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Abstract

Generating recommendation reasons for recom-
mendation results is a long-standing problem
because it is challenging to explain the under-
lying reasons for recommending an item based
on user and item IDs. Existing models usu-
ally learn semantic embeddings for each user
and item, and generate the reasons according
to the embeddings of the user-item pair. How-
ever, user and item IDs do not carry inherent
semantic meaning, thus the limited number of
reviews cannot model users’ preferences and
item characteristics effectively, negatively af-
fecting the model generalization for unseen
user-item pairs. To tackle the problem, we
propose the Concept Enhanced Explainable
Recommendation framework (CEER), which
utilizes macro concepts as the intermediary to
bridge the gap between the user/item embed-
dings and the recommendation reasons. Specif-
ically, we maximize the information bottleneck
to extract macro concepts from user-item re-
views. Then, for recommended user-item pairs,
we jointly train the concept embeddings with
the user and item embeddings, and generate the
explanation according to the concepts. Exten-
sive experiments on three datasets verify the
superiority of our CEER model.

1 Introduction

In recommender systems, rating prediction is a
crucial component for filtering user interest items
from a vast pool of candidates. However, many
recommender systems only offer rating prediction
results without providing any explanations (Pan
et al., 2022; Zhang et al., 2022). Personalized and
appropriate explanations can greatly arouse user
interest and enhance the overall user experience.
Therefore, there is potential to deliver accurate rat-
ing predictions while generating personalized and
suitable reasons for recommended items (Balog
et al., 2019; Wang et al., 2022a).

∗Xiao Huang is the corresponding author.

Current explainable rating prediction models typ-
ically involve learning user and item embeddings
and then generating explanations based on these
embeddings (Chen et al., 2019, 2020b). For in-
stance, they attribute semantic meanings to each
user and item ID by reconstructing the associ-
ated review sentence using user and item em-
beddings (Wang et al., 2023; Gao et al., 2019).
CETP (Li et al., 2021a) goes a step further by in-
corporating knowledge graphs as auxiliary infor-
mation and leveraging graph neural networks to
enhance the item embeddings. Similarly, MMCT
utilizes multi-modal information to aid in training
the user and item embeddings (Liu et al., 2023).

However, existing models still highly rely on
the embeddings of user and item. Nevertheless,
training user and item embeddings of explainable
rate prediction face the following limitations: (i).
training sparsity: The observed user-item pairs
are sparse in comparison to all possible combina-
tions. This sparsity issue prevents users and item
embeddings from capturing sufficient semantic in-
formation by solely reconstructing the available
reviews, thus negatively affecting the model’s gen-
eralization in generating explanations for unseen
user-item pairs. (ii). Inference sparsity: The
absence of available information in the inference
stage makes it challenging to generate appropriate
explanations. There are some efforts that explic-
itly put the collected item features as prompting
information to alleviate this issue (Li et al., 2020b;
Cheng et al., 2023). However, it is hard to predict
in advance which specific features will appear in
the explanations.

It is challenging to solve the sparsity problems
due to two reasons. (i) ID insufficient seman-
tics: The initial embeddings for users and items
lack semantic meanings, and are not effectively
recognized by language models. The insufficient
initial semantics exacerbate the learning of a de-
tailed and accurate mapping to the semantic space.
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(ii) Mixed high-level semantics: The user reviews
are complicated and may involve multiple high-
level semantics. For example, a review that “I hate
this guitar since the quality of the guitar is bad."
could be identified by three high-level semantics:
“negative emotion”, “instrument”, and “quality”. It
is difficult to assist language models in recognizing
user focus by providing an item feature.

To this end, we propose a framework named
Concept Enhanced Explanation Recommendation
(CEER). Our framework explicitly annotates high-
level semantics, i.e., macro concepts that abstract
item characteristics with similar semantics in re-
views and embeds the potentially matched macro
concepts into the user and item embeddings. The
mined macro concepts enrich the semantic mean-
ing of user and item embeddings without requiring
additional data to learn. Our key contributions are
summarized below:

• To improve the explanation generation, we
leverage the macro concepts to address the
issue of inadequate semantic information in
user and item embeddings.

• To build macro concepts, we discover the mi-
cro characteristics of the item attended by the
user from the reviews by maximizing the in-
formation bottleneck.

• We devise three tasks to enrich user and
item embeddings motivated by integrating the
macro concept into representations space.

• Extensive experiments on three real-world
datasets prove the superiority of the proposed
framework CEER.

2 Preliminary

Problem Formulation. We denote the user set
and item set as U = {u1, u2, ..., u|U|} and V =
{v1, v2, ..., v|V|}, respectively. The rating score rij
assigned towards the interaction (ui, vj) character-
izes the degree of user preference. The observed
reviews are organized within a matrix X, where
each element in the matrix represents a review and
Xij represents the review for the rating rij . Xij is
defined as a sentence denoted as [x1..., xm, ..., xM ],
where xm is the mth word in Xij . During infer-
ence, the available information for each interaction
is limited to the user and item ID. In this work,

we define explanation generation as a sequence-to-
sequence prediction task. Specifically, given a user-
item pair, we apply the user and item embeddings
as soft prompts, asking the transformer to gener-
ate explanations, where each word in the explana-
tion is predicted given the preceding words and
soft prompt. For example, given the soft prompt
[ui, vj ], the transformer is trained to predict the
next word x1. After multiple generation steps, the
output from the transformer forms the sequence
[x1..., xm, ..., xM ]. The notations are put into Ap-
pendix A.1

3 Methodology

This section introduces two primary components
of our framework: a macro concept annotator and
an explanation generator. The first component in-
volves two steps: identifying the informative micro
characteristics of items in the reviews and using
LLMs to annotate macro concepts. The second
component utilizes three tasks based on the anno-
tated concepts to enhance user and item embed-
dings and facilitate explanation generation. The
architecture sketch is provided in Figure 1.

3.1 Macro Concept Annotation
Micro Characteristics Identification. We repre-
sent each macro concept as a group of semantically
similar micro characteristics of items that are care-
fully curated from the reviews. To serve as the
micro characteristics, the selected words are re-
quired to be informative and capable of justifying
the rationale behind recommendations.

To measure the informativeness of the words, we
need to first quantify the informative level of the
words in the corpus. Pre-trained language models
(PLMs) are trained on vast amounts of text data and
can recognize which words are more informative in
conveying the explanation. To learn the informative
level quantification, we maximize the following
objective, i.e., information bottleneck (TISHBY,
2000) M(Xij , rij):

max M(Xij , rij) = max I(Tij , rij)−τ ·I(Tij ,Xij),
(1)

where I(·, ·) represents mutual information be-
tween two variables; τ is a trade-off hyper-
parameter; Tij ∈ RM×d signifies the intermediate
word representation from PLMs whose informa-
tive levels can be measured. Here, d denotes the
word dimension in the frozen PLM, which, for in-
stance, is 768 when using BERT (Devlin et al.,
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Figure 1: The figure shows the proposed CEER framework. The lower part demonstrates how we annotate the
macro concepts. The upper part shows how to leverage the annotated concepts to enrich user and item embeddings.

2019) as the frozen PLM. In Eq. (1), the first term
maximally preserves the information related to rat-
ing prediction while the second term (Alemi et al.,
2016) serves as the regularization term that con-
strains the amount of information in intermediate
representations encoded from Xij .

The variational approximation of the information
bottleneck of traditional approaches applies restric-
tive constraints to the pre-trained language models
as the second term (Tu and Li, 2022). The poste-
rior distribution of the intermediate representations
may not be standard Gaussian distribution (Tu et al.,
2022). Some recent efforts have tried more flexible
distributions, e.g., sample-based representations of
variational distributions (Fang et al., 2019, 2022).
They could learn expressive intermediate represen-
tations but are unable to explicitly quantify the in-
formative level of the words. To achieve this goal,
we inject noise into word representations (Guan
et al., 2019). The extent to which these represen-
tations tolerate noise can serve as a reflection of
their informativeness, as informative words play an
important role in understanding the corpus and are
sensitive to the introduced noise.

To facilitate the second-term calculation, we syn-
thesize the word representations with noise as Tij :

Tij = (1− σ)⊙ PLM(Xij) + σ ⊙ ϵ, (2)

where PLM(·) provides the original word repre-
sentations from PLMs, and ϵ ∈ RM×d denotes the
random noise independently sampled from stan-
dard Gaussian distribution while the learnable vec-
tor σ ∈ RM

[0,1] controls the magnitude of noise. The
minimization of I(Tij ,Xij) is calculated as:

min H(Xij)−H(Xij |Tij) ≈ max log σ, (3)

where we assume P (Xij |Tij) ≈ P (Tij) and fol-
lows the multivariate Gaussian distribution with
zero covariance. Next we could use 1 − σxm to
identify the informative level of word xm in Xij .
Then the informative level for each word in Xij is:

[1− σx1 , ..., 1− σxm , ..., 1− σxM ] . (4)

To calculate the first term, we transform word
representations into ratings and minimize the dif-
ference between predictions and labels. In this pro-
cess, we employ a rating-specific message-passing
encoder for transformation (Shuai et al., 2022).

After obtaining σ, we exploit the LLMs to per-
form the macro concept annotation for top k im-
portant micro characteristics. Here we use LLM
ChatGPT, i.e., gpt-3.5-turbo and take one demon-
stration following (Lou et al., 2023; Zhang et al.,
2023) as an example:

[Task Description] User: Organize the fol-
lowing keywords into groups based on their
semantic relationships, and give a concept
name to each group.
[Demonstrations] Input: [Expensive,
Cheap]. Output: {Economy: [Expensive,
Cheap]} [Test Instance] Input: [Guitar,
Hate, Quality]. Output: {Instrument: [Gui-
tar], Negative Emotion: [Hate], Quality:
[Quality]}.

In this way, we obtain the macro concept labels
for k informative micro characteristics from the
historical reviews and create a padded concept label
for the remaining words. The words in Xij are
labeled as {cx1 , ..., cxm , ..., cxM }, where cxm is
the macro concept ID for word xm.
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3.2 Explanation Generator
In this component, our goal is to utilize the anno-
tated macro concepts to enrich user/item embed-
dings. Specifically, we embed the relationships
between users/items and concepts, as well as con-
cepts and reviews, in representations through three
tasks. These three tasks collaborate to utilize macro
concepts as an intermediary to align user and item
embeddings with the review embeddings.

3.2.1 User/item-concept Relationship
Modeling

The first task user/item-concept relationship model-
ing utilizes user and item embeddings to aid in
predicting macro concepts in the associated re-
view. To train the prediction of macro concept
distribution, we need to craft macro concept labels
Wij =

[
w1, ..., wq, ..., w|C|

]
∈ R|C| for review

Xij . The macro concept label wq is determined
by the cumulative informative level of the words in
Xij associated with that concept cq:

M∑

m=1

I(cxm = cq)(1− σxm), (5)

where the indicator I(·) take value 1 if the condition
holds otherwise 0.

After obtaining the macro concept labels for re-
view Xij , we come to train the user/item embed-
dings to predict the macro concept distribution Ŵij

in the associated review, defined as:

Ŵij = MLP (eui , evj ), (6)

where eui , evj denotes the user and item embed-
dings respectively. Next, we use Kullback-Leibler
divergence loss to penalize the divergence between
the predicted macro concept distribution and the
labels, defined as:

Lp = LKL(Ŵij ||Wij) =

|C|∑

q=1

wq · log
wq

ŵq
. (7)

After training, the user and item embeddings could
be utilized to recognize the potential macro con-
cepts in the inference. Then, we obtain a compos-
ite concept embedding by the weighted sum of all
macro concept embeddings with the predicted im-
portance:

∑|C|
q=1 ŵqecq/

∑|C|
q=1 ŵq. The composite

macro concept embedding is appended behind the
user and item embedding to instruct the transformer
to generate relevant explanations.

3.2.2 Concept-review Relationship Modeling
The second task concept-review relationship mod-
eling brings the words in reviews and associ-
ated macro concept embeddings closer together.
Through this task, we proceed to enhance the words
in reviews’ awareness of the associated macro con-
cept within the representation space. To reach this
objective, we reduce the uncertainty about each
word mapping to its associated macro concept. For
simplicity, we use the inner product to compute the
uncertainty and optimize it with the cross-entropy
loss, driving the movement of word embeddings to
the macro concept embedding:

Lm = −
M∑

m=1

|C|∑

q=1

I(cxm = cq) · log(pxm,cq), (8)

where log(pxm,cq) is the uncertainty between the
word xm and the macro concept cq, computed by
inner product of embedding: pxm,cq = e⊤xm

· ecq .
It encourages words and associated concepts to
exhibit proximate representations.

3.2.3 User/item-review Relationship Modeling
The third task user/item-review relationship mod-
eling assists the transformer in considering words
belonging to the same macro concepts when gen-
erating the next word. Traditional approaches em-
ploy the maximum likelihood function to recon-
struct the original reviews. However, it ignores the
diversity of the language expression. In practice,
each position in the sentence could have multiple
word choices, e.g., semantically similar words. To
achieve this, we substitute the word in the review
with multiple alternatives in the same macro con-
cept. The loss can be reformulated as:

Ls = − 1

M

M∑

m=1

(log p(xm) + α log p(x′m)), (9)

where x′m denotes a randomly selected word within
the same macro concept as xm and α denotes a
hyper-parameter to control the loss term. Here,
we only incorporate one substitution. More substi-
tutions may take the risk of introducing noise and
generating contextually inappropriate explanations.

3.2.4 Training Objective
Besides the above tasks, we jointly perform rat-
ing prediction following previous efforts (Li et al.,
2023b) using the loss function defined as:

Lr =
(
MLP (eui , evj )− rij

)2
. (10)
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Finally, we unify these tasks in a linear com-
bination form to train the transformer. The joint
learning objective is indicated by:

L = Ls + βLm + γLp + Lr, (11)

where β, γ are trade-off hyper-parameters to bal-
ance the effect of different objectives of the model.

4 Experiments

In this section, we perform comprehensive exper-
iments to validate the effectiveness of CEER and
gain insights into its behavior. We aim to answer
the following research questions: RQ1: How well
do the explanations and ratings generated by CEER
and baselines align with the actual labels in terms
of text quality? RQ2: How does the quality of
explanations generated by all models in terms of
interpretability? RQ3: How do different tasks con-
tribute to the whole model performance? RQ4:
What impact do different hyper-parameter settings
of the proposed tasks have on CEER? RQ5: How
does information bottleneck perform compared
with other micro characteristics identification meth-
ods for macro concept annotation?

Table 1: Detailed datasets statistics.
Datasets # Users # Items # Interactions # Reviews # Concepts

Instruments 8,292 695 22,831 7,380 425
Home 66,519 27,679 539,403 538,204 551

Automotive 20,886 1,573 57,722 16,866 477

4.1 Dataset Processing
In our experiments, we use three real-world Ama-
zon datasets (He and McAuley, 2016), i.e., Musical
Instruments, Home and Kitchen, and Automotive,
to evaluate the overall performance. The dataset
statistics are shown in Table 1. The detailed descrip-
tion of these datasets is illustrated in Appendix A.2.

4.2 Experimental Setup
We implement our framework by PyTorch using
NLG4RS ecosystem (Li et al., 2020a) and run it
on NVIDIA Tesla V100S PCIe, 32GB memory.
The learning rate is set as 0.001. All models are
optimized by the Adam optimizer and the embed-
ding dimension is set as 64 for a fair comparison.
The batch size equals 256. We truncate explana-
tions with a maximum length of 20 and the bud-
get k is set as 5000 for each dataset. We search
the number of transformer layers and attention
heads in each layer for the base explanation gen-
erator from {1, 2, 3, 4, 5}. And we also search the

trade-off factor α, β, γ from {1e− 5, 1e− 4, 1e−
3, 1e − 2, 1e − 1, 1} and the dropout rate from
{0, 0.2, 0.4, 0.6, 0.8}. The search strategy is grid
search. We also set the patience threshold on the
validation set to stop model training earlier and
the optimal performance on the validation set is
selected to report performance on the test set. We
run each model five times and report the average
performance.

4.3 Evaluation Metrics
To evaluate the explanations, we categorize all the
adopted metrics into two groups, which evaluate
the text quality and the quality of interpretation, re-
spectively. In the first text quality evaluation group,
we have BLEU-1, BLEU-4, MAE, and RMSE. In
the second interpretability evaluation group, we
have USR, FCR, FMR, Entail, and Consistency.
The detailed introduction of these metrics is illus-
trated in Appendix A.3.

4.4 Baseline Methods
We integrate the following baselines to conduct the
comparison: RGCL (Shuai et al., 2022) applies a
graph contrastive learning framework to learn user-
item rating prediction; NRT (Li et al., 2017) learns
explanation generation via gated recurrent units;
NETE (Li et al., 2020b) generates explanations
with controlled neural templates; PETER (Li et al.,
2021b) introduces contextualization loss and item
features to enhance the quality of the explanation;
SAER (Yang et al., 2022) adopts an extract-and-
refine architecture to effectively generate explana-
tions; PEPLER (Li et al., 2022) fuses user/item IDs
into soft prompt and fine-tunes GPT-2.

To demonstrate the effectiveness of different
components, we also introduce three variants of
the CEER: 1) P-CEER: it removes all the proposed
tasks and adopts the pure transformer to generate
explanations. 2) C-CEER: it adds the concept-
review relationship modeling task to the P-CEER.
3) CW-CEER: it further adds the user/item-review
relationship modeling task to the C-CEER.

To examine the usefulness of the information
bottleneck in micro characteristics identification,
we incorporate the following variants: (1) GPT-
3.5: Directly annotate the macro concepts in the
historical reviews with ChatGPT and remove the
information bottleneck. (2) β-VAE: Replace the
information bottleneck with the β-VAE (Higgins
et al., 2017) and use the learned variance as the
informative level.
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Figure 2: Explanation quality in terms of USR, FCR, FMR.

Table 2: Text quality comparison of all methods in terms
of BLEU-1 and BLEU-4.

Methods
Instruments Home Automotive

BLEU-1 BLEU-4 BLEU-1 BLEU-4 BLEU-1 BLEU-4

NRT (2017) 12.8507 0.7109 12.1058 0.6764 15.3298 0.8062
PETER (2021) 14.9794 0.8345 11.5656 0.5737 15.9109 0.8116

PEPLER (2023) 4.5601 0.2289 8.8215 0.4074 2.4393 0.0706
NETE (2020) 13.8053 0.8949 10.6288 0.6059 14.6157 0.6916
SAER (2022) 13.7924 0.1210 12.5891 0.2763 13.9785 0.0000

CEER 16.1862 1.0489 12.6839 0.6887 16.1159 0.9010

Table 3: Rating prediction of all methods in terms of
RMSE and MAE.

Methods
Instruments Home Automotive

RMSE MAE RMSE MAE RMSE MAE

RGCL (2022) 0.9224 0.6425 1.0612 0.7703 0.9883 0.6842
NRT (2017) 1.0930 0.6751 1.3312 0.8508 1.2184 0.7312

PETER (2021) 0.9412 0.7229 1.1073 0.8487 1.0259 0.7801
PEPLER (2023) 1.0183 0.6556 1.0792 0.7610 1.2007 0.7006

NETE (2020) 0.9400 0.7139 1.1207 0.8691 1.0261 0.7740
SAER (2022) 1.0970 0.9156 1.1731 0.9409 1.0429 0.8131

CEER 0.9210 0.6680 1.0789 0.7490 0.9693 0.6771

4.5 Text Quality Analysis (RQ1)

4.5.1 Word-level Relevance
First, we evaluate the text quality of explanations
in terms of BLEU-1 and BLEU-4 and exhibit the
results in Table 2. We have several observations.

1) The performance of baselines does not con-
sistently improve with increasing complexity
across the three datasets. The NRT model is
simple and designed for generating abstractive tips,
while the PETER, NETE, and SAER have more
complicated architectures. Surprisingly, we find
that the complex models do not consistently outper-
form the simpler NRT model in all cases. Sparse
data during inference and training hinders the ef-
fective learning of user and item embeddings and
limits the ability of advanced language models to
generate accurate explanations. Although PEPLER,
which fine-tunes GPT-2, fails to yield satisfactory
results. This may be because they do not have har-
vest knowledge about ID during pre-training. 2)
The proposed CEER outperforms all baselines
across the three datasets. Compared to the base-
line methods, the CEER framework consistently
produces better results. We infer that this improve-
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Figure 3: Explanation quality w.r.t Entail and
Consistency.

ment is due to the inclusion of macro concepts,
which offer higher-level semantics that enhance the
learning of ID embeddings and provide additional
information for generating explanations.

4.5.2 Rating Prediction
We also examine the recommendation performance
and present the results in Table 3. We find that the
proposed CEER performs consistently better
than the explainable recommendation baselines.
And it performs even better than the dedicated rat-
ing prediction baseline RGCL in most cases. We
infer that incorporating the high-level semantics,
i.e., macro concepts refines the user and item rep-
resentations, leading to improved recommendation
performance. As a result, our model exhibits strong
potential for real-world applications, as it not only
offers explanations with high text quality but also
delivers accurate rating predictions, addressing the
specific requirements of the system.

4.6 Interpretability Quality Analysis (RQ2)

4.6.1 Personalization
We also evaluate the degree of informativeness and
diversity, i.e., personalization of explanations, and
report the results in Figure 2. Notably, in Sub-
section 4.6, we only select the explainable base-
lines with superior performance for the RQ1 (i.e.,
PEPLER, PETER, NETE, and NRT) for compar-
ison. From the results, we have several observa-
tions. First, the higher diversity of explanations
does not indicate that the features are accurately
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included in each explanation. It indicates that
improving informativeness and diversity simultane-
ously is a challenging task. Second, the proposed
model generally outperforms the selected base-
lines in most cases, especially on the Instrument
and Automotive datasets. It indicates that the pro-
posed model can not only generate more diverse
explanations but also match the corresponding fea-
tures for the explanations.

4.6.2 Entail & Consistency
We evaluate the interpretability from the sentiment
perspective and display the results in Figure 3. We
notice that the CEER achieves relatively better
performance in producing emotionally coher-
ent and factually accurate explanations in most
cases. During training, words become associated
with the relevant concepts they belong to. This
alignment between positive or negative concepts
and the corresponding words enables CEER to con-
sistently generate emotionally coherent explana-
tions. Additionally, user and item representations
tend to align with the representations of related
concepts. It facilitates the incorporation of related
facts into the explanation generation process.

4.7 Ablation Study (RQ3)

To explore the individual contributions of differ-
ent tasks to the overall model performance, we
analyze three variants and report the results in Ta-
ble 4. Notably, in Subsections 4.7 and 4.8, we
select a subset of metrics for evaluating text qual-
ity and interpretability rather than including all
available metrics to save layout space. We have
several observations: 1) The P-CEER has the
worst performance. It does not include any of
the designed tasks. The bad performance under-
scores the necessity of integrating the designated
task to enhance model performance. 2) By tak-
ing each designed task gradually, CEER, CW-
CEER, and C-CEER demonstrate performance
improvements compared with its predecessor
CW-CEER, and C-CEER, P-CEER correspond-
ingly. It demonstrates the effectiveness of each
task in addressing the issue of limited generaliza-
tion caused by sparsity. The overall results validate
the effectiveness of the proposed model.

4.8 Hyper-parameter Sensitivity (RQ4)

We further analyze the hyper-parameters α, β, γ
in the proposed regularization terms. We conduct
experiments on the Automotive dataset and present

the results in Figure 4. We have several observa-
tions. 1) Across all selected metrics, the model
is sensitive to extreme hyper-parameter values.
Hyper-parameters that are too large, such as 1, or
too small, such as 1e − 5, do not lead to the best
performance of the model. 2) Different evaluation
metrics require different hyper-parameters to
reach their optimal values. This observation im-
plies that it is difficult to have a hyper-parameter
setting that could achieve optimal results consider-
ing multiple evaluation metrics together for the
whole model. 3) Compared with β and γ, α
generally prefers relatively small values. We
infer that the user/item-review relationship model-
ing task may act as noise and hinder the modeling
of the language pattern in the explanations when
α is large. All the results imply that the CEER is
sensitive to the hyper-parameter values and it is
important to choose appropriate values.

4.9 Characteristics Identification Study (RQ5)

In this subsection, we first conduct the comparison
between different micro characteristics identifica-
tion methods and display the results in Table 5.
Then we present an example from the Amazon
Instrument dataset to intuitively show the identi-
fied micro characteristics, annotated macro concept,
and the generated explanation in Figure 5.
Performance Comparison. We compare the infor-
mation bottleneck method with two other choices
using the same annotation prompt, and explana-
tion generator. The two choices are compared on
the Amazon Instrument dataset and the Amazon
Home dataset, respectively. From the results, we
find that direct annotation without information
bottleneck negatively affects the model perfor-
mance. We infer that although LLMs are proficient
at text comprehension, they are not trained to assign
consistent macro concepts to similar words, which
leads to poor performance. And the β-VAE also
performs worse than the information bottleneck in
most cases. β-VAE does not quantitatively define
the importance of the words. And the learned vari-
ance may not be a good indicator to differentiate
word importance although the small variance may
mean that the meaning of the word does not change
a lot across contexts, such as stop words. These
results jointly demonstrate the effectiveness of the
information bottleneck method.
Case Study. We showcase the informative level of
each word in the historical reviews associated with
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Table 4: Ablation study results on three datasets.

Methods
Instruments Home Automotive

BLEU-1 BLEU-4 USR FCR FMR BLEU-1 BLEU-4 USR FCR FMR BLEU-1 BLEU-4 USR FCR FMR

P-CEER 12.8870 0.7512 0.2138 0.0158 0.0038 11.6297 0.6568 0.0577 0.0299 0.0002 14.5324 0.7367 0.4688 0.0311 0.0012
C-CEER 14.6413 0.9538 0.3303 0.0250 0.0051 12.3248 0.6598 0.0652 0.0330 0.0003 14.9229 0.8626 0.5402 0.0424 0.0030

CW-CEER 15.8464 0.8565 0.4904 0.0261 0.0038 12.6099 0.6344 0.0791 0.0475 0.0002 15.4576 0.7608 0.6217 0.0473 0.0027
CEER 16.1862 1.0489 0.5552 0.0281 0.0048 12.6839 0.6887 0.0890 0.0431 0.0003 16.1159 0.9010 0.6120 0.0435 0.0044

1e-05 0.0001 0.001 0.01 0.1 1.0
value
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Figure 4: Hyper-parameter sensitivity results of different regularization terms on Automotive dataset.

Figure 5: Examples from the Instrument dataset.

the given user-item pair. Then, we demonstrate the
annotated concepts that drive the model to generate
the explanation involved by the user and item in
this example. First, we visualize the informative
level of each word representation of two historical
reviews associated with user 543 and item 504, re-
spectively. We observe that those keywords that
explain the reason for the rating are assigned sig-
nificantly lower amounts of noise. For example, in
the first review of subfigure (a), the words “costly”
and “price” describe the reason for user dissatis-
faction and their informative levels are very high.
It demonstrates that the first component could se-
lect the informative words. That facilitates the cost
reduction for LLMs to annotate concepts.

Second, we compare the explanations generated

Table 5: Model performance comparison with different
micro characteristics identification methods.

Methods BLEU-1 BLEU-4 USR FCR FMR

GPT-3.5 15.9572 0.8701 0.4763 0.0233 0.0038
CEER 16.1862 1.0489 0.5552 0.0281 0.0048

β-VAE 12.3631 0.7028 0.0819 0.0389 0.0003
CEER 12.6839 0.6887 0.0890 0.0431 0.0003

by the CEER and the P-CEER, i.e., the transformer
model for the interaction between user 543 and
item 504, and show it in subfigure (b). The target
rating is 5. We observe that the P-CEER only de-
scribes the user’s positive sentiment towards the
item and does not contain any useful information.
The generated explanation from CEER reveals the
reason for the high rating is due to the price and the
positive quality. We also exhibit the top two priori-
tized concepts and words associated with them in
the subfigure (c). It shows to a certain extent that
the high-level concept does drive the transformer
to generate semantically relevant sentences. And
the associated words for the concept demonstrate
that the LLMs could appropriately assign a concept
label to semantic similar words.

5 Related Work

5.1 Sentence-based Explanation Generation

Compared with examining which feature plays
a more important role in driving the interac-
tion (Wang et al., 2018a, 2022b), sentence-based
explanations for rating prediction offer natural lan-
guage explainable information about why the user
assigns particular ratings (Hua et al., 2023; Wu
et al., 2024). Some efforts only manipulate the his-
torical reviews to generate the explanations (Le and
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Lauw, 2020; Pugoy and Kao, 2021), other efforts at-
tempt to integrate varied auxiliary information into
explanation generation. Knowledge graph provides
an organized way to access facts (Chen et al., 2024;
Shengyuan et al., 2024). CETP (Li et al., 2021a)
selects the triples from the knowledge graph and
incorporates them into explanation generation. Fur-
ther, METER (Geng et al., 2022; Liu et al., 2023)
incorporates multi-modality information to encour-
age the model to write more faithful and diverse
explanations. LLMs have strong text manipulation
abilities (Dong et al., 2024; Zhang et al., 2024).
PRAG (Xie et al., 2023) leverages LLMs and refor-
mulates the explanation generation as a question-
answering task. Additionally, the tips written by
users show how they feel about the interaction and
can also be utilized to generate a comprehensive ex-
planation (Zhu et al., 2023). To generate coherent
explanations, AESG tries to incorporate the syntax
graph dependency tree to improve the quality of
explanations (Hu et al., 2023).

5.2 Review-based Rating Prediction

Review-based rating prediction involves predicting
a numerical rating for a user-item pair by model-
ing the text of a review provided by a user (Harrag
et al., 2019). Early effort introduces the review-
level attention mechanism to model the review for
rating prediction (Chen et al., 2018). It ignores the
fine-grained information in the review. NPA (Wu
et al., 2019) leverages user ID to incorporate word-
level and review-level information to improve per-
formance attentively. Further, DAML (Liu et al.,
2019) exploits the mutual information between the
user and the item extracted from information that
the convolutional neural network attends to. Sim-
ilarly, CARP (Li et al., 2019) models mutual in-
formation and uses the capsule network to extract
high-level information. EDMF (Liu et al., 2022) ex-
tracts the useful feature from the review text to fur-
ther improve performance. Graph neural networks
(GNNs) capture global relationships between nodes
that are indirectly connected (Dong et al., 2023;
Chen et al., 2020a). Efforts adopt GNNs to model
user and item relationships and the review features
can be regarded as edge features (Qiao et al., 2022;
Shuai et al., 2022).

6 Conclusion and Future Work

In this paper, we present the CEER framework, de-
signed to enrich user and item embeddings with

high-level semantics, i.e., macro concepts to im-
prove the explanation generation. The framework
identifies micro characteristics of items from asso-
ciated reviews and utilizes LLMs to annotate macro
concepts. These macro concepts act as intermedi-
aries to align the user and item embeddings with
review embeddings to obtain more semantic infor-
mation. And we achieve this through three tasks
that focus on establishing relationships between
users/items, macro concepts, and reviews. We con-
duct extensive experiments, and the results confirm
the effectiveness of CEER. Our future work will
involve adapting our method to annotate concepts
from various data sources, such as images, and
enhancing the explanation generation process (Li
et al., 2023a).
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Limitations

In this study, we annotate the macro concept from
the reviews to assist the explanation generation.
The existing framework is constrained to annotat-
ing macro concepts solely from text and lacks the
capability to expand to additional data sources like
images. And we annotate macro concepts from
a series of micro item characteristics, i.e., words.
However, the semantic meaning of words differs
under different contexts. Moreover, we employ
LLMs for annotating macro concepts and training
a small language model for explanation genera-
tion instead of fine-tuning LLMs. While fine-tuned
GPT-2 may outperform the suggested framework
when available reviews are rich, our framework
demonstrates relatively better effectiveness in situ-
ations with extremely sparse reviews and does not
incur significant computational costs.

Ethics Statement

In this study, all the Amazon datasets are publicly
available and have been extensively used in re-
search related to recommendation systems. All the
baseline codes are open-sourced. And we adhere
to the ACL Code of Ethics1.

1https://www.acm.org/code-of-ethics

11744



References

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and
Kevin Murphy. 2016. Deep variational information
bottleneck. In International Conference on Learning
Representations.

Krisztian Balog, Filip Radlinski, and Shushan
Arakelyan. 2019. Transparent, scrutable and explain-
able user models for personalized recommendation.
In SIGIR, pages 265–274.

Chong Chen, Min Zhang, Yiqun Liu, and Shaoping
Ma. 2018. Neural attentional rating regression with
review-level explanations. In WWW, pages 1583–
1592.

Hao Chen, Yue Xu, Feiran Huang, Zengde Deng, Wen-
bing Huang, Senzhang Wang, Peng He, and Zhou-
jun Li. 2020a. Label-aware graph convolutional net-
works. In Proceedings of the 29th ACM interna-
tional conference on information & knowledge man-
agement, pages 1977–1980.

Shengyuan Chen, Qinggang Zhang, Junnan Dong, Wen
Hua, Qing Li, and Xiao Huang. 2024. Entity align-
ment with noisy annotations from large language
models.

Zhongxia Chen, Xiting Wang, Xing Xie, Mehul Parsana,
Akshay Soni, Xiang Ao, and Enhong Chen. 2020b.
Towards explainable conversational recommendation.
In IJCAI, pages 2994–3000.

Zhongxia Chen, Xiting Wang, Xing Xie, Tong Wu, Guo-
qing Bu, Yining Wang, and Enhong Chen. 2019. Co-
attentive multi-task learning for explainable recom-
mendation. In IJCAI, pages 2137–2143.

Hao Cheng, Shuo Wang, Wensheng Lu, Wei Zhang,
Mingyang Zhou, Kezhong Lu, and Hao Liao. 2023.
Explainable recommendation with personalized re-
view retrieval and aspect learning. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
51–64. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu
Duan, Qiaoyu Tan, and Zhimeng Jiang. 2023.
Hierarchy-aware multi-hop question answering over
knowledge graphs. In Proceedings of the ACM Web
Conference 2023, pages 2519–2527.

Junnan Dong, Qinggang Zhang, Chuang Zhou, Hao
Chen, Daochen Zha, and Xiao Huang. 2024. Cost-
efficient knowledge-based question answering with
large language models.

Le Fang, Chunyuan Li, Jianfeng Gao, Wen Dong, and
Changyou Chen. 2019. Implicit deep latent vari-
able models for text generation. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3946–3956.

Xianghong Fang, Jian Li, Lifeng Shang, Xin Jiang, Qun
Liu, and Dit-Yan Yeung. 2022. Controlled text gen-
eration using dictionary prior in variational autoen-
coders. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 97–111.

Jingyue Gao, Xiting Wang, Yasha Wang, and Xing Xie.
2019. Explainable recommendation through attentive
multi-view learning. In AAAI, pages 3622–3629.

Shijie Geng, Zuohui Fu, Yingqiang Ge, Lei Li, Gerard
de Melo, and Yongfeng Zhang. 2022. Improving
personalized explanation generation through visual-
ization. In ACL, pages 244–255.

Chaoyu Guan, Xiting Wang, Quanshi Zhang, Runjin
Chen, Di He, and Xing Xie. 2019. Towards a deep
and unified understanding of deep neural models in
nlp. In International conference on machine learning,
pages 2454–2463. PMLR.

Fouzi Harrag, AbdulMalik Al-Salman, and Alaa Alqah-
tani. 2019. Prediction of reviews rating: A survey of
methods, techniques and hybrid architectures. Jour-
nal of Digital Information Management, 17(3):164.

Ruining He and Julian J. McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In
WWW, pages 507–517.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P
Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. 2017.
beta-vae: Learning basic visual concepts with a con-
strained variational framework. ICLR (Poster), 3.

Yidan Hu, Yong Liu, Chunyan Miao, Gongqi Lin,
and Yuan Miao. 2023. Aspect-guided syntax graph
learning for explainable recommendation. IEEE
Transactions on Knowledge and Data Engineering,
35(8):7768–7781.

Wenyue Hua, Lei Li, Shuyuan Xu, Li Chen, and
Yongfeng Zhang. 2023. Tutorial on large language
models for recommendation. In Proceedings of the
17th ACM Conference on Recommender Systems,
RecSys 2023, Singapore, Singapore, September 18-
22, 2023, pages 1281–1283. ACM.

Trung-Hoang Le and Hady W. Lauw. 2020. Synthesiz-
ing aspect-driven recommendation explanations from
reviews. In IJCAI, pages 2427–2434.

Chenliang Li, Cong Quan, Li Peng, Yunwei Qi, Yuming
Deng, and Libing Wu. 2019. A capsule network for
recommendation and explaining what you like and
dislike. In SIGIR, pages 275–284.

11745

http://arxiv.org/abs/2405.16806
http://arxiv.org/abs/2405.16806
http://arxiv.org/abs/2405.16806
https://doi.org/10.18653/V1/2023.ACL-LONG.4
https://doi.org/10.18653/V1/2023.ACL-LONG.4
http://arxiv.org/abs/2405.17337
http://arxiv.org/abs/2405.17337
http://arxiv.org/abs/2405.17337
https://doi.org/10.1145/3604915.3609494
https://doi.org/10.1145/3604915.3609494


Junyi Li, Wayne Xin Zhao, Zhicheng Wei, Nicholas Jing
Yuan, and Ji-Rong Wen. 2021a. Knowledge-based re-
view generation by coherence enhanced text planning.
In SIGIR, pages 183–192.

Lei Li, Li Chen, and Yongfeng Zhang. 2020a. Towards
controllable explanation generation for recommender
systems via neural template. In WWW Demo.

Lei Li, Yongfeng Zhang, and Li Chen. 2020b. Generate
neural template explanations for recommendation. In
CIKM, pages 755–764.

Lei Li, Yongfeng Zhang, and Li Chen. 2021b. Person-
alized transformer for explainable recommendation.
In ACL, pages 4947–4957.

Lei Li, Yongfeng Zhang, and Li Chen. 2022. Person-
alized prompt learning for explainable recommenda-
tion. arXiv, abs/2202.07371.

Lei Li, Yongfeng Zhang, and Li Chen. 2023a. Person-
alized prompt learning for explainable recommenda-
tion. ACM Trans. Inf. Syst., 41(4):103:1–103:26.

Lei Li, Yongfeng Zhang, and Li Chen. 2023b. Prompt
distillation for efficient llm-based recommendation.
In Proceedings of the 32nd ACM International Con-
ference on Information and Knowledge Management,
CIKM 2023, Birmingham, United Kingdom, October
21-25, 2023, pages 1348–1357. ACM.

Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and
Wai Lam. 2017. Neural rating regression with ab-
stractive tips generation for recommendation. In SI-
GIR, pages 345–354.

Donghua Liu, Jing Li, Bo Du, Jun Chang, and Rong
Gao. 2019. DAML: dual attention mutual learning
between ratings and reviews for item recommenda-
tion. In KDD, pages 344–352.

Hai Liu, Chao Zheng, Duantengchuan Li, Xiaoxuan
Shen, Ke Lin, Jiazhang Wang, Zhen Zhang, Zhaoli
Zhang, and Neal N. Xiong. 2022. EDMF: efficient
deep matrix factorization with review feature learning
for industrial recommender system. IEEE Transac-
tions on Industrial Informatics, 18(7):4361–4371.

Zhuang Liu, Yunpu Ma, Matthias Schubert, Yuanxin
Ouyang, Wenge Rong, and Zhang Xiong. 2023. Mul-
timodal contrastive transformer for explainable rec-
ommendation. IEEE Transactions on Computational
Social Systems.

Renze Lou, Kai Zhang, and Wenpeng Yin. 2023.
Is prompt all you need? no. A comprehensive
and broader view of instruction learning. arXiv,
abs/2303.10475.

Jianmo Ni, Jiacheng Li, and Julian J. McAuley. 2019.
Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In EMNLP, pages
188–197.

Sicheng Pan, Dongsheng Li, Hansu Gu, Tun Lu, Xu-
fang Luo, and Ning Gu. 2022. Accurate and explain-
able recommendation via review rationalization. In
WWW, pages 3092–3101.

Reinald Adrian Pugoy and Hung-Yu Kao. 2021. Unsu-
pervised extractive summarization-based representa-
tions for accurate and explainable collaborative filter-
ing. In ACL, pages 2981–2990.

Pengpeng Qiao, Zhiwei Zhang, Zhetao Li, Yuanxing
Zhang, Kaigui Bian, Yanzhou Li, and Guoren Wang.
2022. Tag: Joint triple-hierarchical attention and gcn
for review-based social recommender system. IEEE
Transactions on Knowledge and Data Engineering.

Chen Shengyuan, Yunfeng Cai, Huang Fang, Xiao
Huang, and Mingming Sun. 2024. Differentiable
neuro-symbolic reasoning on large-scale knowledge
graphs. Advances in Neural Information Processing
Systems, 36.

Jie Shuai, Kun Zhang, Le Wu, Peijie Sun, Richang
Hong, Meng Wang, and Yong Li. 2022. A review-
aware graph contrastive learning framework for rec-
ommendation. In SIGIR, pages 1283–1293.

N TISHBY. 2000. The information bottleneck method.
In Proceedings of the 37-thAnnual Allerton Confer-
ence on Communication, 2000.

Haoqin Tu and Yitong Li. 2022. An overview on con-
trollable text generation via variational auto-encoders.
CoRR, abs/2211.07954.

Haoqin Tu, Zhongliang Yang, Jinshuai Yang, Siyu
Zhang, and Yongfeng Huang. 2022. Adavae: Ex-
ploring adaptive gpt-2s in variational auto-encoders
for language modeling. CoRR, abs/2205.05862.

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao
Zhao, Wenjie Li, Xing Xie, and Minyi Guo. 2018a.
Ripplenet: Propagating user preferences on the
knowledge graph for recommender systems. In
CIKM, pages 417–426.

Linlin Wang, Zefeng Cai, Gerard de Melo, Zhu Cao, and
Liang He. 2023. Disentangled cvaes with contrastive
learning for explainable recommendation. In AAAI,
pages 13691–13699.

Peng Wang, Renqin Cai, and Hongning Wang. 2022a.
Graph-based extractive explainer for recommenda-
tions. In WWW, pages 2163–2171.

Shendi Wang, Haoyang Li, Caleb Chen Cao, Xiao-Hui
Li, Ng Ngai Fai, Jianxin Liu, Xun Xue, Hu Song,
Jinyu Li, Guangye Gu, and Lei Chen. 2022b. Tower
bridge net (tb-net): Bidirectional knowledge graph
aware embedding propagation for explainable recom-
mender systems. In ICDE, pages 3268–3279.

Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao
Wu, and Xing Xie. 2018b. A reinforcement learn-
ing framework for explainable recommendation. In
ICDM, pages 587–596.

11746

https://doi.org/10.1145/3580488
https://doi.org/10.1145/3580488
https://doi.org/10.1145/3580488
https://doi.org/10.1145/3583780.3615017
https://doi.org/10.1145/3583780.3615017
https://doi.org/10.48550/ARXIV.2211.07954
https://doi.org/10.48550/ARXIV.2211.07954
https://doi.org/10.48550/ARXIV.2205.05862
https://doi.org/10.48550/ARXIV.2205.05862
https://doi.org/10.48550/ARXIV.2205.05862


Chuhan Wu, Fangzhao Wu, Mingxiao An, Jianqiang
Huang, Yongfeng Huang, and Xing Xie. 2019. NPA:
neural news recommendation with personalized at-
tention. In KDD, pages 2576–2584.

Xuansheng Wu, Haiyan Zhao, Yaochen Zhu, Yucheng
Shi, Fan Yang, Tianming Liu, Xiaoming Zhai, Wenlin
Yao, Jundong Li, Mengnan Du, et al. 2024. Usable
xai: 10 strategies towards exploiting explainability in
the llm era. arXiv preprint arXiv:2403.08946.

Zhouhang Xie, Sameer Singh, Julian J. McAuley, and
Bodhisattwa Prasad Majumder. 2023. Factual and
informative review generation for explainable recom-
mendation. In AAAI, pages 13816–13824.

Aobo Yang, Nan Wang, Renqin Cai, Hongbo Deng, and
Hongning Wang. 2022. Comparative explanations of
recommendations. In WWW, pages 3113–3123.

Aobo Yang, Nan Wang, Hongbo Deng, and Hongning
Wang. 2021. Explanation as a defense of recommen-
dation. In WSDM, pages 1029–1037.

Qinggang Zhang, Junnan Dong, Hao Chen, Xiao Huang,
Daochen Zha, and Zailiang Yu. 2023. Knowgpt:
Black-box knowledge injection for large language
models. arXiv preprint arXiv:2312.06185.

Qinggang Zhang, Junnan Dong, Hao Chen, Wentao
Li, Feiran Huang, and Xiao Huang. 2024. Struc-
ture guided large language model for sql generation.
arXiv preprint arXiv:2402.13284.

Wei Zhang, Junbing Yan, Zhuo Wang, and Jianyong
Wang. 2022. Neuro-symbolic interpretable collabo-
rative filtering for attribute-based recommendation.
In WWW, pages 3229–3238.

Jihua Zhu, Yujiao He, Guoshuai Zhao, Xuxiao Bu, and
Xueming Qian. 2023. Joint reason generation and
rating prediction for explainable recommendation.
IEEE Transactions on Knowledge and Data Engi-
neering, 35(5):4940–4953.

A Appendix

A.1 Notations
In this work, matrices are symbolized by uppercase
bold letters (e.g., E), vectors are represented by
lowercase bold letters (e.g., e), and scalars are rep-
resented by lowercase letters (e.g., rij). We denote
sets with calligraphic letters (e.g., U) and denote
their size using cardinality (e.g., |U|). The ith row
of matrix E is denoted as ei, whereas the element
locating in the ith row and jth column is denoted
as Eij .

A.2 Dataset Details
These datasets consist of customer reviews and rat-
ings specifically related to items. We regard the
sentence in the review that can explain the purchase

motivation as the explanation following the previ-
ous practice (Li et al., 2020b; Ni et al., 2019). We
extract explanations and item features (Yang et al.,
2021) from the given reviews using ChatGPT. Both
of them will be included in the evaluation metrics,
which will be introduced later. To ensure that users
and items under evaluation receive training, we re-
serve users and items that have at least one record
in the training set (Li et al., 2021b). The interac-
tions are initially sorted based on their timestamps
and then divided into training, validation, and test
sets with a proportion of 8 : 1 : 1. The rating score
range in three datasets based on the sentiment from
negative to positive is {1, 2, 3, 4, 5}.

A.3 Evaluation Metrics

Here, the symbol ↑ followed by the metric means
that the higher the score, the better the performance,
while ↓ represents the lower the score, the better
the performance. In the first group, we view the
explanations as purely plain text and evaluate the
text quality. (i) We adopt the widely used BLEU-
1↑ and BLEU-4↑ metrics to measure the word-
level relevance of the generated explanations to
the ground-truth explanations. (ii) User and item
serve as the soft prompt to generate explanations,
with their representations containing textual infor-
mation. We adopt two classic metrics, MAE↓ and
RMSE↓ to evaluate the predicted ratings using user
and item representations with Eq. (10) (Li et al.,
2017, 2020b, 2021b).

In the second group, we examine the inter-
pretability quality of generated explanations from
two aspects. (i) To measure the degree of per-
sonalization, we adopt Unique Sentence Ratio
(USR)↑, Feature Coverage Ratio (FCR)↑, and Fea-
ture Matching Ratio (FMR)↑ by following previous
efforts (Li et al., 2020b, 2021b). Specifically, USR
assesses the diversity of generated interpretations,
while FCR and FMR measure the diversity and ac-
curacy of generated features. (ii) To examine the
semantic-level relevance, we adopt Entail↑ (Xie
et al., 2023) to estimate the extent of whether the
generated explanation entails the label explanation.
To measure the emotional consistency between the
predicted rating and the generated explanations, we
adopt Consistency↑ (Wang et al., 2018b).

Consistent with prior practices (Xie et al., 2023),
we employ a pre-trained entailment model to as-
sess whether the generated explanations entail
the ground truths. Similarly, following previous
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work (Wang et al., 2018b), we employ a sentiment
classification model to estimate sentiment scores
based on the generated explanations and calculate
the correlation with the predicted rating.
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