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Abstract

Self-consistency (SC), leveraging multiple sam-
ples from LLMs, shows significant gains on
various reasoning tasks but struggles with free-
form generation due to the difficulty of aggre-
gating answers. Its variants, UCS and USC,
rely on sample selection or voting mechanisms
to improve output quality. These methods, how-
ever, face limitations due to their inability to
fully utilize the nuanced consensus knowledge
present within multiple candidate samples, of-
ten resulting in suboptimal outputs. We pro-
pose Fine-Grained Self-Consistency (FSC) to
addresses these limitations by extracting and
integrating segment-level commonalities from
candidate samples, enhancing the performance
of LLMs both in open-ended and reasoning
tasks. Based on this, we present two additional
strategies: candidate filtering, which enhances
overall quality by identifying highly similar
candidate sets, and merging, which reduces in-
put token requirements by combining similar
samples. The effectiveness of FSC is demon-
strated through extensive experiments on vari-
ous tasks, including summarization, code gener-
ation, and mathematical reasoning, using GPT-
3.5-turbo and GPT-4. The results indicate sig-
nificant improvements over baseline methods,
showcasing the potential of FSC to optimize
output quality by effectively synthesizing fine-
grained consensus knowledge from multiple
samples'.

1 Introduction

The remarkable success of large-scale language
models (LLMs) have transformed the landscape
of natural language processing, showcasing signif-
icant improvements across a wide range of tasks,
from reasoning tasks (Wei et al., 2022) with distinct
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'Our code and data have been released on https://
github.com/WangXinglin/FSC

answers like arithmetic and commonsense reason-
ing to free-form generation tasks like code genera-
tion (Austin et al., 2021) and summarization (Goyal
et al., 2022).

However, LLMs may still generate suboptimal
samples in challenging tasks. Efforts to improve
output quality involve selecting the best response
from multiple samples based on specific criteria.
This includes using trained models for reranking
outputs (Ravaut et al., 2023) and employing LLMs
to evaluate the responses (Liu et al., 2023b). How-
ever, both approaches require additional models
and overlook the knowledge present among the
candidates. Wang et al. (2023) introduce self-
consistency (SC) to improve performances with-
out additional models, which mitigates noise from
individual sampling by employing a voting mecha-
nism across multiple samples. Unfortunately, SC
is limited to tasks where the final answer can be
aggregated through precise matching. How to ag-
gregate the answers for free-form problems remains
unclear.

Recently, some works seek to evolve the idea of
self-consistency into open-ended generative tasks.
UCS (Jain et al., 2023) calculates the overlap of
unigrams between candidates and then selects the
final answer with highest value. Alternatively, USC
(Chen et al., 2023) leverages the capabilities of
LLMs instead of rule-based criteria to choose the
most consistent one. However, both approaches
still rely on selection or voting mechanisms, which
do not align well with the nature of free-form gen-
eration tasks, i.e., the final quality is determined
by the entirety of the output content, rather than
specific individual tokens. Therefore, sample-level
selection methods only yield suboptimal outputs,
primarily due to two reasons: (1) They are unable
to incorporate consensus knowledge from unse-
lected samples, which, despite their lower overall
quality, may contain locally valuable information
to enhance the quality of selected samples. (2)
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They cannot eliminate low-quality segments from
selected samples to further improve overall quality.
In a word, such coarse-grained selection methods
suppress or overlook the role of fine-grained con-
sensus within the candidate samples. Figure 1 and
Table 1 depict scenarios that select-based SC meth-
ods struggle to address. The former indicates that
both methods perform poorly when the quality of
candidates is low for code generation tasks. The
latter illustrates with case the scenario where, in
summarization tasks, the semantic information of
the ground truth cannot be fully covered by any
one of candidate samples. Thus, regardless of the
selection, only suboptimal outputs can be obtained.

Distribution USC UCS Random
5/0 0.0 % 0.0 % 0.0 %
4/1 139% 139% 20.0%

Table 1: Accuracy on code generation benchmark Hu-
manEval with GPT-3.5-turbo. We generate 5 samples
for each problem. The term "5/0" distribution pertains
to cases where all five generated codes are erroneous,
while "4/1" distribution indicates that one sample is cor-
rect while the other four are incorrect.

To address this issue and better leverage the
consensus knowledge among multiple samples for
open-ended problems, we propose Fine-Grained
Self-Consistency (FSC). Specifically, after generat-
ing multiple candidate samples, FSC extracts the
segment-level common elements within them by
taking full advantage of LLM’s text comprehension
and contrasting capabilities. Subsequently, it syn-
thesizes these consensus elements to produce an op-
timized output, effectively integrating the essence
from the candidate samples. Based on this, we fur-
ther propose two strategies: candidates filtering and
merging. The former employs automated metrics
to identify candidate sets that exhibit high similar-
ity, thereby enhancing the overall quality of the
candidates. The latter strategy merges samples that
are highly similar, effectively reducing the quantity
of input tokens required.

A wide range of tasks, including summarization,
code generation, and formal mathematical reason-
ing, are evaluated on GPT-3.5-turbo and GPT-4
for proposed FSC. The results show that proposed
method outperform baselines in a large margin.
Additional experiments indicate that filter strategy
can further enhance performance by selecting bet-
ter candidates and merge strategy can reduce cost
while maintaining the performance.

To summarize, this work includes the following
contributions:

* We propose Fine-Grained Self-Consistency,
designed to fully leverage the consensus
knowledge extracted within multiple samples
for tasks involving free-form generation.

» Two strategies, candidates filtering and merge,
are devised to improve performance and mini-
mize costs.

* Extensive experiments show that our proposed
method can surpasses competitive baselines.

2 Related Work

Consistency-Based Response Selection Ap-
proaches. The literature presents a variety of
consistency-based response selection approaches,
typically incorporating a voting procedure to se-
lect the most frequently occurring response (Wang
et al., 2023; Zhou et al., 2022; Portillo Wightman
et al., 2023; Yue et al., 2023; Li et al., 2023b). The
self-consistency approach proposed by Wang et al.
(2023) demonstrates that by generating multiple re-
sponses for the same task and selecting the reason-
ing path leading to the most common final answer,
the performance of chain-of-thought reasoning can
be improved. Candidate responses can also be de-
rived from different prompt variants correspond-
ing to the same problem (Zhou et al., 2022; Por-
tillo Wightman et al., 2023; Yue et al., 2023). For
open-ended generation tasks, Jain et al. (2023) pro-
pose the n-gram consistency score to measure the
pairwise similarity between candidate responses.
The consistency score for each response is calcu-
lated as the sum of the pairwise similarity scores.
Chen et al. (2023) propose leveraging LLMs them-
selves to directly select the most consistent answer
among multiple candidates without an explicit def-
inition of the pairwise similarity. In this work,
we take a closer look into the coarse-grained lim-
itations faced by selection based self-consistency
methods on open-ended generation tasks, and pro-
pose Fine-Grained Self-Consistency to fully lever-
age the segment-level consensus knowledge ex-
tracted within multiple samples so as to gain better
consistency output.

Response improvement with multiple candi-
dates. Recent studies show that the LLM can
enhance its own prediction output based on candi-
date responses. Zheng et al. (2023) demonstrate
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The couple, who

have been together for over nine years, announced their engagement in November of last year.

(4)
November after more than nine years together.
(5)
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confirmed their engagement last

Murray and

Sears confirmed their engagement last November after more than nine years together.

FSC:

engaged last November.

and got

Figure 1: Case from DailyMail with GPT-3.5-turbo. Each color represents a distinct semantic information. The
input document is provided in the Appendix A.5 due to space constraints.
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Figure 2: Illustration of selection based self-consistency and proposed fine-grained self-consistency.

that the given a trajectory of previously generated
solutions, the LLM can iteratively produce supe-
rior solutions for an optimization task. Other re-
searches focus on aggregating multiple reasoning
chains and prompting the LLM to generate a bet-
ter final response, which shows performance en-
hancement in multi-hop question answering (Yoran
et al., 2023), mathematical reasoning (Yang et al.,
2023), machine translation (Zhang et al., 2024)
and code generation (Huang et al., 2023). Instead
of prompting the LLM to generate a superior re-
sponse, our proposed FSC focuses on extracting
and integrating consistency, eliminating the need
for post-answer guidance. We demonstrate that
FSC effectively leverages multiple responses to
enhance performance across a range of tasks.

3 Method

The core idea behind fine-grained self-consistency
is to measure and extract the commonality of each

response generated by LLM at the segment level,
and then fuse to generate the final response with
superior commonality. Figure 2 illustrates the idea
of select-based self-consistency and the proposed
fine-grained self-consistency (FSC). Specifically,
select-based self-consistency ranks the responses
generated by LLM according to specific consis-
tency criteria (Jain et al., 2023; Chen et al., 2023),
and the top-ranked response is selected as the out-
put. However, these methods do not assess the
consistency at a more fine-grained level within the
response. On the other hand, FSC first measures
the commonality of each segment of the responses
generated by LLM, and extracts the corresponding
common part, then fuses the common part and gen-
erates the final output, achieving a more refined
consistency sample output.

We present the overall workflow of Fine-grained
self-consistency (FSC) in Figure 3, Including FSC
with two plugins, candidates filtering and merge.
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Figure 3: Overview of the proposed fine-grained self-consistency (FSC) workflow.

3.1 Fine-Grained Self-Consistency

Considering that it is difficult to divide and measure
the consistency of the segments in the responses
based on prior knowledge, we seek to utilize the
comparative and integrative capabilities of LLMs
to inherently extract the fine-grained common part
and integrate consistency knowledge from different
responses. As shown in Figure 3, for the multi-
ple input responses, we concatenate them all and
construct a prompt with an instruction asking the
LLM to extract the major consensus of generated
responses, then integrate and generate the final re-
sponse. In this way, FSC measures commonality
at a finer granularity, utilizing, and integrating the
consistency knowledge from different responses,
alleviating the coarse-grained limitations of the se-
lection based self-consistency.

3.2 Candidates filtering

As shown in Figure 3, considering the varying
quality of responses generated by LLM, we pro-
pose candidates filtering strategy to measure the
consistency of generated responses at the sam-
ple level, eliminating responses with low consis-
tency to ensure the overall quality of the candi-
date responses. Specifically, given the similarity
function Sim, we can define a sample-level self-
consistency score SClg;n, (7) for each response i,
given by SCgin (1) = ﬁzﬁiuﬁ Sim(j, i).
Here, N represents the number of responses, and

we use ROUGE (Lin, 2004) for our similarity func-
tion Sim. In the end, we take the Top-k responses
according to SClg;y, as the filtered candidates set,
where k is a hyperparameter.

3.3 Merge

As shown in Figure 3, to reduce the computation
cost of FSC, we propose merging semantically sim-
ilar candidates to decrease the number of responses
to be integrated by the LLM. Furthermore, due to
the limitations of the LLM input length, the num-
ber of samples inputted to the LLM for consistency
extraction is limited. By merging, we can provide
the LLM with samples that contain more diverse
knowledge, broadening the LLM’s knowledge field
of view. specifically, To merge similar responses,
we employ the K-Medoids clustering algorithm
based on their semantic similarity. We categorize
all responses into c clusters, each encompassing a
set of similar results. Then we select the centroids
of each cluster as representative responses and dis-
card the remaining ones. It ensures the selected
response has diverse knowledge and reduces the
cost of FSC.

4 Experiment

4.1 Evaluation setup

4.1.1 Benchmarks

We evaluate FSC on the following variety of tasks:
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Code generation We conduct experiments on
three widely used code generation benchmarks,
including HumanEval (Chen et al., 2021), Hu-
manEval+ (Liu et al., 2023a) for Python code gen-
eration and BIRD-SQL dataset (Li et al., 2023a) for
text-to-SQL generation. HumanEval (Chen et al.,
2021) is a hand-written Python programming prob-
lem, which is further enhanced by HumanEval+
(Liu et al., 2023a) through the addition of more
unit tests. BIRD-SQL (Li et al., 2023a) is a much
more challenging dataset consisting of text-to-SQL
tasks across 37 professional domains, derived from
95 databases with a total size of 33.4 GB.

Text summarization We conduct our experi-
ments on two widely used text summarization
datasets: DailyMail for short text summarization
(Nallapati et al., 2016) and SummScreen for long
text summarization (Chen et al., 2022). In the
DailyMail dataset, each input is an ~ 800 words
news article, and each reference output is a human-
written summary of the article with ~ 55 words.
In SummScreen, every input is a transcript of a TV
show episode with ~ 5, 600 words, and each refer-
ence output is a ~ 100 words human-written recap
of the episode. We follow Nallapati et al. (2016)
and measure ROUGE 1, ROUGE 2, and ROUGE-
L? which measure n-gram overlap with the refer-
ence summary, and we also measure BERTScore
F13 (Zhang et al., 2019).

Mathematical reasoning We introduce the
widely used GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al.) datasets to verify the gen-
eralizability of the proposed method on tasks with
answer of fixed form. GSM8K consists of 8,500
grade school math word problems, and MATH con-
sists of 12,500 challenging mathematics problems
from high school competitions.

4.1.2 Baselines

We compare FSC to the following self-consistency
methods: (1) Random selects one answer randomly
from multiple responses with temperature > 0; (2)
UCS (Jain et al., 2023)* calculates the overlap of
unigrams between candidates and then selects the
final answer with highest value; (3) USC (Chen

2We use the implementation of https://github.com/
pltrdy/rouge.

3We use the bert-base-uncased version for evaluation.

*As token probabilities cannot be obtained from GPT-3.5-
turbo and GPT-4, we implemented UCS based on its unigram
version.

et al., 2023) utilizes LLMs to choose the most con-
sistent one as the final answer. (4) SC (Wang et al.,
2023) is the standard self-consistency decoding
with answer extraction, which mitigates noise from
individual sampling by employing a voting mecha-
nism across multiple samples. Specifically, random
select represents the performance of the LLM itself
when the temperature > 0, while UCS and USC
are two strong baselines for selection based self-
consistency methods. Since the outputs of code
generation and summarization tasks are in free-
form, we evaluate SC on mathematical reasoning
benchmarks where the final answers can be com-
pared through exact match.

4.1.3 Implementation details

We conduct experiments using GPT-3.5-turbo and
GPT-4 models’. We set the temperature as 0.8
for both GPT-3.5-turbo (ChatGPT)® and GPT-4
(Achiam et al., 2023) models to generate 50 initial
responses for all benchmarks. For summarization
and python code generation, the initial samples are
generated with zero-shot prompting, thus the out-
put formats are diverse. For BIRD-SQL, we used
the 1-shot chain-of-thought prompt following Li
et al. (2023a), which improves the performance.
Considering the cost of experiments, we randomly
select 1,000 samples from the test splits of Dai-
lyMail and SummScreen respectively to form our
text summarization benchmarks. We set the tem-
perature of FSC and USC as 0 to ensure the repro-
ducibility of the results. Unless otherwise specified,
we set the default number of input responses as 5
for all baselines. All experiments are repeated five
times and the average performance is reported.

4.2 Main results

4.2.1 Code generation

As shown in Table 2, we present the results on
HumanEval, HumanEval+ and BIRD-SQL respec-
tively. Besides the execution accuracy, we follow
Li et al. (2023a) to also evaluate the valid efficiency
score on BIRD-SQL, which measures the efficiency
of the generated SQL queries. We show that FSC
outperforms all baselines on execution accuracy by
a significant margin across all datasets, while also
generating more efficient SQL code.

Swe use the "2023-05-15" version of API for both.
®https://chat.openai.com
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Model Method HumanEval HumanEval+ BIRD-SQL

Accuracy Accuracy Accuracy  Efficiency

Random 69.8 - 63.2 - 431 - 439 -
UCS 70.170.3 63.210.0 43.6 10.5 44.510.6
GPT-3.5-turbo  yg 70.5 10.4 66.313.1  43.610.5 44.610.7
FSC 74.5 14.7 68.4 15.2 45312.2  46.0 2.1

Random 82.5 - 76.4 - 495 - 50.6 -
GPT-A4 UCS 82.3 0.2 76.710.3 50.511.0 51.8711.2
UsC 86.1 13.6 80.9 14.5 509114  51.671.0
FSC 87.1 14.6 82.8 16.4 514119 522711.6

Table 2: The results on three code generation benchmarks. The improvements are calculated between each methods
and Random. The best performance for each dataset are shown in bold.

Model Method DailyMail Summscreen
Rougel Rouge2 Rougel. BertScore Rougel Rouge2 Rougel BertScore

Random 37.3 14.1 384 60.6 18.3 2.1 16.8 48.8
ucCsS 36.9 14.0 38.2 60.5 16.9 2.0 16.4 48.3

GPT3.5-turbo e 377 143 387 60.8 193 23 17.2 493
FSC 38.6 144 39.0 60.9 20.1 2.1 17.4 49.6
Random 37.5 14.5 38.9 61.0 19.1 2.6 17.3 49.5

GPT-4 ucCs 36.9 14.3 38.6 60.9 18.6 24 17.0 49.3
USC 37.6 14.6 39.0 61.1 19.3 2.7 17.5 49.6
FSC 38.1 14.7 39.3 61.2 19.5 2.9 17.8 50.0

Table 3: Results on summarization benchmarks. FSC consistently improves over the baselines on summary quality.

Dataset UCS USC FSC
DailyMail 19.5% 26.5% 54.0%
Summscreen 19.3% 31.5% 49.2%

Table 4: Comparison of GPT-4 score between different
methods on GPT-3.5-turbo. For each test data, we use
GPT-4 to score the quality of summaries generated by
each method and count the proportion of the highest
evaluation values obtained by each method on the entire
dataset.

Model Method GSM8K MATH
Random 75.9 35.0
UCS 77.2 35.6

GPT-3.5-turbo  USC 80.6 39.3
SC 82.0 41.9
FSC 81.0 39.5
Random 87.5 50.2
UcCsS 87.6 50.7

GPT-4 uUsC 88.1 54.8
SC 88.8 55.5
FSC 91.3 56.0

Table 5: Accuracy on mathematical reasoning bench-
marks. FSC performance is comparable to SC. The best
and second best performance for each dataset are shown
in bold and underline.

4.2.2 Text summarization

Table 3 presents the results for summarization
benchmarks. In both datasets FSC consistently im-
proves over the baselines across all metrics, which
demonstrates that FSC can improve performance
in both short and long text summarization tasks si-
multaneously. Considering that LLMs demonstrate
better consistency with humans in evaluation tasks
(Liu et al., 2023b; Yuan et al., 2023), we employ
GPT-4 as an evaluator to assess the generated sum-
maries, following Liu et al. (2023b). As shown in
Table 4, the experimental results indicate that FSC
is superior to both UCS and USC.

4.2.3 Mathematical reasoning

As shown in Table 5, besides selection based self-
consistency methods, we compare FSC against the
standard self-consistency (SC). For SC, we employ
a regular expression matching to extract the final
answer on GSM8K, and reuse the answer parsing
code from Li et al. (2023b) for MATH. Overall,
FSC consistently improves over the selection based
self-consistency methods UCS and USC, and the
performance is generally comparable to SC, which
needs answer parsing to perform the voting. sur-
prisingly, FSC outperform SC on GPT-4, which
demonstrates that FSC is not simply dependent on
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Method N HumanEval HumanEval+ DailyMail

Accuracy Accuracy Rougel Rouge2 Rougel. BertScore
UCS 10 70.7 62.5 38.2 14.4 39.2 60.9
USsC 10 71.0 65.9 38.5 14.5 39.1 61.1
FSC 5 74.5 68.4 38.6 14.4 39.0 60.9
FSC+Filter 10 75.5 69.2 38.7 14.6 39.3 61.0

Table 6: Results of candidates filtering on HumanEval, HumanEval+ and DailyMail with GPT-3.5-turbo. N
represents the number of input responses. The best performance for each dataset is shown in bold.

HumanEval HumanEval+

DailyMail

Method N Save Save
Accuracy Accuracy Rougel Rouge2 RougeL  BertScore

FSC 5 74.5 68.4 - 38.6 14.4 39.0 60.9 -

FSC 4 74.3 67.8 20.0% 38.8 14.2 38.8 60.8 20.0%

FSC+Merge 5 75.3 68.0 25.4% 38.8 14.0 38.6 60.8 26.5%

FSC+Filter+Merge 5 75.6 68.5 40.0% 38.6 14.4 38.9 60.9 53.2%

Table 7: Results of merge on HumanEval, HumanEval+ and DailyMail with GPT-3.5-turbo. "Save" represents
how many candidate responses input into the LLM are saved compared to the default settings of FSC (N=5). We
calculate "Save" through relative difference percentage. The best performance for each dataset is shown in bold.

statistical measures of final reasoning answers, and
its analysis and integration of various reasoning
paths are effective. These results suggest that FSC
could be further generalized to tasks where answer
extraction is feasible for voting.

4.3 Effect of candidates filtering

As shown in Table 6, we compare the performance
of FSC combined with candidates filtering strategy
(denoted as FSC+Filter) with FSC itself and selec-
tion based self-consistency baselines. Specifically,
FSC+Filter performs candidate filtering on the ini-
tial N responses to obtain % filtered responses, and
then applies FSC to the filtered responses to get the
final output. The results show that candidates filter-
ing consistently improves FSC performance across
all test benchmarks, indicates that candidates fil-
tering obtains a higher-quality response candidate
set through screening. On the other hand, the per-
formance of FSC+Filter surpasses UCS and USC
under the same number of response inputs on all
test datasets (except for BertScore on DailyMail),
demonstrating the superiority of FSC combined
with candidates filtering strategy.

4.4 Effect of merge

We present the results of FSC combined with merge
strategy in Table 7. The results show that the Merge
strategy can significantly reduce the number of FSC
input responses (20.0% on HumanEval and Hu-
manEval+; 26.5% on Daily Mail), with minimal
performance loss. Compared to saving costs by

reducing the number of input responses (N = 4
for FSC), the Merge strategy saves more costs and
maintains better performance (except for Rouge2
and RougeL on DailyMail), demonstrating its ef-
fectiveness. Furthermore, we combine FSC with
both Filter and Merge strategies and achieve the
best performance on HumanEval and HumanEval+,
saving 40.0% of the cost. Besides, we save 53.2%
of the cost on DailyMail with minimal performance
drop. The results demonstrate the superiority of the
combination of two proposed strategies.

4.5 Discussion

4.5.1 Different number of input responses

As shown in Figure 4, we examine the effect of
using different numbers of responses (denoted as
n) in FSC on GPT-4 model.” The results show
that FSC consistently benefits from more input re-
sponses with n < 8. However, the performance
of FSC decreases with n = 16, which could be
due to the difficulty in understanding long-context
when the prompt includes a larger number of in-
put responses, as well as the length constraint of
LLMs. Nevertheless, we believe that using a lim-
ited number of input responses (e.g., 5) strikes an
ideal balance between task accuracy and compu-
tational cost. In such case, FSC reliably enhances
performance across all benchmarks.

"Due to budget constraints, we do not conduct the experi-
ment on text summarization benchmark.
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(a) Results on code generation.

(b) Results on mathematical reasoning. The top num-
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Figure 4: FSC results on GPT-4 model with different number of input responses.

Distributi GPT-3.5-turbo GPT-4
istribution
Random UCS USC FSC Random UCS USC FSC

5/0 0.0% 0.0% 0.0% 1.1% 0.0% 0.0% 0.0% 2.2%
4/1 20.0% 13.9% 13.9% 27.9% 20.0% 23.1% 16.6% 29.1%
3/2 40.0% 358% 47.1% 62.2% 40.0% 31.0% 51.7% 55.1%
2/3 60.0% 68.3% 56.6% 70.0% 60.0% 659% 87.2%  82.9%
1/4 80.0% 82.1% 869% 91.6% 80.0% 73.6% 91.6% 97.2%

Table 8: Accuracy on code generation benchmark HumanEval with GPT-3.5-turbo and GPT-4. Please refer to Table
1 for the definition of distribution. We mark values lower than random performance in red and values higher than
random in green. The best performance is highlighted in bold.

Method  HumanEval HumanEval+
Random 19.7 16.9
UCS 20.3 17.2
UsC 26.2 21.9
FSC 29.9 24.4

Table 9: Accuracy on HumanEval and HumanEval+
with Mistral-7B-Instruct-v0.2.

4.5.2 Robustness to noise in input responses

Table 8 shows the accuracy on the HumanEval
benchmark under different distributions. We de-
fine noise as the the proportion of erroneous ex-
amples in the input responses, (Distribution 5/0
corresponds to the maximum noise). While the
performance of UCS and USC lag behind random
select when the input noise is high, FSC consis-
tently surpasses random select by a large margin
under all distributions, proving that FSC has better
robustness. Furthermore, the accuracy of FSC is
greater than 0 when the distribution is 5/0, indicat-
ing that FSC can still recover the correct answer
when all input responses are wrong. This demon-

strates that FSC is capable of integrating the correct
knowledge from different input responses and elim-
inating the wrong part to achieve the correct final
response.

4.5.3 Generalizability on open-source small
model

As shown in Table 9, We validate the generalization
of FSC on the open-source small model Mistral-7B-
Instruct-v0.28 in code generation tasks. We set the
temperature for baseline sampling to 0.2 and kept
the rest of the implementation completely consis-
tent with the main experiment. The experimental
results indicate that FSC has the potential to work
effectively on smaller models.

4.5.4 Segment-level consensus of FSC

To provide additional evidence that FSC can incor-
porate a higher level of segment-level consensus,
we carry out quantitative experiments. For all the
generated candidates, we construct a pool of 4-
grams (as representations of segments), and then

8https://huggingface.co/mistralai/
Mistral-7B-Instruct-ve.2
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Win rate FSCvs UCS FSCvs USC
DailyMail 79.2% 67.1%
Summscreen 87.6% 81.8%

Table 10: Comparison of fine-grained consensus ob-
tained by different methods with GPT-4.

calculate the overlap between the 4-grams of the
final sample and the pool. We compare our method
against two key baselines by computing the win
rate. As shown in Table 10, the results demonstrate
that our method can integrate more fine-grained
segments from the candidate set, thereby generat-
ing samples of higher quality.

5 Conclusion

In this work, we propose Fine-Grained Self-
Consistency (FSC), which fully leverages the
segment-level consensus knowledge extracted
within multiple samples to overcome the coarse-
grained limitations faced by selection based self-
consistency methods. To improve performance and
minimize costs, we further propose two strategies
called candidates filtering and merge. Extensive ex-
periments demonstrate that FSC notably boosts the
performance on diverse range of tasks, exhibits su-
perior robustness against noise in input responses,
and can be generalized to those tasks where answer
extraction is feasible through voting. Additional ex-
periments confirm that the proposed candidates fil-
tering and merge strategies can further enhance the
performance of FSC while reducing the required
computational cost.

Limitations

Despite the remarkable performance gain on va-
riety of tasks, the current implementation of FSC
still suffers from the following limitation: As il-
lustrated in Section 4.5.1, While self-consistency
can be applied to any number of samples, the num-
ber of samples supported by FSC is bounded by
the context length of the underlying LLM. That is
to say, FSC would be limited in tasks that require
lengthy responses, such as story generation, long
text translation, etc.
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A Appendix

A.1 Performance of FSC under different
temperatures

To verify the generalizability of FSC under differ-
ent temperature settings, we conduct experiments
based on GPT-3.5-turbo under different tempera-
ture settings on HumanEval+ dataset. As shown
in Table 11, the results show that FSC exhibits
consistent generalization under different temper-
ature settings, with more significant performance
improvements compared to the baselines when the
temperature is higher. We hypothesize that this
could be due to the fact that as the temperature in-
creases, the diversity of the samples also increases,
thereby enriching the knowledge from the input
samples that FSC is able to integrate.

Temperature 0.2 0.4 0.6 0.8 1.0

Random 63.5 641 642 632 636
ucCs 632 639 64.1 632 642
USC 649 657 669 665 668
FSC 66.1 669 684 684 69.6

Table 11: Accuracy on HumanEval+ under different
temperatures with GPT-3.5-turbo.

A.2 Sampling cost of FSC

Under the setting of input sample size N=10, we
conduct a statistical analysis of the token cost® on
the HumanEval+ dataset based on GPT-3.5-turbo.
As shown in Table 12, the results show that the
token cost of FSC+filter+merge is comparable to
that of USC, while FSC achieves a significant per-
formance improvement.

Method Prompt Completion Price Acc
ucCs - - 0 625
usc 1207 9 0.53 65.9
FSC+filter+merge 724 128 0.55 69.2

Table 12: Comparison of the cost of USC, UCS and
FSC+filter+merge.

A.3 Case study of FSC

To gain a more intuitive understanding of the work-
ing mechanism of FSC, and to conduct a qualitative
analysis of the consistency of FSC’s final output,
we present the case of FSC on HumanEval bench-
mark. Figure 5 shows the final output of FSC on

we convert the token cost into price according to https:

//openai.com/pricing and report the average cost for every
thousand samples.

HumanEval_130 when the input responses are all
wrong. Specifically, for all error input responses,
FSC incorporates consensus knowledge from each
input and eliminates low-quality segments, ulti-
mately recovering the correct solution. Our analy-
sis indicates that FSC is capable of achieving fine-
grained commonality extraction and obtaining out-
puts with better consistency compared to selection
based self-consistency methods.

A4 Comparision with Minimum Bayes Risk
Decoding (MBDR)

Suzgun et al. (2023) propose MBDR method,
achieving sample selection by calculating the
BertScore between the generated samples. As
shown in Table 13, we reproduce the MBDR ac-
cording to the original paper, and compare it with
FSC on our code generation benchmark.

A.5 Input document for Figure 1

Input: “The wedding of the year in Scotland takes
place on Saturday when British No 1 and two-time
Grand Slam champion Andy Murray marries Kim
Sears, his girlfriend of almost 10 years, in his home-
town of Dunblane. Murray and Sears, both aged
27, met when the pair were teenagers during the
US Open in 2005. Murray was playing in only
his second Grand Slam tournament, while Sears
was travelling with her tennis coach father Nigel.
The couple got back together in 2010 following a
brief split and after having to field constant ques-
tions over the years on when he would propose,
their engagement was confirmed last November.
Andy Murray kisses his new girlfriend Kim Sears
in the crowd after winning his first ATP World Tour
title in San Jose in February 2006 . Murray pic-
tured walking alongside Sears on the streets of Lon-
don during the Wimbledon Championships in June
2006 . Murray watches his brother Jamie in action
at London‘s Queen’s Club in June 2007 alongside
Sears and mother Judy (left) Murray watches his
brother in action at Wimbledon in 2007 alongside
Sears and Carlos Mier (right), who will be one of
Murray ‘s three best men . Murray and Sears watch-
ing British boxer Amir Khan in action during a
title fight at the ExCel Arena in London in Febru-
ary 2008 . Murray and Sears attend the exhibition
match held to mark the launch of the new Wimble-
don Centre Court roof in May 2009 . Murray and
Sears attend a Burberry fashion show alongside Ser-
ena Williams (second left) and Sarah Jessica Parker
(left) in September 2010 . Murray was the best man
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Model Method HumanEval HumanEval+ BIRD-SQL

MBDR 715 65.6 441
GPT-3.5-turbo ~pg 745 68.4 453

MBDR 844 78.6 50.8
GPT-4 FSC 87.1 82.8 514

Table 13: Comparison of accuracy between FSC and MBDR on code generation tasks.

for the wedding of his brother Jamie (right) and
wife Alejandra (second right) at Cromlix House in
October 2010 . Television viewers are well used
to the sight of Sears, pictured here at Wimbledon
in 2011, showing her emotions during Murray’s
matches . Murray looks dejected as he and Sears
wait for transport after the Brit lost the Wimbledon
2012 final to Roger Federer . There were hap-
pier moments just weeks later though as Murray
celebrates with Sears after beating Federer to win
Olympic gold in London . Murray then won his
first Grand Slam title at the US Open in New York
in September 2012 by beating Novak Djokovic in
an epic final . Murray and Sears laugh with televi-
sion host Jimmy Fallon before an appearance on
the show following his US Open victory . Murray
and Sears pose for photographers as they arrive for
a Burberry fashion show during London Fashion
Week in September 2012 . Murray leans over to
kiss Sears after becoming the first British man in
77 years to win the men‘s singles title at Wimble-
don in July 2013 . Murray and Sears pose with the
famous trophy during the Wimbledon Champion’s
Dinner at a hotel in Park Lane later that evening
. Murray and Sears stand outside Buckingham
Palace in October 2013 after the British No 1 was
awarded an OBE by Prince William . Murray and
Sears outside Dunblane High School after the local
hero received the Freedom of Stirling at his former
school in April 2014 . Murray and Sears watch golf
as the couple stroll by the fairways of Ridgewood
Country Club in New Jersey during The Barclays
in August 2014 . Sears poked fun at the reaction to
her foul-mouthed rant during the Australian Open
this year by wearing this t-shirt for Murray ‘s final.”
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HumanEval_130
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians In the last couple centuries. However, what people don't know is.
Tribonacci sequence. Tribonacci sequence is defined by the recurrence:
tri(1) = 3; tri(n) =1+ n / 2, if nis even; tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1+ (2 /2) = 2; tri(4) = 3; tri(3) = tri(2) + tri(1) + tri(4) =2+3+3=8
You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence.
Examples: tri(3) = [1, 3, 2, 8]
Response 1 Response 2
def tri(n): def tri(n):
# Define initial values # initialize the sequence with the base cases
tri_seq =0, 3, 2] seq = [0, 3]
# calculate the rest of the sequence
# Calc ulateremaining numbers foriinrange(2, n+1):
foriinrange(3,n+1): ifi%2==0:
ifi%2==0: #ifiis even
tri_seq.append(1+i/2) seq.append(1+i/2)
else: else:
tri_seq.append(tri_seq[i - 1] + tri_seq[i - 2] + tri_seq[i - 3]) #ifiis odd
seq.append(seq[i - 1] + seq[i- 2] + 2)
return tri_seq[:n + 1] return seq
Response 3 Response 4
def tri(n): def tri(n):
ifn<0: # initialize the list with first two elements
return [] tribonacci = [1, 3]
# Initialize the array with base cases
sequence =[0] * (n+2) # calculate the next elements
sequence[0] =1 foriinrange(2, n+1):
sequence[1] =3 ifi%2==0:
foriinrange(2, n+2): tribonacci.append(1+i/2)
ifi % 2 ==0:sequenceli] =1+i//2 else:
else: tribonacci.append(tribonaccili - 1] + tribonaccili - 2] + tribonaccili - 1])
sequence[i] = sequence[i - 1] + sequenceli - 2] + sequenceli + 1]
return sequence[:n + 1] return tribonacci
Response 5 FSC output
def tri(n): def tri(n):
ifn==1: ifn<0:
return [3] return "Invalid input"
elifn==2: tribonacci = [1, 3]
return [3, 2] foriinrange(2, n+1):
elifn==3: ifi%2==0:
return [3, 2, 8] tribonacci.append(1+i/2)
else: else:
tri_list = tri(n - 1) tribonacci.append(tribonacci[i - 1] + tribonacci[i - 2] + tribonacci[i + 1]
if n % 2 == 0: tri_list.append(1 +n / 2)
else: return tribonacci[:n + 1]
tri_list.append(tri_list[-1] + tri_list[-2] + (1 + (n+ 1) / 2))
return tri_list

Figure 5: The input responses and final output of FSC with GPT-3.5-turbo on HumanEval_130. We mark the correct
parts in green and the wrong parts in red for each input response.
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