3 Factuality
We evaluate CaLF’s factual precision using
FactScore. Results are shown in Table 3 for
state-of-the-art methods taken from Asai et al.
(2024), our fine-tuning baseline, and CaLF with
MistralOrca-7B. CaLFscores the highest with 83.4,
indicating that the improved citation quality trans-
lates to higher factual accuracy. Interestingly, while
citation recall can be considered a stricter measure
than the FactScore, the former is much higher for

CaLF. We postulate the difference is caused by
retrieval inaccuracies. Subsequently, we adjust pre-
dictions to abstain from answering if none of the
passages’ titles match with the BIO entity.3 As
seen in Table 3, the FactScore improves to 86.1
and 88.9 for our fine-tuning baseline and CaLF, re-
spectively. While these results are promising they
also highlight the importance of accurate retrieval
and high-quality knowledge bases so that citation
production can translate into improved factuality,
an observation also made in Menick et al. (2022);
Kryscinski et al. (2020).

Method FS Citation Recall
ChatGPT w/o retrieval 71.8 –
Llamav2-13B-chat 79.9 –
Self-RAG 7B 81.2 –
Self-RAG 13B 80.2 –
Few-shot FT 78.7 69.3
Few-shot FT + Retrieval Filtering 86.1 69.3
Ours 83.4 92.7
Ours + Retrieval Filtering 88.9 92.7

Table 3: FactScore (FS) evaluation. MistralOrca7B is
used with Few-shot FT and Ours. Other results are
taken from Asai et al. (2024). + Retrieval Filtering: the
model abstains when no passage title matches the entity.

6 Discussion

Ablation. Table 4 shows an ablation for the two
mechanisms introduced in CaLF, the generation
of weakly-supervised training data (WS) and the
focused learning loss (LFL). By adding WS, we
see an improvement of 18.3 and 16.7 citation recall
and precision points on ASQA, respectively. By

3Abstaining is explicitly incorporated into FactScore.
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adding LFL, we further improve on top of WS by
6.3 and 8.2 recall and precision points, respectively.
On ELI5, we observe similar improvements.

Correctness Citation Citation
Method in P Recall Precision

ASQA
LLM 25.8 57.5 55.2
LLM + WS 29.0 (+3.2) 75.8 (+18.3) 71.9 (+16.7)
LLM + WS + LFL 33.8 (+8.0) 84.1 (+24.6) 83.8 (+28.9)

ELI5
LLM 11.0 57.3 51.0
LLM + WS 11.5 (+0.5) 61.5 (+4.2) 57.2 (+6.2)
LLM + WS + LFL 12.5 (+1.5) 72.1 (+14.8) 66.6 (+15.6)

Table 4: Ablation for CaLF (MistralOrca-7B). WS:
weakly-supervised training, LFL: Focused learning.

Iterative Training. Performance of CaLF across
iterations is shown in Figure 4 on ASQA. We see
a majority of citation performance improvements
within the first three iterations after which citation
F1 stabilizes. We further observe consistent im-
provements to MAUVE, ROUGE-L, and grounded
correctness across iterations. Importantly, we do
not observe erratic or unstable performance, indi-
cating the robustness of our iterative training proce-
dure. The proportion of filtered examples D̂k over
Ỹk as our dynamic stopping criterion matches the
citation performance well, improving efficiency by
early stopping once saturated (here iteration 4).
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Figure 4: Evaluation metrics and CaLF’s dynamic stop-
ping criterion over the number of iterations on ASQA.

Selection of FCM. We further investigate the
extent to which the quality of an FCM translates
to improved citation production for CaLF. To this
end, we replace the FCM with: (i) a DeBERTav3
model adjusted for factual consistency (Steen et al.,
2023), (ii) the current T5-based state-of-the-art on
the TRUE benchmark (Gekhman et al., 2023), (iii)

the FCM Honovich et al. (2022) used for citation
evaluation. We constrain D̂t to 32 samples and run
without LFL since for decoders the computation of
Shapley values over their vocabulary (prediction) is
more involved. Table 5 shows results on the TRUE
benchmark (summarization subset) and the citation
F1 on ASQA with CaLF. We generally observe that
better scores on the TRUE benchmark translate
to higher citation scores when incorporated into
CaLF. The only exception is the FCM Honovich
et al. (2022), which is used in both training and
evaluation, scoring disproportionately high in terms
of citation F1, most likely due to model biases
leaking through evaluation. While Gekhman et al.
(2023) performs the best on TRUE, it is much more
expensive to run at scale for CaLF than AlignScore.

Method TRUE AUC Citation F1

Steen et al. (2023) 79.5 72.5
Honovich et al. (2022)† 82.7 81.9
AlignScore (Zha et al., 2023) 84.8 74.0
Gekhman et al. (2023) 87.8 77.7

Table 5: Measuring the extent to which the quality of an
FCM (TRUE benchmark) translates to CaLF by com-
paring the quality of an FCM (TRUE benchmark) and
CaLF. †Citation evaluation model.

Adversarial Baselines. Long-form QA is no-
toriously difficult to automatically evaluate (Xu
et al., 2023; Krishna et al., 2021). Thus, to assess
whether the automatic evaluation metrics of Gao
et al. (2023b) can be exploited, we designed several
adversarial baselines, such as copying retrieved pas-
sages as the answer or citing all passages for every
generated sentence. Results are shown in Table
6. Every baseline that attempts to trick one metric
performs poorly on another. For instance, copy-
ing passages (Copy) results in very poor MAUVE
while citing all passages (Ours w/ cite all) results
in very low citation precision. A more detailed
discussion is shown in Appendix A.3.

Human Evaluation. We further conduct a hu-
man evaluation to compare the quality of generated
responses produced by CaLF with Few-shot FT
(using MistalOrca-7B). Human subjects are tasked
to judge the models’ generations regarding citation
quality, informativeness, coherence, and fluency,
following human evaluation in Gao et al. (2023b)
and recommendations in Zhong et al. (2022). The
latter three metrics are measured using a five-point
Likert scale, with five being the highest score. We
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Method Similarity Fluency Correct. Correct. Citation Citation Avg length
Rouge-L MAUVE EM Rec. in P Recall Precision

Ours 40.5 80.1 39.9 33.8 84.1 83.8 71.2
Copy (No length limit) 25.3 11.8 50.6 49.5 98.2 98.7 628.4
Copy (Truncated - 1st paragraph) 34.0 16.8 36.0 34.6 97.9 98.4 210.7
Copy (Truncated - 100 tokens) 33.3 16.2 22.8 20.9 96.1 96.3 100.0
Ours w/ all set to [1] 40.5 80.1 39.9 33.8 49.0 49.5 71.2
Ours w/ cite all 40.5 80.1 39.9 33.8 75.6 36.4 71.2
Ours w/o EOS token 33.0 20.2 46.9 39.7 71.1 81.7 256.0

Table 6: Evaluation of adversarial baselines on ASQA, using MistralOrca-7B. Results are shown for seed 42. Copy:
Use retrieved passages directly as a response. w/ all set to [1]: Replacement of all citations in the generated response
with citations to the first passage. w/ cite all: Replacement of citations in the generated response with citations to all
passages. w/o EOS token: Remove EOS token from training. The average gold answer length is 113 tokens.

randomly sample 30 instances for each model from
ELI5, ASQA, and BIO, resulting in 180 instances.
Results are shown in Table 7. CaLF achieves sub-
stantially higher citation quality, fluency, and an-
swer coherence ratings than across datasets with
an F1 of 91.5 versus 72.7 for the baseline. While
average informativeness ratings are comparable be-
tween CaLF and the baseline , on ELI5 particularly
we observe low informativeness with CaLF. This is
caused by frequent retrieval errors since ELI5 uses
a weak retriever (BM25) to efficiently traverse over
its large and noisy knowledge base. Instead of us-
ing its parametric memory when passages contain
little relevant information, we observe that CaLF
still produces accurately grounded responses, how-
ever, at the cost of less informative content.

Method Citation Informa- Coherence Fluency
F1 tiveness

of 100 ↑ Likert Scale 1 to 5 ↑
Few-shot ASQA 65.2 4.07 4.07 4.57
FT ELI5 68.7 4.13 4.07 4.5

BIO 84.3 4.6 4.57 4.67
Avg 72.7 4.27 4.23 4.58

Ours ASQA 93.7 4.67 4.67 4.93
ELI5 82.7 3.3 3.93 4.17
BIO 97.3 4.87 4.77 4.83
Avg 91.5 4.28 4.46 4.64

Table 7: Human evaluation study. Informativeness, co-
herence, and fluency are judged using a five-point Likert
scale. Results confirm automatic evaluation, putting
CaLF ahead in terms of citation quality while maintain-
ing high response quality.

Efficiency At inference time, CaLF matches the
efficiency of the few-shot FT baseline, contrast-
ing previous methods that cause significant over-
head, including in-context learning (increased in-
put length), Self-RAG (tree-decoding with critique
tokens), and post-hoc editing. The training com-
plexity of CaLF can be described as O(K × |X )|),

with K and X being the number of iterations and
the collection size of questions we generate weakly-
supervised data of, respectively. The generation of
diverse answer candidates is computationally the
most involved while the filtering of answer can-
didates and the computation of Shapley Values is
efficient due to the small size of the FCM we use
(Alignscore, 355M parameters). To quantify the
computational cost, we measured training times
using a single A100 40GB GPU. We measure a
training time of 13h51min for CaLF and 1h2min
for the few-shot FT baseline. While there’s a no-
table disparity in training time, it’s essential to note
that achieving comparable performance to CaLF
via regular fine-tuning would necessitate training
on significantly more data, resulting in additional
training and, importantly, data annotation cost.

7 Conclusion

This paper presented CaLF, a fine-tuning method
for LLMs to produce accurate citations alongside
generated text. It focuses on using FCMs as a
training signal by filtering candidate answers with
citations and by re-weighting the LLM’s objective
function according to the tokens’ factual impor-
tance. CaLF outperforms all baselines in terms of
citation quality and passage-grounded correctness
while ensuring that the overall quality of responses
remains high, measured via both automated and
human evaluation. In a domain transfer setting
we further validate the generalizability of CaLF.
Moreover, we discuss the benefits of accurate cita-
tion production for improving factuality and high-
light the importance of each component of CaLF
through a systematic ablation. Future work looks
at incorporating a learned mechanism into CaLFto
abstain from answering if none of the retrieved
passages are considered relevant to the question.
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Limitations

The assumption that every generated sentence re-
quires a citation is an oversimplification we adopt
from Gao et al. (2023b). However, real-world di-
alogue agents commonly introduce their response
with non-factual phrases or sentences (e.g. Of
course I can help!). A potential solution is to in-
troduce an extrapolatory label as described in Yue
et al. (2023). Furthermore, CaLF is not entirely
model-agnostic out-of-the-box, since the tokeniza-
tion alignment algorithm was designed with the
idiosyncrasies of the particular LLMs and FCMs in
mind. Moreover, inaccuracies or biases of the fac-
tual consistency models could negatively affect the
citation quality of CaLF (c.f. Sec. 6). A common
strategy to mitigate biases involves an alignment
stage, where models are explicitly optimized on
based on preference data. It would be interesting to
explore alignment in the context of CaLF applied
to highly domain-specific questions, such as those
compiled in the recent dataset of Malaviya et al.
(2024).

Finally, our paper focuses exclusively on im-
proving generation, yet as highlighted in Section 6,
high-quality retrieval systems are vital for citations
to be effective. When retrieved passages contain
non-factual information or lack useful content, pro-
duced answers might not be informative. While the
reliance of retrieved passage is answer production
poses a limitation, language model’s intrinsic mem-
ory for content generation forfeits the transparency
and verifiability benefits inherent in citation pro-
duction. Balancing the use of citation production
and intrinsic memory while preserving the advan-
tages of both remains an ongoing challenge. Fu-
ture directions might consider a joint fine-tuning
procedure of generator and retriever and even cap-
turing their rich interactions, such as abstaining
from answering questions when retrieved passages
are irrelevant. The action of abstaining to answer
could serve as a signal to the retrieval system to
seek alternative sources of information.

Ethics Statement

Our paper improves the ability of LLMs to pro-
duce accurate citations to sources alongside their
generated answers to improve the verifiability of
LLMs’ responses. As noted in Section 5.3, we
caution against equating improved citation quality
with improved factuality since even correctly cited
passages can be factually incorrect or misleading

without additional context about the passage and
its source. Citations can therefore invoke a false
sense of trust and amplify observations made in
Si et al. (2023). It remains important for users to
stay critical and reflect on generated responses. By
improving citation accuracy our paper simplifies
the verification process but does not eliminate it.
Furthermore, Huang and Chang (2024) argue that
the incorporation of citations can help to address
intellectual property and associated ethical issues
in the deployment of LLMs due to the increased
verifiability of responses made. Finally, we rec-
ognize a potential risk of dual-use by adversarial
actors: similarly to how humans cherry-pick data
to support a strong bias or prior, we cannot guaran-
tee that an LLM will not exhibit similar behaviour
when manipulated with passages that contain mis-
information or miss relevant context.
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A Appendix

A.1 Datasets

The four datasets considered for evaluation cover
different question-answering tasks and domains:
ASQA is a disambiguation task built on top of
AmbigQA (Min et al., 2020), ELI5 contains real-
world highly open-ended questions and answers
from an online forum (Reddit), Hagrid contains
entity-specific questions, and BIO is a biography
generation task containing simple person-related
questions. Hagrid’s training set as provided by
Kamalloo et al. (2023) consists of 1,922 GPT-4
generated answers, out of which 335 instances are
human-labeled as both attributable and informative.
Only these 335 instances are used as training data.
For Hagrid, we randomly sample 4 instances for
CaLF and use all its 335 training samples for our
fine-tuning baseline. We use each datasets’ original
training set to sample questions X and atomic facts
A. Since Hagrid does not have any annotations for
factual coverage, we compute the quality assurance
function Q only over the Citation conditions. BIO
consists of two evaluation sets. As recommended
by the authors and following Self-RAG, we use
the second, and more difficult, evaluation set in
our experiments. The test set of ALCE-ASQA and
ALCE-ELI5 consists of 1000 randomly sampled
instances from their respective development set.
For more details on the ALCE benchmark, we refer
to Gao et al. (2023b).

A.2 Experimental Setup

Token alignment algorithm We design the to-
ken alignment algorithm around the idiosyncrasies
of the LLMs’ and FCM’s tokenizers. Llama2,
Mistral-Instruct, and MistralOrca use the Llama to-
kenizer4, a BPE model (Sennrich et al., 2016) based
on sentencepiece5. Similarly, the FCM, Alignscore,
uses a RoBERTa tokenizer which is derived from
the GPT-2 tokenizer, also using BPE. Both Llama
and RoBERTa tokenizers treat spaces as parts of
the tokens. In contrast to RoBERTa tokenizer, the
Llama tokenizer indicates each space via an under-
score ("_"). We exclude special tokens of either
tokenizer (e.g. "<s>" or "<0x0A>") from the align-
ment procedure.

4https://huggingface.co/docs/transformers/
main/en/model_doc/llama#transformers.
LlamaTokenizer

5https://github.com/google/sentencepiece?tab=
readme-ov-file

Given a sentence, tokenized both by FCM and
LLM, we we first strip the FCM tokens (i.e. re-
move spaces) and remove underscores for tokens of
the LLM, essentially removing all spaces to unify
their representations. The algorithm then checks
whether the current tokens are equal or subsets
of one another, with and without considering the
memory of tokens not yet aligned but iterated over
by the pointers. For instance, consider the FCM
tokens: ’Maw’, ’syn’, ’ram’, and LLM tokens for
the same word: is _M’, ’aws’, ’yn’, ’ram’. For the
first two FCM tokens, none of the LLM tokens can
be directly aligned to it. Our algorithm ensures to
find the smallest sequence of tokens in both the
LLM and FCM that can be aligned to each other
(here the spans are ’Mawsyn’ and ’ram’) and as-
signs the relevance score as described in Section
4.2. We find the smallest sequence by keeping a list
of tokens for each FCM and LLM that could not
yet be aligned and increment the respective point-
ers according to which sequence needs to continue
(e.g. Checking that [M] + [was] continues [Maw]
potentially, requires incrementing the FCM pointer,
since an ’s’ is missing in [Maw]. This algorithm is
efficient and runs in linear time.

Generating Cited Answers for Training. While
datasets such as ELI5 have over 250K train-
ing instances we could use to generate weakly-
supervised training data, we constrained the size
of X to 1000 samples, since it is computationally
infeasible to run our weakly-supervised data gen-
eration procedure on all training samples of the
dataset. The threshold Θ is determined dynami-
cally. Starting with a value of 0.9, if the number of
samples in D̂ is below 3, we consider the threshold
too high for the given LLM and reduce it by 0.1
until the requirement is met.

Passage Retrieval. For the retriever R we use
GTR (Ni et al., 2021) for ASQA and Hagrid
(Wikipedia), BM25 for ELI5 (CommonCrawl6),
and Contriever-MS MARCO (Izacard et al., 2022)
for BIO (Wikipedia), to maintain comparability
with Gao et al. (2023b) and Asai et al. (2024). We
use |P | = 3 passages throughout due to context
length limitations. We use the same indices as pro-
vided by ALCE, subsequently, each passage has a
length of 100 tokens.

Answer Generation. We use the same instruc-
tions/prompts across all models, specifically the

6http://commoncrawl.org
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default prompts from ALCE. In contrast to the
code of ALCE7, we used the chat templates across
all models and baselines8 to render the inputs, since
we observed crucial tokens missing during the fine-
tuning procedure otherwise. The only exception is
ELI5, where we observed that chat templates re-
sulted in worse performance and used ALCE’s strat-
egy plus relevant formatting tokens instead across
all models and baselines. For inference, we use
MAP with a beam size of 1, instead of sampling
with temperature scaling as done in ALCE, assum-
ing that this results in more factual outputs.9

Factual Consistency Model Our choice of us-
ing AlignScore as our FCM ϕ was further moti-
vated by its dissimilarity to the citation evaluation
model (Honovich et al., 2022) (in contrast to e.g.
TrueTeacher (Gekhman et al., 2023) which in prin-
ciple performed better but is more similar to the
evaluation model). While AlignScore is an encoder-
based RoBERTa model, TRUE (Honovich et al.,
2022) is an encoder-decoder T5-11B model. More-
over, their training data is different. AlignScore
was trained on 15 datasets of various tasks, includ-
ing natural language inference, summarization, in-
formation retrieval, and paraphrasing while TRUE
has only seen 6 natural language inference-related
datasets.

Training & Hyperparameters We set the learn-
ing rate to 3−4 and train for a total of 100 steps
across all models and experiments. The maximum
generation length is set to 256 tokens, however,
most generations stay far below this limit (see Ap-
pendix A.3. We use adamw (Loshchilov and Hutter,
2019) as the optimizer. We use a batch size of 1
during training with gradient accumulation, result-
ing in an effective batch size of 4. For LoRA, we
use a rank r = 4 and apply it to all parts of the
attention mechanism. For fine-tuning, we exclude
tokens of the prompts from the loss computation
that are not part of the gold answer, so we are not
fine-tuning the instructions, only the answers that
follow after the instruction. The iterative training
process stops after at most 8 iterations due to com-
putational constraints. We further down-weight the

7https://github.com/princeton-nlp/ALCE
8https://huggingface.co/docs/transformers/

main/en/chat_templating
9Note that we do not use constrained decoding for cita-

tion generation despite its apparent suitability here. Yet, the
position of citation markers within a sentence can be rather
flexible, which we consider a desired property for naturally
produced text.

loss contribution of the EOS token to 0.02 since
models tend to otherwise produce very short single-
sentence responses.

Implementation Details We use the Hugging-
face checkpoints for LLama2-7B10, MistralOrca-
7B11, and Mistral-Instruct-7B,12 as well as for all
FCMs we considered in our experiments, namely
AlignScore (RoBERTa-large, 355M parameters)
13, TRUE (T5, 11B parameters)14, (Steen et al.,
2023)15 (DeBERTaV3, 304M parameters), and
TrueTeacher (T5, 11B parameters)16. The Mis-
tral models are licensed under Apache2.0, Align-
Score and (Steen et al., 2023) are licensed under
MIT, TrueTeacher is licensed under cc-by-nc-4.0,
and Llama2 is licensed under the llama license17.
Subsequently, our research is consistent with the
licenses’ intended use. The models are intended
to be used for English. We use the ALCE data
and prompts from their repository18, and Hugging-
face’s Datasets for Hagrid19. For running the ex-
periments, we used a combination of A100 40GB
and A10G with 23GB GPUs. We use the Python
package rouge-score20 for computing the ROUGE,
and the package mauve-text21 for computing the
MAUVE score. We adopt the code of ALCE for the
citation and correctness metrics and define passage-
grounded correctness ourselves. We use NLTK
(Bird and Loper, 2004) for some pre-and post-
processing steps.

Baselines. Results from state-of-the-art methods
are taken from their respective papers. The only
exception is Self-RAG on ELI5, which we have
run by ourselves using the authors’ repository and

10https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

11https://huggingface.co/Open-Orca/
Mistral-7B-OpenOrca

12https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.1

13https://huggingface.co/yzha/AlignScore,
and their repository https://github.com/yuh-zha/
AlignScore

14https://huggingface.co/google/t5_xxl_true_
nli_mixture

15https://huggingface.co/juliussteen/
DeBERTa-v3-FaithAug

16https://huggingface.co/google/t5_11b_
trueteacher_and_anli

17https://github.com/facebookresearch/llama/
blob/main/LICENSE

18https://github.com/princeton-nlp/ALCE
19https://huggingface.co/datasets/miracl/hagrid
20https://pypi.org/project/rouge-score/
21https://pypi.org/project/mauve-text/
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their models22. At the point of submission, their
repository produces results which are worse than
reported in their paper, as explained by the authors
due to a bug23, which potentially impacts scores
reported of Self-RAG on ELI5. While the authors
have stated their intentions to fix this issue, the
problem was not resolved as of our submission
date. We will update their scores once a fix is
available.

A.3 Evaluation

Detailed descriptions for each evaluation metric
are shown in Table 8. Results shown in Table 2 are
computed with default random seed 42.

Ablation Table 9 Table 10 show the ablation re-
sults for CaLFon Mistral-Instruct 7B and Llamav2-
7B-chat, respectively. The results largely align with
observations made for MistralOrca-7B in table 4.
We observe that passage-grounded correctness ei-
ther slightly decreases or remains comparable to the
baseline when using the weakly-supervised train-
ing without our focused learning objective LFL.
Once the objective is added,vcorrectness improves
consistently across datasets and models over the
baseline.

Adversarial Baselines The automated metrics
proposed by Gao et al. (2023b) do not explicitly
control for the generation of irrelevant information
(i.e. factual precision, such as FactScore)24. Sub-
sequently, their metrics favour longer responses
for coverage-based measures (i.e. correctness), as
also pointed out by Asai et al. (2024). This raises
the question of whether the automated metrics de-
ployed can be tricked with trivial responses or cer-
tain response patterns.

Table 6 shows results across metrics for several
such baselines on ASQA. Our approach has an av-
erage response length of 71.2 tokens, comparable
to typical fine-tuning with 61.0 tokens, both being
substantially shorter than the dataset’s average gold
answer length with 113 tokens. In contrast, the re-
trieved passages themselves are 521.8 tokens long.
Considering these as the answer themselves, we
indeed achieve a higher correctness score (50.6)
while maintaining perfect citation, however, we ob-
serve a substantial decrease in both ROUGE-L and

22https://github.com/AkariAsai/self-rag
23https://github.com/AkariAsai/self-rag/issues/4
24The exclusion of such metric in ALCE is likely due to

gold answers not being designed to be factually comprehen-
sive.

MAUVE scores. This is intuitive since the retrieved
passages are very dissimilar in style from the gold
answers. Moreover, MAUVE has an explicit length
bias (Pillutla et al., 2021). When explicitly biasing
our CaLF to generate long sequences by removing
the EOS token during fine-tuning and setting the
generation limit to 256 tokens, we also observe a
substantial increase in correctness while maintain-
ing much of the attribution performance. Yet, again
we observe a substantial decrease in ROUGE-L and
MAUVE, highlighting the importance of maintain-
ing all performance metrics high while optimizing
attribution, as achieved by CaLF. Finally, we con-
sider replacing the citations made in generated re-
sponses from our model with: (i) citations to exclu-
sively the first passage, (ii) citations to all passages.
As seen in the table, citation scores are substantially
worse than our approach. While in principle (ii)
should present an upper bound on attribution recall,
we observe lower scores than our model even here.
This can be explained by inaccuracies in the evalu-
ation model, being biased towards information at
the beginning of the premise (scoring much worse
for citations to the last passage).

A.4 Human Evaluation

Human subjects are tasked to judge the models’
generations regarding: (i) citation recall: judge-
ment whether a generated sentence is fully sup-
ported by citations, (ii) citation precision: whether
a citation partially or fully supports a sentence,
(iii) informativeness: whether the generation helps
to answer the question, (iv) coherence: whether
generated sentences are semantically and syntacti-
cally well-connected, (v) fluency: whether all sen-
tences are grammatically correct and well-readable.
While (i), (ii), and (iii) are adopted from the human
evaluation in Gao et al. (2023b), we further mea-
sure (iv) and (v) as recommended in Zhong et al.
(2022). We randomly sample 30 instances for each
model for each dataset (ELI5, ASQA, BIO), result-
ing in 180 instances which are judged via the above
criteria. The instances were judged by four sub-
jects, distributed equally (45 samples per subject).
Each subject was provided with detailed annotation
guidelines, providing examples for each possible
annotation option with explanations. The subjects
were partially authors and partially volunteers. All
subjects were informed how the data would be used
and provided consent. All subjects are male under
65 years of age and either from the USA or the UK.
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Name Description Computation
Gold Answer-based Metrics

Fluency (MAUVE) Measures two types of errors: (i) model pro-
duces degenerate text (outside of human distri-
bution), (ii) model does not yield diverse text
(does not cover human distribution)

Rλ = λP +(1−λ)Q, summarizing KL divergence of KL(P |Rλ)
and KL(Q|Rλ, for λ ∈ (0, 1), computed via Monte-Carlo estima-
tor (LM embeddings + quantization via k-means).

Similarity (ROUGE-L) Measures longest matching sequence of words.
Bad approximator for factuality (see e.g. here)

Computes F1 for longest common subsequence (LCS). Recall
being ratio over reference. Precision ratio over answer.

Specialized Metrics

Correctness Measures whether atomic units of information
from gold answers appear in the generated
answer.

ASQA: Measures exact match of short answers in generated an-
swers. ELI5: Measures whether atomic statements are consistent
with generated answer.

Passage-grounded Correctness Measures whether atomic units of informa-
tion from gold answers appear in the gener-
ated answers and whether this information is
supported by the retrieved passages. Elimi-
nates to score responses that are correct but
not grounded in retrieved passages.

ASQA: Measures exact match of short answers in generated an-
swers that can be attributed to retrieved passages. ELI5: Measures
whether atomic statements are consistent with generated answer
that can be attributed to retrieved passages .

Citation Recall Measures the ratio of sentences in generated
answers that are consistent with their cited
sources/passages.

Recall is 1 iff there exists at least one citation and sentence is
consistent with citations considered jointly: ϕeval(⊕(Ci), si) = 1.

Citation Precision Measures the ratio of citations in generated
answer that are not irrelevant.

Citation considered irrelevant iff: i) the citation itself does not
support the attributed sentence: ϕeval(ci,j , si) = 0 ii) removing
the citation does not affect rest of citations to attribute the sentence:
ϕeval(⊕(Ci)\{ci,j}, si) = 1.

Table 8: Overview of the LFQA evaluation metrics. Correctness, Fluency, and Citation scores are taken from the
ALCE (Gao et al., 2023b). Passage-grounded Correctness is a metric we propose to measure information coverage
for citable statements (i.e. excluding hallucinated correct information). ϕeval is the evaluation FCM, namely TRUE
(Honovich et al., 2022).

Correctness Citation Citation
Method in P Recall Precision

ASQA
LLM 28.3 60.9 63.5
LLM + WS 24.1 (-4.2) 72.3 (+11.4) 73.9 (+10.4)
LLM + WS + LFL 29.6 (+1.3) 79.2 (+19.7) 80.2 (+16.7)

ELI5
LLM 9.1 55.2 40.1
LLM + WS 10.9 (+1.8) 60.9 (+5.4) 59.6 (+19.5)
LLM + WS + LFL 12.5 (+3.4) 70.0 (+14.8) 67.0 (+26.9)

Table 9: Ablation for CaLF (Mistral-Instruct-7B). WS:
weakly-supervised training, LFL: Focused learning.

Correctness Citation Citation
Method in P Recall Precision

ASQA
LLM 23.4 58.7 55.3
LLM + WS 23.1 (-0.3) 69.6 (+10.9) 66.3 (+11.0)
LLM + WS + LFL 30.7 (+7.3) 76.0 (+17.3) 72.5 (+17.2)

ELI5
LLM 11.3 53.2 46.6
LLM + WS 9.1 (-2.1) 67.1 (+13.9) 66.4 (+19.8)
LLM + WS + LFL 11.7 (+0.4) 71.2 (+18.0) 63.2 (+16.6)

Table 10: Ablation for CaLF (Llama2-7B-chat). WS:
weakly-supervised training, LFL: Focused learning.

A.5 Qualitative Examples
To qualitatively compare the produced answers by
CaLF and our few-shot FT baseline we show a ran-
domly selected output for each evaluation dataset.
Results are shown in Figure 5, Figure 6, and Figure
7 for ASQA, ELI5, and BIO, respectively.
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Method Rouge-L Fluency Correctness Grounded Correct. Citation Recall Citaion Precision Avg length
ASQA

ChatGPT (Gao et al., 2023b) – 66.6 40.4 – 73.6 72.5 –
Vicuna-13B (Gao et al., 2023b) – 82.6 31.9 – 51.1 50.1 –
Self-RAG 7B (Asai et al., 2024) 35.7 74.3 30.0 – 66.9 67.8 –
In-context (Llamav2-7B-chat) 35.9 84.1 34.5 25.2 50.4 50.0 93.3
Few-Shot FT (Llamav2-7B-chat) 34.7 71.3 33.1 23.4 58.7 55.3 52.5
In-context (Mistral-Instruct 7B) 36.4 86.6 34.1 28.0 21.7 23.6 75.9
Few-Shot FT (Mistral-Instruct 7B) 37.6 82.5 35.3 28.3 60.9 63.5 105.7
In-context (MistralOrca 7B) 38.8 53.9 40.1 32.4 52.5 61.0 64.5
Few-Shot FT (MistralOrca 7B) 37.5 81.9 37.3 25.8 57.5 55.2 61.0
Ours (Llamav2-7B-chat) 37.9 84.3 37.8 29.5 72.8 72.3 86.9
Ours (Mistral-Instruct 7B) 37.7 87.5 35.2 29.6 79.2 80.2 79.5
Ours (MistralOrca 7B) 40.5 80.1 39.9 33.8 84.1 83.8 71.2

ELI5
ChatGPT (Gao et al., 2023b) – 57.2 12.0 – 51.1 50.0 –
Vicuna-13B (Gao et al., 2023b) – 58.2 10.0 – 15.6 19.6 –
Self-RAG 7B (Asai et al., 2024) 16.9 32.6 9.7 5.4 23.3 33.9 –
In-context (Llamav2-7B-chat) 19.7 37.7 14.1 8.6 39.9 27.6 110.7
Few-Shot FT (Llamav2-7B-chat) 21.3 54.9 17.8 11.3 53.2 46.6 138.4
In-context (Mistral-Instruct 7B) 20.5 62.3 17.4 11.7 43.8 44.9 111.2
Few-Shot FT (Mistral-Instruct 7B) 19.5 37.8 13.8 9.1 55.2 40.1 93.0
In-context (MistralOrca 7B) 20.8 27.7 20.5 12.4 45.4 41.8 94.8
Few-Shot FT (MistralOrca 7B) 20.5 44.9 18.4 11.0 57.3 51.0 100.8
Ours (Llamav2-7B-chat) 21.3 69.5 17.2 11.7 71.2 63.2 141.2
Ours (Mistral-Instruct 7B) 21.8 53.5 18.9 12.5 70.0 67.0 143.8
Ours (MistralOrca 7B) 20.7 68.3 18.6 12.5 72.1 66.6 108.3

Table 11: Main in-domain results on ASQA, ELI5 using CaLF for fine-tuning various instruction-tuned LLMs,
using only 4 initial samples D. Results are shown for default random seed 42.

Method Source Rouge Fluency Correct. Gr. Correct. Attr. Recall Attr. Precision Length
Target Dataset: ASQA

Self-RAG 7B Critique tokens 35.7 74.3 30.0 – 66.9 67.8 –
Zero-Shot (Llama2-Chat-7B) – 36.1 47.5 35.6 27.1 24.3 42.8 126.9
Zero-Shot (MistralOrca) – 39.0 78.9 39.5 31.6 5.3 6.1 63.6
Few-shot FT (Llama2-Chat-7B) ELI5 37.2 74.0 37.7 31.6 67.9 62.2 150.6
Few-shot FT (MistralOrca) ELI5 39.7 90.1 38.5 31.4 73.8 69.7 94.1
FT (MistralOrca) Hagrid 36.7 66.1 37.8 29.5 50.8 51.8 57.6
Ours (Llama2-Chat-7B) ELI5 37.1 75.7 36.1 30.4 77.8 69.0 141.6
Ours (MistralOrca) ELI5 40.1 86.6 40.0 33.2 80.4 78.5 101.0
Ours (MistralOrca) Hagrid 39.7 80.8 38.6 32.3 78.9 81.1 64.9

Target Dataset: ELI5
Self-RAG 7B Instr. tuning w/ critique tokens 16.9 32.6 9.7 5.4 23.3 33.9 –
Zero-Shot (Llama2-Chat-7B) – 20.0 26.5 15.3 9.7 17.8 39.0 111.1
Zero-Shot (MistralOrca) – 21.3 35.0 22.2 12.6 8.1 14.4 120.5
Few-shot FT (Llama2-Chat-7B) ASQA 17.1 20.8 11.4 6.8 33.3 32.6 70.4
Few-shot FT (MistralOrca) ASQA 20.9 41.1 19.7 10.6 39.8 41.0 92.1
FT (MistralOrca) Hagrid 21.3 58.1 20.9 12.7 28.6 37.0 112.4
Ours (Llama2-Chat-7B) ASQA 21.3 35.0 18.2 11.0 38.6 34.7 137.7
Ours (MistralOrca) ASQA 21.2 31.3 20.4 12.5 57.4 57.2 97.2
Ours (MistralOrca) Hagrid 21.1 32.3 20.2 12.9 54.0 55.3 101.7

Table 12: Results for our zero-shot domain transfer setting, when trained on a source dataset and evaluated on a
different target dataset without any in-context instances. Results are shown for default random seed 42.
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Question: What is the genre of holes by louis sachar?
Retrieved Passages:
[1] Title: Louis Sachar Text: Louis Sachar Louis Sachar ( ; born March 20, 1954) is an American
young-adult mystery-comedy author. He is best known for the "Wayside School" series and the
award-winner, "Holes". "Holes" won the 1998 U.S. National Book Award for Young People’s
Literature and the 1999 Newbery Medal for the year’s "most distinguished contribution to American
literature for children". In 2013, it was ranked sixth among all children’s novels in a survey published
by "School Library Journal". After graduating from high school, Sachar attended Antioch College
for a semester before transferring to University of California, Berkeley, during which time he began
helping

[2] Title: Holes (novel) Text: American teenager with a criminal history. A new friendship with
Ginny, who has cerebral palsy, a reunion with former friend X-Ray, a ticket-scalping scheme, a
beautiful pop singer, and a frame-up all test Armpit’s resolve to "Just take small steps and keep
moving forward". Holes (novel) Holes is a 1998 young adult mystery comedy novel written by Louis
Sachar and first published by Farrar, Straus and Giroux. The book centers around an unlucky teenage
boy named Stanley Yelnats, who is sent to Camp Green Lake, a juvenile corrections facility in a desert
in Texas, after being falsely accused of theft.

[3] Title: Holes (novel) Text: Holes (novel) Holes is a 1998 young adult mystery comedy novel
written by Louis Sachar and first published by Farrar, Straus and Giroux. The book centers around an
unlucky teenage boy named Stanley Yelnats, who is sent to Camp Green Lake, a juvenile corrections
facility in a desert in Texas, after being falsely accused of theft. The plot explores the history of the
area and how the actions of several characters in the past have affected Stanley’s life in the present.
These interconnecting stories touch on themes such as racism, homelessness, illiteracy, and arranged
marriage. The book was both a

Few-shot FT Baseline Response: "Holes by Louis Sachar is a genre of young adult mystery comedy
novel [2]. It was first published by Farrar, Straus and Giroux and won the 1998 U.S. National Book
Award for Young People’s Literature and the 1999 Newbery Medal for the year’s m̈ost distinguished
contribution to American literature for children[̈1]. The novel centers around an unlucky teenage boy
named Stanley Yelnats, who is sent to Camp Green Lake, a juvenile corrections facility in a desert in
Texas, after being falsely accused of theft [2]."

CaLF Response: The genre of "Holes" by Louis Sachar is a young adult mystery-comedy [1]. The
novel explores themes such as racism, homelessness, illiteracy, and arranged marriage [3].

Figure 5: ASQA Example of generated answers with citations given a question and retrieved passages. We compare
the answers produced by the Few-shot FT baseline model with those generated by CaLF.
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Question: Why are soap operas instantly identifiable.
Retrieved Passages:
[1] Title: New Soap Chronicles of the Sun To Debut On TV5Monde USA - Soap Opera Spy Text:
with Soap Opera Spy for all the latest news, updates and spoilers on all of your favorite daytime and
primetime television shows right here! Young and the Restless Sharon Case Talks Mariah-Sharon
Drama and Why Nick Is The One Days Of Our Lives Spoilers: JJ Pays It Forward – Talks New Nurse
Out Of Suicide, Instantly Smitten With Her

[2] Title: TV Soap Opera - English, Belonging Text: Number 96, which set a new standard and
wholly different tone for Australian TV ’soapies’. Other popular and successful local soap operas
included The Box (1974), The Young Doctors (1976), The Restless Years (1977), and Prisoner (1979).
Teacher to survey the class and lead class discussion: What television soap operas do you watch and
why? What soap character do you most closely identify with and why? Viewing questions: Megan
Spencer describes the new phase of Neighbours as breaking with the old tradition of “marketing
ourselves back to ourselves”. How important do you think it is for viewers to see their

[3] Title: Framing The Hobbit – The Golden Lasso Text: per second. What does this mean? Well
normal movies and TV shows are shown at 24 frames per second and our minds naturally fill in the
missing bits. We don’t even realize that it’s happening. However, soap operas, home movies, and
other videos are shot at 30 frames per second. This is why you can instantly tell a soap opera or reality
TV show from other programs just by looking at it for a few seconds. In general, our minds link
video and high frame rates to low budget programs. Despite Peter Jackson’s assurance that it will
revolutionize movies, many

Few-shot FT Baseline Response: Soap operas are instantly identifiable because of their distinct tone
and style, which is often characterized by a specific storyline and target audience [1]. Additionally,
soap operas are easily distinguishable from other programs by their frame rate, which is 30 frames per
second, as opposed to the standard 24 frames per second [3].

CaLF Response: Soap operas are instantly identifiable because they are shown at 30 frames per
second, which is different from the 24 frames per second used for normal movies and TV shows [3].
Our minds naturally fill in the missing bits, making it easy to tell a soap opera or reality TV show
from other programs just by looking at it for a few seconds [3].

Figure 6: ELI5 Example of generated answers with citations given a question and retrieved passages. We compare
the answers produced by the Few-shot FT baseline model with those generated by CaLF.
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Question: Tell me a bio of Riccardo Tisci.
Retrieved Passages:
[1] Title: Riccardo Tisci Text: Riccardo Tisci Riccardo Tisci (; born 1974) is an Italian fashion
designer. He studied in Italy at the Design Istituto d’Arte Applicata in Cantù until the age of
17, and then graduated from London’s Central Saint Martins Academy in 1999. In 2005, Tisci
was given the title of creative director for Givenchy Women’s haute couture and ready-to-wear
lines. In May 2008 he was additionally named as menswear and accessories designer of the
Givenchy men’s division. In March 2018, it was announced he had been appointed chief creative offi-
cer of Burberry, succeeding Christopher Bailey. Tisci’s apparent fascination with Gothic touches (dark,

[2] Title: Riccardo Tisci Text: rappers Jay-Z and Kanye West to create the cover for "Watch the
Throne", as well as the covers for singles H•A•M and Otis. He has now recently collaborated again
with Kanye West for his label GOOD Music on their album "Cruel Summer". Riccardo Tisci Riccardo
Tisci (; born 1974) is an Italian fashion designer. He studied in Italy at the Design Istituto d’Arte
Applicata in Cantù until the age of 17, and then graduated from London’s Central Saint Martins
Academy in 1999. In 2005, Tisci was given the title of creative director for Givenchy Women’s haute
couture and ready-to-wear lines.

[3] Title: Riccardo Tisci Text: Tisci worked for companies such as Puma and Coccapani before
signing a three-year contract with Ruffo Research, a company that has helped launch the careers of
several fashion designers, such as Sophia Kokosalaki. Tisci has mentioned in an interview that he
would like to work with an Iranian brand, although it is not known how realistic his wish is. Upon the
expiration of his contract in July 2004, Tisci spent time living in India, where he began to work on his
own collection. In September 2004, during the Milan Fashion Week, Tisci debuted his first Riccardo
Tisci Collection for Fall

Few-shot FT Baseline Response: Several years after graduating from London’s Central Saint Martins
Academy in 1999, Riccardo Tisci was given the title of creative director for Givenchy Women’s
haute couture and ready-to-wear lines in 2005 [1]. Later, in May 2008, he was additionally named
as menswear and accessories designer of the Givenchy men’s division [1]. And in March 2018, he
was appointed chief creative officer of Burberry, succeeding Christopher Bailey [3]. Tisci’s apparent
fascination with Gothic touches can be seen in his collaboration with rappers Jay-Z and Kanye West
to create the cover for Ẅatch the Throne,̈ as well as the covers for singles H•A•M and Otis [2]. He has
also collaborated again with Kanye West for his label GOOD Music on their album C̈ruel Summer[̈2].

CaLF Response: Riccardo Tisci is an Italian fashion designer, born in 1974 [1]. He studied at
the Design Istituto d’Arte Applicata in Cantù in Italy until the age of 17 and later graduated from
London’s Central Saint Martins Academy in 1999 [1]. Tisci was appointed creative director for
Givenchy Women’s haute couture and ready-to-wear lines in 2005 [1]. In May 2008, he was also
named as menswear and accessories designer for the Givenchy men’s division [1]. In March 2018,
Tisci was appointed chief creative officer of Burberry, succeeding Christopher Bailey [1]. Tisci has
collaborated with rappers Jay-Z and Kanye West to create the cover for "Watch the Throne" and the
covers for singles H•A•M and Otis [2]. He has also worked with Kanye West for his label GOOD
Music on their album "Cruel Summer" [2].

Figure 7: BIO Example of generated answers with citations given a question and retrieved passages. We compare
the answers produced by the Few-shot FT baseline model with those generated by CaLF.
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